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Chapter 4

TEXEMS: Random Texture Representation and Analysis
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Random textures are notoriously more difficult to deal with than
regular textures particularly when detecting abnormalities on object sur-
faces. In this chapter, we present a statistical model to represent and
analyse random textures. In a two-layer structure a texture image, as
the first layer, is considered to be a superposition of a number of texture
exemplars, possibly overlapped, from the second layer. Each texture
exemplar, or simply texem, is characterised by mean values and cor-
responding variances. Each set of these texems may comprise various
sizes from different image scales. We explore Gaussian mixture models
in learning these texem representations, and show two different applica-
tions: novelty detection and image segmentation.

4.1. Introduction

Texture is one of the most important characteristics in identifying objects
and understanding surfaces. There are numerous texture features reported
in the literature, with some covered elsewhere in this book, used to perform
texture representation and analysis: co-occurrence matrices, Laws texture
energy measures, run-lengths, autocorrelation, and Fourier-domain features
are some of the most common ones used in a variety of applications.

Some textures display complex patterns but appear visually regular on a
large scale, e.g. textile and web. Thus, it is relatively easier to extract their
dominant texture features or to represent their characteristics by exploiting
their regularity and periodicity. However, for textures that exhibit complex,
random appearance patterns, such as marble slabs or printed ceramic tiles

∗Portions reprinted, with permission, from Ref. 1 by the same authors.
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(see Fig. 4.1), where the textural primitives are randomly placed, it becomes
more difficult to generalise texture primitives and their spatial relationships.

Fig. 4.1. Example marble tiles from the same family whose patterns are different but
visually consistent.

As well as pixel intensity interactions, colour plays an important role in
understanding texture, compounding the problem when random textures
are involved. There has been a limited but increasing amount of work
on colour texture analysis recently. Most of these borrow from methods
designed for graylevel images. Direct channel separation followed by lin-
ear transformation is the common approach to adapting graylevel texture
analysis methods to colour texture analysis, e.g. Caelli and Reye2 pro-
cessed colour images in RGB channels using multiscale isotropic filtering.
Features from each channel were then extracted and later combined for clas-
sification. Several works have transformed the RGB colour space to other
colour spaces to perform texture analysis so that chromatic channels are
separated from the luminance channel, e.g. Refs. 3–6. For example, Liapis
et al.6 transformed colour images into the L∗a∗b∗ colour space in which dis-
crete wavelet frame transform was performed in the L channel while local
histograms in the a and b channels were used as chromatic features.

The importance of extracting correlation between the channels for
colour texture analysis has been widely addressed with one of the earli-
est attempts reported in 1982.7 Panjwani and Healey8 devised an MRF
model to encode the spatial interaction within and between colour chan-
nels. Thai and Healey9 applied multiscale opponent features computed
from Gabor filter responses to model intra-channel and inter-channel in-
teractions. Mirmehdi and Petrou10 perceptually smoothed colour image
textures in a multiresolution sense before segmentation. Core clusters were
then obtained from the coarsest level and initial probabilities were propa-
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gated through finer levels until full segmentation was achieved. Simultane-
ous auto-regressive models and co-occurrence matrices have also been used
to extract the spatial relationship within and between RGB channels.11,12

There has been relatively limited effort to develop fully 3D models to
represent colour textures. The 3D data space is usually factorised, i.e. in-
volving channel separation, then the data is modelled and analysed using
lower dimensional methods. However, such methods inevitably suffer from
some loss of spectral information, as the colour image data space can only
be approximately decorrelated. The epitome13 provides a compact 3D rep-
resentation of colour textures. The image is assumed to be a collection
of epitomic primitives relying on raw pixel values in image patches. The
neighbourhood of a central pixel in a patch is assumed statistically condi-
tionally independent. A hidden mapping guides the relationship between
the epitome and the original image. This compact representation method
inherently captures the spatial and spectral interactions simultaneously.

In this chapter, we present a compact mixture representation of colour
textures. Similar to the epitome model, the images are assumed to be gen-
erated from a superposition of image patches with added variations at each
pixel position. However, we do not force the texture primitives into a single
patch representation with hidden mappings. Instead, we use mixture mod-
els to derive several primitive representation, called texems, at various sizes
and/or various scales. Unlike popular filter bank based approaches, such
as Gabor filters, “raw” pixel values are used instead of filtering responses.
This is motivated by several recent studies using non-filtering local neigh-
bourhood approaches. For instance, Varma and Zisserman14 have argued
that textures can be analysed by just looking at small neighbourhoods,
such as 7 × 7 patches, and achieve better performance than filtering based
methods. Their results demonstrated that textures with global structures
can be discriminated by examining the distribution of local measurements.
Ojala et al.15 have also advocated the use of local neighbourhood pro-
cessing in the shape of local binary patterns as texture descriptors. Other
works based on local pixel neighbourhoods are those which apply Markov
Random Field models, e.g. Cohen et al..16

We shall demonstrate two applications of the texem model to analyse
random textures. The first is to perform novelty detection in random colour
textures and the second is to segment colour images.
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4.2. The Texem Model

In this section, we present a two-layer generative model (see Fig. 4.2), in
which an image in the first layer is assumed to be generated by superposition
of a small number of image patches of various sizes from the second layer
with added Gaussian noise at each pixel position. We define each texem as a
mean image patch associated with a corresponding variance which controls
its variation. The form of the texem variance can vary according to the
learning scheme used. The generation process can be naturally modelled
by mixture models with a bottom-up procedure.

Fig. 4.2. An illustration of the two-layer structure of the texem model and its bottom-
up learning procedure.

Next, we detail the process of extracting texems from a single sample
image with each texem containing some of the overall textural primitive
information. We shall use two different mixture models. The first is for
graylevel images in which we vectorise the image patches and apply a Gaus-
sian mixture model to obtain the texems. In the second, colour textures are
represented by texems using a mixture model learnt based on joint Gaus-
sian distributions within local neighbourhoods. This extension of texems to
colour analysis is examined against other alternatives based on channel sep-
aration. We also introduce multiscale texem representations to drastically
reduce the overall computational effort.
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4.2.1. Graylevel texems

For graylevel images, we use a Gaussian mixture model to obtain the texems
in a simple and efficient manner.17 The original image I is broken down
into a set of P patches Z = {Zi}Pi=1, each containing pixels from a subset of
image coordinates. The shape of the patches can be arbitrary, but in this
study we used square patches of size d = N ×N . The patches may overlap
and can be of various sizes, e.g. as small as 5 × 5 to as large as required
(however, for large window sizes one should ensure there are enough samples
to populate the feature space). We group the patches of sample images into
clusters, depending on the patch size, and describe the clusters using the
Gaussian mixture model. Here, each texem, denoted as m, is defined by a
mean, μ, and a corresponding covariance matrix, ω, i.e. m = {μ,ω}. We
assume that there exist K texems, M = {mk}Kk=1, K � P , for image I
such that each patch in Z can be generated from a texem m with certain
added variations.

To learn these texems the P patches are projected into a set of high
dimensionality spaces. The number of these spaces is determined by the
number of different patch sizes and their dimensions are defined by the
corresponding value of d. Each pixel position contributes one coordinate
of a space. Each point in a space corresponds to a patch in Z. Then each
texem represents a class of patches in the corresponding space. We assume
that each class is a multivariate Gaussian distribution with mean μk and
covariance matrix ωk, which corresponds to mk in the patch domain. Thus,
given the kth texem the probability of patch Zi is computed as:

p(Zi|mk, ψ) = N (Zi; μk,ωk), (4.1)

where ψ = {αk,μk,ωk}Kk=1 is the parameter set containing αk, which is
the prior probability of kth texem constrained by

∑K
k=1 αk = 1, the mean

μk, and the covariance ωk. Since all the texems mk are unknown, we need
to compute the density function of Z given the parameter set ψ by applying
the definition of conditional probability and summing over k for Zi,

p(Zi|ψ) =
K∑
k=1

p(Zi|mk, ψ)αk, (4.2)

and then optimising the data log-likelihood expression of the entire set Z,
given by

log p(Z|K,ψ) =
P∑
i=1

log(
K∑
k=1

p(Zi|mk, ψ)αk). (4.3)
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Hence, the objective is to estimate the parameter set ψ for a given
number of texems. Expectation Maximisation (EM) can be used to find
the maximum likelihood estimate of our mixture density parameters from
the given data set Z. That is to find ψ̂ where

ψ̂ = argmax log(L(ψ|Z)) = arg max
ψ

log p(Z|K,ψ). (4.4)

Then the two steps of the EM stage are as follows. The E-step involves
a soft-assignment of each patch Zi to texems, M, with an initial guess of
the true parameters, ψ. This initialisation can be set randomly (although
we use K-means to compute a simple estimate with K set as the number of
texems to be learnt). We denote the intermediate parameters as ψ(t) where
t is the iteration step. The likelihood of kth texem given the patch Zi may
then be computed using Bayes’ rule:

p(mk|Zi, ψ(t)) =
p(Zi|mk, ψ

(t))αk∑K
k=1 p(Zi|mk, ψ(t))αk

. (4.5)

The M-step then updates the parameters by maximising the log-likelihood,
resulting in new estimates:

α̂k =
1
P

P∑
i=1

p(mk|Zi, ψ(t)),

μ̂k =
∑P

i=1 Zip(mk|Zi, ψ(t))∑P
i=1 p(mk|Zi, ψ(t))

, (4.6)

ω̂k =
∑P

i=1(Zi − μ̂k)(Zi − μ̂k)
T p(mk|Zi, ψ(t))∑P

i=1 p(mk|Zi, ψ(t))
.

The E-step and M-step are iterated until the estimations stabilise. Then,
the texems can be easily obtained by projecting the learnt means and co-
variance matrices back to the patch representation space.

4.2.2. Colour texems

In this section, we explore two different schemes to extend texems to colour
images with differing computational complexity and rate of accuracy.

4.2.2.1. Texem analysis in separate channels

More often than not, colour texture analysis is treated as a simple di-
mensional extension of techniques designed for graylevel images, and so



June 9, 2009 11:27 World Scientific Review Volume - 9in x 6in xxmm-texem

TEXEMS: Random Texture Representation and Analysis 7

colour images are decomposed into separate channels to perform the same
processes. However, this gives rise to difficulties in capturing both the
inter-channel and spatial properties of the texture and special care is usu-
ally necessary. Alternatively, we can decorrelate the image channels using
Principal Component Analysis (PCA) and then perform texems analysis in
each independent channel separately. We prefer this approach and use it
to compare against our full colour texem model introduced later.

Fig. 4.3. Channel separation - first row: Original collage image; second row: individual
RGB channels; third row: eigenchannel images.

Let ci = [ri, gi, bi]T be a colour pixel, C = {ci ∈ R3, i = 1, 2, ..., q} be
the set of q three dimensional vectors made up of the pixels from the image,
and c̄ = 1

q

∑
c∈C c be the mean vector of C. Then, PCA is performed

on the mean-centred colour feature matrix C to obtain the eigenvectors
E = [e1, e2, e3], ej ∈ R3. Singular Value Decomposition can be used to
obtain these principal components. The colour feature space determined
by these eigenvectors is referred to as the reference eigenspace Υc̄,E, where
the colour features are well represented. The image can then be projected
onto this reference eigenspace:

C′ =
−−−→
PCA(C,Υc̄,E) = ET (C − c̄J1,q), (4.7)

where J1,q is a 1 × q unit matrix consisting of all 1s. This results in three
eigenchannels, in which graylevel texem analysis can be performed sepa-
rately.

Figure 4.3 shows a comparison of RGB channel separation and PCA
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eigenchannel decomposition. The R, G, and B channels shown in the second
row are highly correlated to each other. Their spatial relationship (texture)
within each channel are very similar to each other, i.e. the channels are not
sufficiently complimentary. On the other hand, each eigenchannel in the
third row exhibits its own characteristics. For example, the first eigenchan-
nel preserves most of the textural information while the last eigenchannel
maintains the ambient emphasis of the image. Later in Sec. 4.3, we demon-
strate the benefit of decorrelating image channels in novelty detection.

4.2.2.2. Full colour model

By decomposing the colour image and analysing image channels individu-
ally, the inter-channel and intra-channel spatial interactions are not taken
into account. To facilitate such interactions, we use a different formulation
for texem representation and consequently change the inference procedure
so that no vectorisation of image patches is required and colour images do
not need to be transformed into separate channels. Contrary to the way
graylevel texems were developed, where each texem was represented by a
single multivariate Gaussian function, for colour texems we assume that
pixels are statistically independent in each texem with Gaussian distribu-
tion at each pixel position in the texem. This is similar to the way the
image epitome is generated by Jojic et al.13 Thus, the probability of patch
Zi given the kth texem can be formulated as a joint probability assuming
neighbouring pixels are statistically conditionally independent, i.e.:

p(Zi|mk) = p(Zi|μk,ωk) =
∏
j∈S

N (Zj,i; μj,k,ωj,k), (4.8)

where S is the pixel patch grid, N (Zj,i; μj,k,ωj,k) is a Gaussian distribution
over Zj,i, and μj,k and ωj,k denote mean and covariance at the jth pixel in
the kth texem. Similarly to Eq. (4.2) but using the component probability
function in Eq. (4.8), we assume the following probabilistic mixture model:

p(Zi|Θ) =
K∑
k=1

p(Zi|mk,Θ)αk, (4.9)

where the parameters are Θ = {αk,μk,ωk}Kk=1 and can be determined by
optimising the data log-likelihood given by

log p(Z|K,Θ) =
P∑
i=1

log(
K∑
k=1

p(Zi|mk,Θ)αk). (4.10)
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The EM technique can be used again to find the maximum likelihood esti-
mate:

Θ̂ = arg max log(L(Θ|Z)) = arg max
Θ

log p(Z|K,Θ). (4.11)

The new estimates, denoted by α̂k, μ̂k, and ω̂k, are updated during the
EM iterations:

α̂k =
1
P

P∑
i=1

p(mk|Zi,Θ(t)),

μ̂k = {μ̂j,k}j∈S ,
ω̂k = {ω̂j,k}j∈S , (4.12)

μ̂j,k =
∑P

i=1 Zj,ip(mk|Zi,Θ(t))∑P
i=1 p(mk|Zi,Θ(t))

,

ω̂j,k =
∑P

i=1(Zj,i − μ̂j,k)(Zj,i − μ̂j,k)T p(mk|Zi,Θ(t))∑P
i=1 p(mk|Zi,Θ(t))

,

where

p(mk|Zi,Θ(t)) =
p(Zi|mk,Θ(t))αk∑K
k=1 p(Zi|mk,Θ(t))αk

. (4.13)

The iteration continues till the values stabilise. Various sizes of texems
can be used and they can overlap to ensure they capture sufficient textural
characteristics. We can see that when the texem reduces to a single pixel
size, Eq. (4.12) becomes Gaussian mixture modelling based on pixel colours.

Fig. 4.4. Eight 7 × 7 texems extracted from the image in Fig. 4.3. Each texem m
is defined by mean values (first row), μ = [μ1, μ2, ...,μS ], and corresponding variance
images (second row), ω = [ω1, ω2, ...,ωS ], i.e. m = {μ, ω}. Note, μj is a 3 × 1 colour
vector, and ωj is a 3× 3 matrix characterising the covariance in the colour space. Each
element ωj in ω is visualised using total variance of ωj , i.e.

∑
diag(ωj).

Figure 4.4 illustrates eight 7×7 texems extracted from the Baboon image
in Fig. 4.3. They are arranged according to their descending order of priors
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αk. We may treat each prior, αk, as a measurement of the contribution
from each texem. The image then can be viewed as a superposition of
various sizes of image patches taken from the means of the texems, a linear
combination, with added variations at each pixel position governed by the
corresponding variances.

4.2.3. Multiscale texems

To capture sufficient textural properties, texems can be from as small as
3 × 3 to larger sizes such as 21 × 21. However, the dimension of the space
patches Z are transformed into will increase dramatically as the dimension
of the patch size increases. This means that a very large number of samples
and high computational costs are needed in order to accurately estimate
the probability density functions in very high dimensional spaces,18 forcing
the procurement of a large number of training samples.

Instead of generating variable-size texems, fixed size texems can be
learnt in multiscale. This will result in (multiscale) texems with a small
size, e.g. 5 × 5. Besides computational efficiency, exploiting information
at multiscale offers other advantages over single-scale approaches. Char-
acterising a pixel based on local neighbourhood pixels can be more effec-
tively achieved by examining various neighbourhood relationships. The
corresponding neighbourhood at coarser scale obviously offers larger spa-
tial interactions. Also, processing at multiscale ensures the capture of the
optimal resolution, which is often data dependent. We shall investigate two
different approaches for texems analysis in multiscale.

4.2.3.1. Texems in separate scales

First, we learn small fixed size texems in separate scales of a Gaussian
pyramid. Let us denote I(n) as the nth level image of the pyramid, Z(n) as
all the image patches extracted from I(n), l as the total number of levels,
and S↓ as the down-sampling operator. We then have

I(n+1) = S↓Gσ(I(n)), ∀n, n = 1, 2, ..., l− 1, (4.14)

where Gσ denotes the Gaussian convolution. The finest scale layer is the
original image, I(1) = I. We then extract multiscale texems from the image
pyramid using the method presented in the previous section. Similarly, let
m(n) denote the nth level of multiscale texems and Θ(n) the parameters
associated at the same level.
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During the EM process, the stabilised estimation of a coarser level is
used as the initial estimation for the finer level, i.e.

Θ̂(n,t=0) = Θ(n+1), (4.15)

which hastens the convergence and achieves a more accurate estimation.

4.2.3.2. Multiscale texems using branch partitioning

Starting from the pyramid layout described above, each pixel in the finest
level can trace its parent pixel back to the coarsest level forming a unique
route or branch. Take the full colour texem for example, the conditional
independence assumption amongst pixels within the local neighbourhood
shown in Eq. (4.8) makes the parameter estimation tractable. Here, we
assume pixels in the same branch are conditionally independent, i.e.

p(Zi|mk) = p(Zi|μk,ωk) =
l∏

n=1

N (Z(n)
i ; μ(n)

k ,ω
(n)
k ), (4.16)

where Zi here is a branch of pixels, and Z(n)
i , μ

(n)
k , and ω

(n)
k are the colour

pixel at level n in ith branch, mean at level n of kth texem, and variance
at level n of kth texem, respectively. This is essentially the same form as
Eq. (4.8), hence, we can still use the EM procedure described previously
to derive the texems. However, the image is not partitioned into patches,
but rather laid out in multiscale first and then separated into branches, i.e
pixels are collected across scales, instead of from its neighbours.

4.2.4. Comments

The texem model is motivated from the observation that in random texture
surfaces of the same family, the pattern may appear to be different in
textural manifestation from one sample to another, however, the visual
impression and homogeneity remains consistent. This suggests that the
random pattern can be described with a few textural primitives.

In the texem model, the image is assumed to be a superposition of
patches with various sizes and even various shapes. The variation at each
pixel position in the construction of the image is embedded in each texem.
Thus, it can be viewed as a two-layer generative statistical model. The
image I, in the first layer, is generated from a collection of texems M in
the second layer, i.e. M → I. In deriving the texem representations from
an image or a set of images, a bottom-up learning process can be used as
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presented in this chapter. Figure 4.2 illustrates the two-layer structure and
the bottom-up learning procedure.

Relationship to Textons - Both the texem and the texton models
characterise textural images by using micro-structures. Textons were first
formally introduced by Julesz19 as fundamental image structures, such as
elongated blobs, bars, crosses, and terminators, and were considered as
atoms of pre-attentive human visual perception. Zhu et al.20 define tex-
tons using the superposition of a number of image bases, such as Laplacian
of Gaussians and Gabors, selected from an over-complete dictionary. How-
ever, the texem model is significantly different from the texton model in
that (i) it relies directly on subimage patches instead of using base func-
tions, and (ii) it is an implicit, rather than an explicit, representation of
primitives. The design of a bank of base functions to obtain sensible tex-
tons is non-trivial and likely to be application dependent. Much effort is
needed to explicitly extract visual primitives (textons), such as blobs, but
in the proposed model, each texem is an encapsulation of texture primi-
tive(s). Not using base functions also allows texems more flexibility to deal
with multi-spectral images.

4.3. Novelty Detection

In this section, we show an application of the texem model to defect detec-
tion on ceramic tile surfaces exhibiting rich and random texture patterns.

Visual surface inspection tasks are concerned with identifying regions
that deviate from defect-free samples according to certain criteria, e.g. pat-
tern regularity or colour. Machine vision techniques are now regularly used
in detecting such defects or imperfections on a variety of surfaces, such
as textile, ceramics tiles, wood, steel, silicon wafers, paper, meat, leather,
and even curved surfaces, e.g. Refs. 16 and 21–23. Generally, this detec-
tion process should be viewed as different to texture segmentation, which
is concerned with splitting an image into homogeneous regions. Neither
the defect-free regions nor the defective regions have to be texturally uni-
form. For example, a surface may contain totally different types of defects
which are likely to have different textural properties. On the other hand, a
defect-free sample should be processed without the need to perform “seg-
mentation”, no matter how irregular and unstationary the texture.

In an application such as ceramic tile production, the images under
inspection may appear different from one surface to another due to the
random texture patterns involved. However, the visual impression of the
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same product line remains consistent. In other words, there exist textural
primitives that impose consistency within the product line. Figure 4.1
shows three example tile images from the same class (or production run)
decorated with a marble texture. Each tile has different features on its
surface, but they all still exhibit a consistent visual impression. One may
collect enough samples to cover the range of variations and this approach
has been widely used in texture classification and defect detection, e.g.
for textile defects.24 It usually requires a large number of non-defective
samples and lengthy training stages; not necessarily practical in a factory
environment. Additionally, defects are usually unpredictable.

Instead of the traditional classification approach, we learn texems, in an
unsupervised fashion, from a very small number of training samples. The
texems encapsulate the texture or visual primitives. As the images of the
same (tile) product contain the same textural elements, the texems can be
used to examine the same source similarity, and detect any deviations from
the norm as defects.

4.3.1. Unsupervised training

Texems lend themselves well to performing unsupervised training and test-
ing for novelty detection. This is achieved by automatically determining
the threshold of statistical texture variation of defect-free samples at each
resolution level. For training, a small number of defect free samples (e.g.
4 or 5 only) are arranged within the multiscale framework, and patches
with the same texem size are extracted. The probability of a patch Z(n)

i

belonging to texems in the corresponding nth scale is:

p(Z(n)
i |Θ(n)) =

K(n)∑
k=1

p(Z(n)
i |m(n)

k ,Θ(n))α(n)
k , (4.17)

where Θ(n) represents the parameter set for level n, m(n)
k is the kth texem

at the nth image pyramid level, and p(Z(n)
i |m(n)

k ,Θ(n)) is a product of
Gaussian distributions shown in Eq. (4.9) with parameters associated to
texem set M. Based on this probability function, we then define a novelty
score function as the negative log likelihood:

V(Z(n)
i |Θ(n)) = − log p(Z(n)

i |Θ(n)). (4.18)

The lower the novelty score, the more likely the patch belongs to the
same family and vice versa. Thus, it can be viewed as a same source simi-
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larity measurement. The distribution of the scores for all the patches Z(n)

at level n of the pyramid forms a 1D novelty score space which is not nec-
essarily a simple Gaussian distribution. In order to find the upper bound
of the novelty score space of defect-free patches (or the lower bound of data
likelihood), K-means clustering is performed in this space to approximately
model the space. The cluster with the maximum mean is the component
of the novelty score distribution at the boundary between good and defec-
tive textures. This component is characterised by mean u(n) and standard
deviation σ(n). This K-means scheme replaces the single Gaussian distri-
bution assumption in the novelty score space, which is commonly adopted
in a parametric classifier in novelty detection, e.g. Ref. 25 and for which
the correct parameter selection is critical. Instead, dividing the novelty
score space and finding the critical component, here called the boundary
component, can effectively lower the parameter sensitivity. The value of K
should be generally small (we empirically fixed it at 5). It is also notable
that a single Gaussian classifier is a special case of the above scheme, i.e.
when K = 1. The maximum novelty score (or the minimum data likeli-
hood), Λ(n) of a patch Z(n)

i at level n across the training images is then
established as:

Λ(n) = u(n) + λσ(n), (4.19)

where λ is a simple constant. This completes the training stage in which,
with only a few defect-free images, we determine the texems and an au-
tomatic threshold for marking new image patches as good or defective.

4.3.2. Novelty detection and defect localisation

In the testing stage, the image under inspection is again layered into a
multiscale framework and patches at each pixel position x at each level n are
examined against the learnt texems. The probability for each patch and its
novelty score are then computed using Eqs. (4.17) and (4.18) and compared
to the maximum novelty score, determined by Λ(n), at the corresponding
level. Let Q(n)(x) be the novelty score map at the nth resolution level.
Then, the potential defect map, D(n)(x), at level n is:

D(n)(x) =
{

0 if Q(n)(x) ≤ Λ(n)

Q(n)(x) − Λ(n) otherwise,
(4.20)

D(n)(x) indicates the probability of there being a defect. Next, the infor-
mation coming from all the resolution levels must be consolidated to build
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the certainty of the defect at position x. We follow a framework22 which
combines information from different levels of a multiscale pyramid and re-
duces false alarms. It assumes that a defect must appear in at least two
adjacent resolution levels for it to be certified as such. Using a logical AND,
implemented through the geometric mean of every pair of adjacent levels,
we initially obtain a set of combined maps as:

D(n,n+1)(x) = [D(n)(x)D(n+1)(x)]1/2. (4.21)

Note each D(n+1)(x) is scaled up to be the same size as D(n)(x). This
operation reduces false alarms and yet preserves most of the defective areas.
Next, the resulting D(1,2)(x), D(2,3)(x), ..., D(l−1,l)(x) maps are combined
in a logical OR, as the arithmetic mean, to provide

D(x) =
1

l − 1

l−1∑
n=1

D(n,n+1)(x), (4.22)

where D(x) is the final consolidated map of (the joint contribution of) all
the defects across all resolution scales of the test image.

The multiscale, unsupervised training, and novelty detection stages are
applied in a similar fashion as described above in the cases of graylevel and
full colour model texem methods. In the separate channel colour approaches
(i.e. before and after decorrelation) the final defective maps from each
channel are ultimately combined.

4.3.3. Experimental results

The texem model is initially applied to the detection of defects on ceramic
tiles. We do not evaluate the quality of the localised defects found (against
a groundtruth) since the defects in our data set are difficult to manually lo-
calise. However, whole tile classification rates, based on overall “defective”
and “defect-free” labelling by factory-floor experts is presented. In order to
evaluate texems, the result of experiments on texture collages made from
textures in the MIT VisTex texture database26 is outlined. A comparative
study of three different approaches to texem analysis on colour images and
a Gabor filter bank based method is given.

4.3.3.1. Ceramic Tile Application

We applied the proposed full colour texem model to a variety of randomly
textured tile data sets with different types of defects including physical
damage, pin holes, textural imperfections, and many more. The 256 × 256
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test samples were pre-processed to assure homogeneous luminance, spatially
and temporally. In the experiments, only five defect-free samples were used
to extract the texems and to determine the upper bound of the novelty
scores Λ(n). The number of texems at each resolution level were empirically
set to 12, and the size of each texem was 5 × 5 pixels. The number of
multiscale levels was l = 4. These parameters were fixed throughout our
experiments on a variety of random texture tile prints.
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Fig. 4.5. Localising textural defects - from top left to bottom right: original defec-
tive tile image, detected defective regions at different levels n = 1, 2, 3, 4, and the final
defective region superimposed on the original image.

Figure 4.5 shows a random texture example with defective regions in-
troduced by physical damage. The potentially defective regions detected
at each resolution level n, n = 1, ..., 4, are marked on the corresponding
images in Fig. 4.5. It can be seen that the texems show good sensitivity to
the defective region at different scales. As the resolution progresses from
coarse to fine, additional evidence for the defective region is gathered. The
final image shows the defect superimposed on the original image. As men-
tioned earlier, the defect fusion process can eliminate false alarms, e.g. see
the extraneous false alarm regions in level n = 4 which disappear after the
operations in Eqs. (4.21) and (4.22).

More examples of different random textures are shown in Fig. 4.6. In
each family of patterns, the textures are varying but have the same visual
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Fig. 4.6. Defect localisation (different textures) - The first row shows example images
from three different tile families with different chromato-textural properties. Defects
shown in the next row, from left to right, include print error, surface bumps, and thin
cracks. The third row shows another three images from three different tile families.
Defects shown in the last row, from left to right, include cracks and print errors.

impression. In each case the proposed method could find structural and
chromatic defects of various shapes and sizes.

Figure 4.7 shows three examples when using graylevel texems. Various
defects, such as print errors, bumps, and broken corner, are successfully
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Fig. 4.7. Graylevel texems defect localisation.

detected. Graylevel texems were found adequate for most defect detection
tasks where defects were still reasonably visible after converting from colour
to gray scale. However, colour texems were found to be more powerful
in localising defects and better discriminants in cases involving chromatic
defects. Two examples are compared in Fig. 4.8. The first shows a tile
image with a defective region, which is not only slightly brighter but also
less saturated in blue. The colour texem model achieved better results in
localising the defect than the graylevel one. The second row in Fig. 4.8
demonstrates a different type of defect which clearly possesses a different
hue from the background texture. The colour texems found more affected
regions, more accurately.

The full colour texem model was tested on 1018 tile samples from ten
different families of tiles consisting of 561 defect-free samples and 457 de-
fective samples. It obtained a defect detection accuracy rate of 91.1%, with
sensitivity at 92.6% and specificity at 89.8%. The graylevel texem method
was tested on 1512 graylevel tile images from eight different families of
tiles consisting of 453 defect-free samples and 1059 defective samples. It
obtained an overall accuracy rate of 92.7%, with sensitivity at 95.9% speci-
ficity at 89.5%. We compare the performance of graylevel and colour texem
models on the same dataset in later experiments.

As patches are extracted from each pixel position at each resolution
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Fig. 4.8. Defect localisation comparison - left column: original texture with print errors,
middle column: results using graylevel texems, right column: results using colour texems.

level, a typical training stage involves examining a very large number of
patches. For the graylevel texem model, this takes around 7 minutes, on a
2.8GHz Pentium 4 Processor running Linux with 1GB RAM, to learn the
texems in multiscale and to determine the thresholds for novelty detection.
The testing stage then requires around 12 seconds to inspect one tile image.
The full colour texem model is computationally more expensive and can be
more than 10 times slower. However, this can be reduced to the same
order as the graylevel version by performing window-based, rather than
pixel-based, examination at the training and testing stages.

4.3.3.2. Evaluation using VisTex Collages

For performance evaluation, 28 image collages were generated (see some in
Fig. 4.10) from textures in VisTex.26 In each case the background is the
learnt texture for which colour texems are produced and the foreground
(disk, square, triangle, and rhombus) is treated as the novelty to be de-
tected. This is not a texture segmentation exercise, but rather defect seg-
mentation. The textures used were selected to be particularly similar in
nature in the foreground and the background, e.g. see the collages in the
first or third columns of Fig. 4.10. We use specificity for how accurately
defect-free samples were classified, sensitivity for how accurately defective
samples were classified, and accuracy as the correct classification rate of all
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samples:
⎧⎪⎨
⎪⎩
spec. = Nt∩Ng

Ng
× 100%

sens. = Pt∩Pg

Pg
× 100%

accu. = Nt∩Ng+Pt∩Pg

Ng+Pg
× 100%

(4.23)

where P is the number of defective samples, N is the number of defect-
free samples, and the subscripts t and g denote the results by testing and
groundtruth respectively. The foreground is set to occupy 50% of the whole
image to allow the sensitivity and specificity measures have equal weights.

Fig. 4.9. Channel separation - first row: Original collage image; second row: individual
RGB channels; third row: eigenchannel images.

We first compare the two different channel separation schemes in each
case using graylevel texem analysis in the individual channels. For the RGB
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channel separation scheme, defects detected in each channel were then com-
bined to form the final defect map. For the eigenchannel separation scheme,
the reference eigenspace from training images was first derived. As the pat-
terns on each image within the same texture family can still be different,
hence the individually derived principal components can also differ from
one image to another. Furthermore, defective regions can affect the prin-
cipal components resulting in different eigenspace responses from different
training samples. Thus, instead of performing PCA on each training image
separately, a single eigenspace was generated from several training images,
resulting in a reference eigenspace in which defect-free samples are repre-
sented. Then, all new, previously unseen images under inspection were
projected onto this eigenspace such that the transformed channels share
the same principal components. Once we obtain the reference eigenspace,
Υc̄,E , defect detection and localisation are performed in each of the three
corresponding channels by examining the local context using the graylevel
texem model, the same process as used in RGB channel separation scheme.
Figure 4.9 shows a comparison of direct RGB channel separation and PCA
based channel separation. The eigenchannels are clearly more differentiat-
ing.

Experimental results on the colour collages showed that the PCA based
method achieved a significant improvement over the correlated RGB chan-
nels with an overall accuracy of 84.7% compared to 79.1% (see Table 4.1).
Graylevel texem analysis in image eigenchannels appear to be a plausible
approach to perform colour analysis with relatively economic computational
complexity. However, the full colour texem model, which models inter-
channel and intra-channel interactions simultaneously, improved the per-
formance to an overall detection accuracy of 90.9%, 91.2% sensitivity and
90.6% specificity. Example segmentations (without any post-processing) of
all the methods are shown in the last three rows of Fig. 4.10.

We also compared the proposed method against a non-filtering method
using LBPs15 and a Gabor filtering based novelty detection method.22 The
LBP coefficients were extracted from each RGB colour band. The estima-
tion of the range of coefficient distributions for defect-free samples and the
novelty detection procedures were the same as that described in Sec. 4.3.2.
We found that LBP performs very poorly, but a more sophisticated clas-
sifier may improve the performance. Gabor filters have been widely used
in defect detection, see Refs. 22 and 23 as typical examples. The work by
Escofet et al.,22 referred to here as Escofet’s method, is the most compa-
rable to ours, as it is (a) performed in a novelty detection framework and
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Fig. 4.10. Collage samples made up of materials such as foods, fabric, sand, metal, wa-
ter, and novelty detection results without any post-processing. Rows from top: original
images, Escofet et al.’s method, graylevel texems directly in RGB channels, graylevel
texems in PCA decorrelated RGB eigenchannels, full colour texem model.

(b) uses the same defect fusion scheme across the scales. Thus, following
Escofet’s method to perform novelty detection on the synthetic image col-
lages, the images were filtered through a set of 16 Gabor filters, comprising
four orientations and four scales. The texture features were extracted from
filtering responses. Feature distributions of defect-free samples were then
used for novelty detection. The same logical process was used to combine
defect candidates across the scales. An overall detection accuracy of 71.5%
was obtained by Escofet’s method; a result significantly lower than texems
(see Table 4.2). Example results are shown in the second row of Fig. 4.10.

There are two important parameters in the texem model for novelty
detection, the size of texems and the number of the texems. In theory, the
size of the texems is arbitrary. Thus, it can easily cover all the necessary
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Table 4.1. Novelty detection comparison: graylevel texems in image
RGB channels and image eigenchannels (values are %s).

No. RGB channels Eigenchannels

spec. sens. accu. spec. sens. accu.

1 81.7 100 90.7 82.0 100 90.9
2 80.7 100 90.2 80.8 100 90.3
3 87.6 99.9 93.7 82.4 100 91.1
4 94.3 97.2 95.7 93.9 95.7 94.8
5 87.3 30.7 59.3 77.9 99.6 88.6
6 76.6 100 88.2 77.8 100 88.8
7 96.0 93.4 94.7 90.1 98.6 94.3
8 87.8 97.7 92.7 85.6 95.3 90.4
9 85.5 52.0 68.9 76.1 100 87.9
10 92.2 25.2 59.1 77.8 99.2 88.4
11 89.1 33.6 61.6 80.3 97.2 88.6
12 82.5 88.4 85.4 79.5 97.7 88.5
13 93.5 47.8 70.9 93.0 49.0 71.2
14 80.9 99.9 90.3 81.1 100 90.5
15 98.7 55.3 77.2 98.3 74.8 86.7
16 84.5 78.1 81.3 86.5 92.7 89.6
17 75.1 60.8 67.9 62.3 87.9 73.8
18 64.9 69.5 67.2 60.9 91.9 74.8
19 75.1 60.0 67.5 57.0 87.4 72.2
20 83.9 91.8 87.8 85.4 90.0 87.7
21 78.6 97.3 87.8 88.4 98.4 93.4
22 88.5 49.8 69.4 79.5 76.3 77.9
23 98.2 44.5 71.6 96.6 34.8 66.0
24 60.6 69.8 65.2 64.5 86.8 75.7
25 58.7 100 79.4 64.8 99.9 82.3
26 84.1 91.6 87.9 76.5 94.2 85.3
27 73.2 87.8 80.5 64.7 99.9 82.3
28 74.5 88.3 81.4 65.7 94.6 80.1

Overall 82.7 75.4 79.1 78.9 90.8 84.7

spatial frequency range. However, for the sake of computational simplicity,
a window size of 5×5 or 7×7 across all scales generally suffices. The number
of texems can be automatically determined using model order selection
methods, such as MDL, though they are usually computationally expensive.
We used 12 texems in each scale for over 1000 tile images and collages and
found reasonable, consistent performance for novelty detection.
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Table 4.2. Novelty detection comparison: Escofet’s method and the
full colour texem model (values are %s).

No. Escofet’s Method Colour Texems

spec. sens. accu. spec. sens. accu.

1 95.6 82.7 89.2 91.9 99.9 95.9
2 96.9 83.7 90.3 84.4 100 92.1
3 96.1 61.5 79.0 91.1 99.8 95.4
4 98.0 53.1 75.8 97.0 92.9 95.0
5 98.8 1.5 50.7 92.1 98.8 95.4
6 96.6 70.0 83.4 96.3 98.6 97.4
7 98.9 26.8 63.2 98.6 79.4 89.0
8 91.4 74.4 83.0 89.6 99.8 94.7
9 90.8 49.0 70.1 86.4 100 93.1
10 94.3 7.2 51.2 92.8 99.6 96.2
11 94.6 8.6 52.1 96.3 90.8 93.6
12 86.9 44.0 65.7 88.4 98.8 93.5
13 96.8 71.0 84.0 91.0 91.9 91.5
14 90.7 95.2 93.0 82.5 100 91.1
15 98.4 27.2 63.2 96.5 76.3 86.5
16 95.5 43.0 69.3 96.3 71.2 83.8
17 80.0 56.5 68.2 83.5 98.7 91.1
18 73.9 60.4 67.2 83.9 96.5 90.2
19 84.9 52.0 68.4 90.4 71.3 80.9
20 94.4 52.0 73.2 95.1 88.8 91.9
21 94.0 48.9 71.6 95.8 75.9 85.9
22 95.8 23.4 60.0 92.2 72.0 82.2
23 97.1 35.1 66.5 93.6 67.8 80.9
24 89.4 46.4 67.9 81.6 98.1 89.8
25 82.6 92.9 87.7 88.3 100 93.9
26 94.5 55.3 74.9 94.3 92.2 93.2
27 93.9 36.5 65.2 85.9 98.9 92.4
28 81.2 55.3 68.3 82.0 95.2 88.6

Overall 92.2 50.5 71.5 90.6 91.2 90.9

4.4. Colour Image Segmentation

Clearly each patch from an image has a measurable relationship with each
texem according to the posteriori, p(mk|Zi,Θ), which can be conveniently
obtained using Bayes’ rule in Eq. (4.13). Thus, every texem can be viewed
as an individual textural class component, and the posteriori can be re-
garded as the component likelihood with which each pixel in the image can
be labelled. Based on this, we present two different multiscale approaches
to carry out segmentation. The first, interscale post-fusion, performs seg-
mentation at each level separately and then updates the label probabilities
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from coarser to finer levels. The second, branch partitioning, simplifies the
procedure by learning the texems across the scales to gain efficiency.

4.4.1. Segmentation with interscale post-fusion

For segmentation, each pixel needs to be assigned a class label, c =
{1, 2, ...,K}. At each scale n, there is a random field of class labels,
C(n). The probability of a particular image patch, Z(n)

i , belonging to a
texem (class), c = k,m(n)

k , is determined by the posteriori probability,
p(c = k,m(n)

k |Z(n)
i ,Θ(n)), simplified as p(c(n)|Z(n)

i ), given by:

p(c(n)|Z(n)
i ) =

p(Z(n)
i |m(n)

k )α(n)
k∑K

k=1 p(Z
(n)
i |m(n)

k )α(n)
k

, (4.24)

which is equivalent to the stabilised solution of Eq. (4.13). The class prob-
ability at given pixel location (x(n), y(n)) at scale n then can be estimated
as p(c(n)|(x(n), y(n))) = p(c(n)|Z(n)

i ). Thus, this labelling assignment proce-
dure initially partitions the image in each individual scale. As the image is
laid hierarchically, there is inherited relationship among parent and children
pixels. Their labels should also reflect this relationship. Next, building on
this initial labelling, the partitions across all the scales are fused together
to produce the final segmentation map.

The class labels c(n) are assumed conditionally independent given the
labelling in the coarser scale c(n+1). Thus, each label field C(n) is assumed
only dependent on the previous coarser scale label field C(n+1). This offers
efficient computational processing, while preserving the complex spatial
dependencies in the segmentation. The label field C(n) becomes a Markov
chain structure in the scale variable n:

p(c(n)|c(>n)) = p(c(n)|c(n+1)), (4.25)

where c(>n) = {c(i)}li=n+1 are the class labels at all coarser scales greater
than the nth, and p(c(l)|c(l+1)) = p(c(l)) as l is the coarsest scale. The
coarsest scale segmentation is directly based on the initial labelling.

A quadtree structure for the multiscale label fields is used, and c(l)

only contains a single pixel, although a more sophisticated context model
can be used to achieve better interaction between child and parent nodes,
e.g. a pyramid graph model.27 The transition probability p(c(n)|c(n+1))
can be efficiently calculated numerically using a lookup table. The label
assignments at each scale are then updated, from coarsest to the finest,
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according to the joint probability of the data probability and the transition
probability:
{
ĉ(l) = arg maxc(l) log p(c(l)|(x(l), y(l))),
ĉ(n) = argmaxc(n){log p(c(n)|(x(n), y(n))) + log p(c(n)|c(n+1))} ∀n < l.

(4.26)
The segmented regions will be smooth and small isolated holes are filled.

4.4.2. Segmentation using branch partitioning

As discussed earlier in Sec. 4.2.3, an alternative multiscale approach can
be used by partitioning the multiscale image into branches based on hier-
archical dependency. By assuming that pixels within the same branch are
conditionally independent to each other, we can directly learn multiscale
colour texems using Eq. (4.16). The class labels then can be directly ob-
tained without performing interscale fusion by evaluating the component
likelihood using Bayes’ rule: p(c|Zi) = p(mk|Zi,Θ), where Zi is a branch
of pixels. The label assignment for Zi is then according to:

ĉ = argmax
c

p(c|Zi). (4.27)

Thus, we simplify the approach presented in Sec. 4.4.1 by avoiding the
inter-scale fusion after labelling each scale.

4.4.3. Texem Grouping for Multimodal Texture

A textural region may contain multiple visual elements and display complex
patterns. A single texem might not be able to fully represent such textural
regions, hence, several texems can be grouped together to jointly represent
“multimodal” texture regions. Here, we use a simple but effective method
proposed by Manduchi28to group texems. The basic strategy is to group
some of the texems based on their spatial coherence. The grouping process
simply takes the form:

p̂(Zi|c) =
1
β̂c

∑
k∈Gc

p(Zi|mk)αk, β̂c =
∑
k∈Gc

αk, (4.28)

where Gc is the group of texems that are combined together to form a new
cluster c which labels the different texture classes, and β̂c is the priori for
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new cluster c. The mixture model can thus be reformulated as:

p(Zi|Θ) =
K̂∑
c=1

p̂(Zi|mk)β̂c, (4.29)

where K̂ is the desired number of texture regions. Equation (4.29) shows
that pixel i in the centre of patch Zi will be assigned to the texture cluster
c which maximises p̂(Zi|c)β̂c:

c = argmax
c

p̂(Zi|c)β̂c = arg max
c

∑
k∈Gc

p(Zi|mk)αk. (4.30)

The grouping in Eq. (4.29) is carried out based on the assumption that
the posteriori probabilities of grouped texems are typically spatially corre-
lated. The process should minimise the decrease of model descriptiveness,
D, which is defined as:28

D =
K∑
j=1

Dj, Dj =
∫
p(Zi|mj)p(mj |Zi)dZi =

E[p(mj |Zi)2]
αj

, (4.31)

where E[.] is the expectation computed with respect to p(Zi). In other
words, the compacted model should retain as much descriptiveness as pos-
sible. This is known as the Maximum Description Criterion (MDC). The de-
scriptiveness decreases drastically when well separated texem components
are grouped together, but decreases very slowly when spatially correlated
texem component distributions merge together. Thus, the texem grouping
should search for smallest change in descriptiveness, ΔD. It can be carried
out by greedily grouping two texem components, ma and mb, at a time
with minimum ΔDab:

ΔDab =
αbDa + αaDb

αa + αb
− 2E[p(ma|Zi)p(mb|Zi)]

αa + αb
. (4.32)

We can see that the first term in Eq. (4.32) is the maximum possible descrip-
tiveness loss when grouping two texems, and the second term in Eq. (4.32)
is the normalised cross correlation between the two texem component dis-
tributions. Since one texture region may contain different texem compo-
nents that are significantly different to each other, it is beneficial to smooth
the posteriori as proposed by Manduchi28 such that a pixel that originally
has high probability to just one texem component will be softly assigned
to a number of components that belong to the same “multimodal” tex-
ture. After grouping, the final segmentation map is obtained according to
Eq. (4.30).
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Fig. 4.11. Testing on synthetic images - first row: original image collages, second row:
groundtruth segmentations, third row: JSEG results, fourth row: results of the proposed
method using interscale post-fusion, last row: results of the proposed method using
branch partitioning.

4.4.4. Experimental Results

Here, we present experimental results using colour texem based image seg-
mentation with a brief comparison with the well-known JSEG technique.29

Figure 4.11 shows example results on five different texture collages with
the original image in the first row, groundtruth segmentations in the second
row, the JSEG result in the third row, the proposed interscale post-fusion
method in the fourth row, and the proposed branch partition method in
the final row. The two proposed schemes have similar performance, while
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JSEG tends to over-segment which partially arises due to the lack of prior
knowledge of number of texture regions.

Fig. 4.12. An example of the interscale post-fusion method followed by texem grouping
- first row: original image and its segmentation result, second row: initial labelling of 5
texem classes for each scale, third row: updated labelling after grouping 5 texems into
3, fourth row: results of interscale fusion.

Figure 4.12 focuses on the interscale post-fusion technique followed by
texem grouping. The original image and the final segmentation are shown
at the top. The second row shows the initial labelling of 5 texem classes
for each pyramid level. The texems are grouped to 3 classes as seen in the
third row. Interscale fusion is then performed and shown in the last row.
Note there is no fusion in the fourth (coarsest) scale.

Three real image examples are given in Fig. 4.13. For each image, we
show the original images, its JSEG segmentation and the results of the
two proposed segmentation methods. The interscale post-fusion method
produced finer borders but is a slower technique.

The results shown demonstrate that the two proposed methods are more
able in modelling textural variations than JSEG and are less prone to over-
segmentation. However, it is noted that JSEG does not require the number
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Fig. 4.13. Testing on real images - first column: original images, second column: JSEG
results, third column: results of the proposed method using interscale post-fusion, fourth
column: results of the proposed method using branch partitioning.

of regions as prior knowledge. On the other hand, texem based segmenta-
tion provides a useful description for each region and a measurable relation-
ship between them. The number of texture regions may be automatically
determined using model-order selection methods, such as MDL. The post-
fusion and branch partition schemes achieved comparable results, while the
branch partition method is faster. However, a more thorough comparison
is necessary to draw complete conclusions.

4.5. Conclusions

In this chapter, we presented a two-layer generative model, called texems,
to represent and analyse textures. The texems are textural primitives that
are learnt across scales and can characterise a family of images with simi-
lar visual appearance. We demonstrated their derivation for graylevel and
colour images using two different mixture models with different computa-
tional complexities. PCA based data factorisation was advocated while
channel decorrelation was necessary. However, by decomposing the colour
image and analysing eigenchannels individually, the inter-channel interac-
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tions were not taken into account. The full colour texem model was found
most powerful in generalising colour textures.

Two applications of the texem model were presented. The first was to
perform defect localisation in a novelty detection framework. The method
required only a few defect free samples for unsupervised training to detect
defects in random colour textures. Multiscale analysis was also used to
reduce the computational costs and to localise the defects more accurately.
It was evaluated on both synthetic image collages and a large number of
tile images with various types of physical, chromatic, and textural defects.
The comparative study showed texem based local contextual analysis sig-
nificantly outperformed a filter bank method and the LBP based texture
features in novelty detection. Also, it revealed that incorporating interspec-
tral information was beneficial, particularly when defects were chromatic
in nature. The ceramic tile test data was collected from several different
sources and had different chromato-textural characteristics. This showed
that the proposed work was robust to variations arising from the sources.
However, better accuracy comes at a price. The colour texems can be 10
times slower than the grayscale texems at the learning stage. They were
also much slower than the Gabor filtering based method but had fewer
parameters to tune. The computational cost, however, can be drastically
reduced by performing window-based, instead of pixel based, examination
at the training and testing stages. Also, there are methods available, such
as Ref. 30, to compute the Gaussian function, which is a major part of
the computation, much more efficiently. The results also demonstrate that
the graylevel texem is also a plausible approach to perform colour analysis
with relatively economic computational complexity.

The second application was to segment colour images using multiscale
colour texems. As a mixture model was used to derive the colour texems,
it was natural to classify image patches based on posterior probabilities.
Thus, an initial segmentation of the image in multiscale was obtained by
directly using the posteriors. In order to fuse the segmentation from differ-
ent scales together, the quadtree context model was used to interpolate the
label structure, from which the transition probability was derived. Thus,
the final segmentation was obtained by top-down interscale fusion. An
alternative multiscale approach using the hierarchical dependency among
multiscale pixels was proposed. This resulted in a simplified image seg-
mentation without interscale post fusion. Additionally, a texem grouping
method was presented to segment multi-modal textures where a texture
region contained multiple textural elements. The proposed methods were
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briefly compared against JSEG algorithm with some promising results.
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