XIE AND MIRMEHDI: COLOUR IMAGE SEGMENTATION USING TEXEMS 1
Annals of the BMVA Vol. 2007, No. 6, pp 1-10 (2007)

Colour Image Segmentation using
Texems

Xianghua Xie and Majid Mirmehdi

Department of Computer Science,

University of Bristol, Bristol BS8 1UB, England
(xie@s.bris.ac.uk) (m 1 d@s.bris.ac. uk)

Abstract

We present two methods to perform colour image segmentation using a generative
three-dimensional model that is based on the assumption that an image can be gener-
ated through an overlapped placement of a few primitive, exemplar image patches, i.e.
texems. Multiscale analysis is used in order to capture sufficient image features and
pixel neighbourhood interactions at relatively lower computational costs. Experimental
results on synthetic and real images are presented to demonstrate this as a promising
alternative approach to popular discriminative methods.

1 Introduction

Numerous features have been reported for the benefit of image segmentation, including his-
togram properties, co-occurrence matrices, local binary patterns, fractal dimension, Markov
random field features, multiscale multidirectional filter responses, and simply pixel colour.
These features are then spatially and/or spectrally grouped together to form image regions.
Region growing, merge-split, Bayesian classification, and neural network classification are
examples of common techniques applied to achieve the latter.

Most colour image segmentation techniques are derived from methods designed for
graylevel images, usually taking one of three forms: (1) Processing each channel individually
by directly applying graylevel based methods |Caelli and Reye [1993], Haindl and Havlicek
[2002]: The channels are assumed independent and only their intra-spatial interactions are
considered. (2) Decomposing the image into luminance and chromatic channels/Paschos et al.
[1999], IDubuisson-Jolly and Gupta [2000]: After transforming the image data into the de-
sired (usually application dependent) colour space, texture features are extracted from the
luminance channel while chromatic features are extracted from the chromatic channels, each
in a specific manner. (3) Combining spatial interaction within each channel and interac-
tion between spectral channels Jain and Healey [1998], Bennett and Khotanzad [1998], [Palm
[2004], Mirmehdi and Petrou [2000]: Graylevel texture analysis techniques are applied in
each channel, while pixel interactions between different channels are also taken into account.
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Also, some works perform global colour clustering analysis, followed by spatial analysis in
each individual stack.

The importance of extracting correlation between the channels for colour texture analysis
has been addressed by several authors. For example, in \Jain and Healey [1998], Jain and
Healey used Gabor filters to obtain texture features in each channel and opponent features
that capture the spatial correlation between the channels.

Original 3D models to analyse colour textures have also been developed, where the spa-
tial and spectral interactions are simultaneously handled, e.g. Jojic et al| [2003]. The main
difficulties arise in effectively representing, generalising, and discriminating three dimen-
sional data. The epitome Jojic et al. [2003] provides a compact 3D representation of colour
textures. The image is assumed to be a collection of epitomic primitives relying on raw pixel
values in image patches. The neighbourhood pixels of a central pixel in a patch are assumed
to be statistically conditionally independent. A hidden mapping guides the relationship be-
tween the epitome and the original image. This compact representation inherently captures
the spatial and spectral interactions simultaneously. The epitome model inspired the devel-
opment of the texem model Xie and Mirmehdi [2007], a compact mixture representation for
colour images, used for novelty based defect detection.

In this paper, we use a simple generative model to represent and segment colour images.
The spatial arrangement and interspectral properties of pixels are modelled simultaneously
without decomposing images into separate channels. In section [2, the colour texem model
is presented. Section [ describes two segmentation methods based on this model. Texem
grouping is discussed in Section [ for multimodal textures. Some experimental results are
given in Section Bl Section[6lconcludes the paper.

2 Modelling Colour Images

Representing colour images using 3D space models is considered a challenging task in that
it is difficult to keep a compact representation and still sufficiently characterise the image
data. InJojic etall [2003], Jojic et al. introduced the epitome model as a small, condensed
representation of a given image which contains its primitive shapes and textural elements.
The recently proposed texem (texture exemplar) model Xie and Mirmehdi [2007] is based on
the same assumption that a given image can be generated from a collection of image patches
and the variation in placement results in appearance variations in the images. However,
unlike the epitome, the texem model discards the hidden mapping and uses multiple, much
smaller epitomic representations. In |Xie and Mirmehdil [2007], it was shown that texems is
a much more efficient way of performing novelty detection in colour images. Each of the
texems learnt from the image contain partial degrees of image micro-structures. In other
words, texems are implicit representations of image primitives, as opposed to textons |Julesz
[1981] which are explicit representations and very often use base functions |[Zhu et al! [2005].

Each texem m is defined by a mean, u#, and a corresponding variance, w, i.e. m = {y, w}.
An image is then considered as a superposition of patches of various sizes. This forces the
image properties not into a single texem, but a family of them. We use a mixture model to
learn the texems which together characterise a given image. The original image | is broken
down into a set of P overlapping patches Z = {Z;}F_,, each containing pixels from a subset
of image coordinates. For simplicity, square patches of size d = N x N are used. We assume
that there exist K texems, M = {m}£_,, K < P, for image I such that each patch in Z can
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be generated from a texem with certain added variations:

P(Zil6) = P(Zilp, wi) = [ [N (Zjii B0 wik)s 1)
jeSs

where 6y denotes the kth texem’s parameters with mean p, and variance wy, N (.) is a Gaus-
sian distribution over Z;;, S is the patch pixel grid, Hix and wj denote mean and variance
at the jth pixel position in the kth texem. The mixture model is given by:

K
P(Zi|®) = ) p(Zi|k)ax, (2)
k=1

where © = (&g, ..., &k, 01, ..., 0k), and ay is the priori probability of kth texem constrained by
2,*((:1 «, = 1. The Expectation and Maximisation (EM) technique can be used to estimate
the model parameters. The E-step involves a soft-assignment of each patch Z; to texems,
M, with an initial guess of the true parameters, ®. We denote the intermediate iteration
t parameters as ©(Y). The probability that patch Z; belongs to the kth texem may then be
computed using Bayes’ rule:

Zilm,, ©@W)a
p(me[2;,00) = _ PEIM O ®
Y1 P(Zi|my, OW)ay

The M-step then updates the parameters according to:

P

R 1 R R R R
=5 Z p(mk]Zi,G(t)), By = {”j,k}jES’ Wy = {@jk}jes,
i—1

, Y1 Zgip(mi|Z;, W)
Hi = Ty ©) (4)
i1 p(my|Z;, 0W)
P 1(Zi = i) (23 — figy) (M Zi, ©)
Yy p(my|Zi, 0) '

~

wj,k =

The E-step and M-step are iterated until the estimations stabilise or the rate of improvement
of the likelihood falls below a pre-specified convergence threshold.

3 Colour Image Segmentation

Clearly each image patch from an image has a measurable relationship with each texem
according to the posteriori, p(mg|Z;j, ®), which can be conveniently obtained using Bayes’
rule in (@). Thus, every texem can be viewed as an individual textural class component, and
the posteriori can be regarded as the component likelihood with which each pixel in the image
can be labelled. Based on this, we present two different multiscale approaches to carry out
segmentation. One performs segmentation at each level separately, and then updates the
label probabilities from coarser to finer levels, and the other simplifies the procedure by
learning the texems across the scales to gain efficiency.
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3.1 Segmentation with interscale post-fusion

Various sizes of texems are necessary to capture sufficient image properties. Alternatively,
the same size texems can be applied to a multiscale image, as in [Xie and Mirmehdi [2007],
where texems were generated from each scale independently for novelty detection. Detec-
tion results from individual scales were then combined to produce a final novelty defect
map. For image segmentation, however, the fusion procedure is more involved, e.g. a relax-
ation process Mirmehdi and Petrou [2000] can be used to update the class probabilities from
coarser to finer levels.

We first layout the image in multiscale. Besides computational efficiency, exploiting in-
formation at multiscale offers other advantages. Characterising a pixel based on local neigh-
bourhood pixels can be more effectively achieved by examining various neighbourhood re-
lationships. A simple Gaussian pyramid was found to be sufficient.

Let us denote 1™ as the nth level image of the pyramid, Z(" as all the patches extracted
from 1", and | as the total number of levels. We then extract texems from individual pyra-
mid levels. Similarly, let m() denote the nth level of multiscale texems and ©(") the associ-
ated parameters. During the EM process, the stabilised estimation of a coarser level is used
as the initial estimation for the finer level, i.e. @"t=0 — @(+1) which helps speed up the
convergence and achieve a more accurate estimation.

For segmentation, each pixel needs to be assigned a class label, ¢ = {1, 2, ..., K}. We can
perform this labelling using the measurable relationship between each patch at its central
pixel position and the texems, as given in (3). So, at each scale n, there is a random field

of class labels, C("). The probability of a particular image patch, Zi(”), belonging to a texem
(class), ¢ = k,m\", is determined by the posteriori probability, p(c = k, mﬁ”)\zi(”),@('ﬂ),
simplified as p(c(M|z"), given by:

) _ p(zl(n)’ml((n))ul((n)
T p(Z" I m" )"

()

which is equivalent to the stablised solution of (3). The class probability at given pixel loca-
tion (x(M,y(M) at scale n then can be estimated as p(c(™|(x(™,yM)) = p(cM|z("). Thus,
this labelling assignment procedure initially partitions the image in each individual scale.
As the image is laid hierarchically, there is inherited relationship among parent and chil-
dren pixels. Their labels should also reflect this relationship. Next, building on this initial
labelling, the partitions across all the scales are fused together to produce the final segmen-
tation map.

The class labels ¢ are assumed conditionally independent given the labelling in the
coarser scale ¢("™1), Thus, each label field C(" is assumed only dependent on the previous
coarser scale label field C("+1). This offers efficient computational processing, while preserv-
ing the complex spatial dependencies in the segmentation. The label field C(™ becomes a
Markov chain structure in the scale variable n:

p(e™fe>M) = p(cl™ o), ©)

where ¢c>" = {c(W}_ " are the class labels at all coarser scales greater than the nth, and
p(cM]c*+1)) = p(cV) as | is the coarsest scale. The coarsest scale segmentation is directly

based on the initial labelling.
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A quadtree structure for the multiscale label fields is assumed, and c(") only contains a
single pixel, although a more sophisticated context model can be used to achieve better in-
teraction between child and parent nodes, e.g. a pyramid graph model ICheng and Bouman
[2001]. The transition probability p(c(™ |c("*1)) can be efficiently calculated numerically us-
ing a lookup table. The label assignment at each scale are then updated, from coarsest to
the finest level, according to the joint probability of the data probability and the transition
probability:

{ ¢ = argmax_ log p(c™M|(xM,y(")),

¢ = arg maxn {log p(c™ |(x™,y(M)) +log p(c!W[c("*1)}  Wn <. “

The segmented regions will be smooth and small isolated holes are filled.

3.2 Segmentation using branch partitioning

Starting from the pyramid layout described in Section [3.1] each pixel in the finest level can
trace its parent pixel back to the coarsest level forming a unique route or branch. In Section
31 the conditional independence assumption amongst pixels within the local neighbour-
hood makes the parameter estimation tractable. Here, we assume pixels in the same branch
are conditionally independent, i.e.

p(Zil6k) = P(Zilpe wi) = [TV (@™ 1™, 0™, ®)

nel

where Z; here is a branch of pixels, Zi(”), ylg”), and wlg”) are the colour pixel at level n in ith
branch, mean at level n of kth texem, and variance at level n of kth texem, respectively. This
is essentially the same form as (I), hence, we can still use the EM procedure described pre-
viously to derive the texem parameters. However, the image is not partitioned into patches,
but rather laid out in multiscale first and then separated into branches. The pixels are col-
lected across scales, instead of from its neighbours. The class labels are then directly given
by the component likelihood, again using Bayes’ rule, p(c|Z;) = p(m|Z;, ®). Thus, we sim-
plify the approach presented in Section B.1] by avoiding the inter-scale fusion after labelling
each scale.

4 Texem Grouping for Multimodal Texture

A textural region may contain multiple visual elements and display complex patterns. A
single texem might not be able to fully represent such textural regions, hence, several texems
can be grouped together to jointly represent “multimodal” texture regions. Here, we use a
simple but effective method proposed by Manduchi|Manduchi [1999,2000] to group texems.
The basic strategy is to group some of the texems based on their spatial coherence. The
grouping process simply takes the form:

p(Zilc) = = Z p(Ziim)ax, Be= Y a, 9)
C keGe keGe

where G is the group of texems that are combined together to form a new cluster ¢ which
labels the different texture classes, and B is the priori for new cluster c. The mixture model
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can thus be reformulated as:
K
p(Zi|®) = Z (Zi|my)Be. (10)

where K is the desired number of texture regions. Equation (I0) shows that pixel i in the
centre of patch Z; will be assigned to the texture class ¢ which maximises p(Z;|c)pc:

¢ = arg max B(Zilc)Be = argmax Y p(Zi|my)ax (11)
c keG

The grouping in (10) is carried out based on the assumption that the posteriori probabil-
ities of grouped texems are typically spatially correlated. The process should minimise the
decrease of model descriptiveness, D, which is defined as Manduchi [1999, 2000]:

K 17.\2
D= _Ele’ Dj = / p(Zi|m;j)p(m;|Zi)dZ; = M, (12)
fn

&j

where E[.] is the expectation computed with respect to p(Z;). In other words, the com-
pacted model should retain as much descriptiveness as possible. This is known as the Max-
imum Description Criterion (MDC). The descriptiveness decreases drastically when well
separated texem components are grouped together, but decreases very slowly when spa-
tially correlated texem component distributions merge together. Thus, the texem grouping
should search for smallest change in descriptiveness, AD. It can be carried out by greedily
grouping two texem components, m, and my, at a time with minimum ADgy:

apDy + gDy . ZE[p(ma’Zi)p(mb’Zi)]

AD, =
ab Na + Ap g + vy

(13)
We can see that the first term in (13) is the maximum possible descriptiveness loss when
grouping two texems, and the second term in (13) is the normalised cross correlation be-
tween the two texem component distributions. Since one texture region may contain differ-
ent texem components that are significantly different to each other, it is beneficial to smooth
the posteriori as proposed in|Manduchi [2000] such that a pixel that originally has high prob-
ability to just one texem component will be softly assigned to a number of components that
belong to the same “multimodal” texture. After grouping, the final segmentation map is
obtained according to (11)).

5 Experimental Results

Here, we present some experimental results and a brief comparison with the well-known
JSEG technique|Deng and Manjunath [2001].

Fig. dIshows example results on four different texture collages with the original image
in the first row, groundtruth segmentations in the second row, the JSEG result in the third
row, the proposed interscale post-fusion method in the fourth row, and the proposed branch
partition method in the final row. The two proposed schemes have similar performance,
while JSEG tends to over-segment which partially arises due to the lack of prior knowledge
of number of texture regions.


http://www.bmva.ac.uk/annals/2007/2007-0006.pdf
http://www.bmva.ac.uk/annals/

XIE AND MIRMEHDI: COLOUR IMAGE SEGMENTATION USING TEXEMS 7
Annals of the BMVA Vol. 2007, No. 6, pp 1-10 (2007)

o

T
-

CRC
o ¢

Figure 1. Testing on synthetic images - first row: original image collages, second row:
groundtruth segmentations, third row: JSEG results, fourth row: results of the proposed
method using interscale post-fusion, last row: results of the proposed method using branch
partitioning.

Two real image examples are given in Fig. For each image, we show the original
images, its JSEG segmentation and the results of the two proposed segmentation methods.
The interscale post-fusion method produced finer borders but is a slower technique.

Fig. [B/focuses on the interscale post-fusion technique followed by texem grouping. The
original image and the final segmentation are shown at the top. The second row shows
the initial labelling of 5 texem classes for each pyramid level. The texems are grouped to 3
classes as seen in the third row. Interscale fusion is then performed and shown in the last
row. Note there is no fusion in the fourth (coarsest) scale.

In Fig. [4] JSEG again over-segmented the images when the texture regions were multi-
modal in nature. The branch partition method followed by texem grouping segmented the


http://www.bmva.ac.uk/annals/2007/2007-0006.pdf
http://www.bmva.ac.uk/annals/

8 XIEAND MIRMEHDI: COLOUR IMAGE SEGMENTATION USING TEXEMS
Annals of the BMVA/Vol. 2007, No. 6, pp 1-10 (2007)

Figure 2: Testing on real images - first column: original images, second column: JSEG results,
third column: results of the proposed method using interscale post-fusion, fourth column:
results of the proposed method using branch partitioning.

Figure 3: An example of the interscale post-fusion method followed by texem grouping - first
row: original image and its segmentation result using the proposed method with interscale
post-fusion, second row: initial labelling of 5 texem classes for each scale, third row: updated
labelling after grouping 5 texems to 3, fourth row: results of interscale fusion.

images into a more plausible number of texture regions.

The results shown demonstrate that the two proposed methods are more able in mod-
elling textural variations than JSEG and are less prone to over-segmentation. However, it is
noted that JSEG does not require the number of regions as prior knowledge. On the other
hand, texem based segmentation provides a useful description for each region and a mea-
surable relationship between them. The number of texture regions may be automatically de-
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Figure 4. Comparison - from left on each row: original image, JSEG result, the branch parti-
tion method followed by texem grouping.

termined using model-order selection methods, such as MDL. The post-fusion and branch
partition schemes achieved comparable results, while the branch partition method is faster.
However, a more thorough comparison is necessary to draw complete conclusions, which is
part of our future work.

6 Conclusions

We presented two colour image segmentation methods based on the texem model. We also
showed how to group texems as a potentially useful tool for manipulating them. Future
work will focus on methods to automatically estimate the number of texture regions and to
further speed-up the texem learning process.
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