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Abstract

In the last decade and a half, machine learning has been refounded on a class of techniques
called deep learning. The earliest, most prominent techniques of deep learning were
restricted in their application to regularly structured domains. A new set of techniques,
broadly referred to as geometric deep learning, extends the application of deep learning
approaches to irregular domains, in particular the use of the graph. A graph is an effective
means of representing irregular relations between discretely sampled points; its use has
its attendant research challenges that has brought about a flourishing field of research. In
this work we investigate three of those challenges, namely learning on directed graphs,
one of the many variants of the graph; learning on the edge-structure of graphs; and graph
estimation, i.e. the estimation of graph structure from the data itself.

In the first chapter of our work, we consider the challenge of learning on the edge
structure of a graph in application to a datacentre and present a convolution technique
for the edge-structure of a directed graph representing a datacentre.

In the second chapter of our work, we present a strategy to estimate two complementary
graphs, the long-term or static graph and short-term or dynamic graph from combinations
of temporal, cyclical data. Additionally, we propose an attention-based convolution for
directed graphs that factorises neighbourhood signals into in- and out-flows.

In the third and final chapter of our work, we draw on the work of the previous two
chapters and design a graph estimation strategy to learn the complementary structures of
molecular graphs. For this purpose, we define a new kind of graph for the estimation,
which we call the graph complement, and use it in predicting molecular properties by
incorporating intramolecular forces not present in the original graph. The structure thus
learned is used to propagate vertex and edge signals on a directed graph.

The work is concluded with a reflection on the contributions of the thesis and
prospective areas of research in the field of graph deep learning.
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1.1. Motivations

1.1 Motivations

Techniques in machine learning have been almost wholly refounded on a class of techniques
described as deep learning (Goodfellow, Bengio, and Courville, 2016). The power of deep
learning lies in its capacity to learn its own feature representations directly from wholly
unprocessed input data. Deep learning as originally conceived is however restricted to
regular domains such as images and other discretely sampled domains (LeCun, Bengio,
and Hinton, 2015). Over the last decade, the challenge of learning on irregular domains
has been met by the development of graph-based deep learning (Shuman et al., 2013;
Hamilton, Ying, and Leskovec, 2017a). The graph has proved to be a useful mathematical
object for describing irregular relations between discretely sampled objects (Georgousis,
Kenning, and Xie, 2021) and also serves as an inductive bias on a learning algorithm
(Battaglia et al., 2018). The field of graph deep learning has become fertile ground for a
plethora of techniques aiming to learn patterns on diverse graph-structured data.

Indeed, the graph and its attendant learning challenges has given rise to research
on unique and exciting problems which will concern us in this thesis. If the original
motivation for machine learning is to allow an algorithm to learn feature representations
automatically, the corollary is that a graph-based algorithm can learn the structure of the
data, too. As a consequence a new direction of research has developed that focusses on
learning graph structures with various designations such as neural relational inference,
graph generation and structure learning; we use the term graph estimation. A second
direction of research concerns the learning of signals structured on the edges of a graph,
which we term edge learning. We also consider techniques for learning on one variant
of the the graph in which edges have orientation called the directed graph (research is as
spirited on other variants of the graph which are beyond the scope of this thesis; see
Georgousis, Kenning, and Xie, 2021). In this thesis we present novel techniques for the
learning on the directed structure, the edge structures of graphs and the estimation of
graph structures. We explore practical issues in their representation and consider the
ways in which such techniques can be applied to application areas beyond those we
use in this thesis to validate our methods.

1.1.1 Learning on Directed Graphs

A directed graph describes the unidirectional relations between discretely sampled objects.
Graph-based convolution techniques are generally designed for undirected graphs. These
techniques occasionally neglect the unique learning challenges that could be represented
properly in learning; for directed structures act as an inductive bias on a model and serve

3



1. Introduction

as a means to provide a more detailed description of the relational structure of a domain.
Direction in graphs can be used, among other purposes, to describe the unequal relations
between sampled points as well as factor information into in- and out-flows (Li et al.,
2018a). In this work we consider domains where directed structures have frequently been
used for the purposes of learning on graphs. In Chapter 3 we use a directed graph to
structure a datacentre in order to localise the source of link-faults. Direction is inseparable
from a domain where the information between vertices is per se directed, specifically
in that the links between the vertices, representing machines in a network, are either
up-links, passing information up a network hierarchy, or down-links, passing information
downwards (Arzani, Behnaz et al., 2018). In Chapter 4 we estimate a directed graph in
order to make predictions of traffic conditions. The vertices represent traffic sensors and
the relations between sensors are not symmetrical. Sensors positioned on major roads, for
example, record traffic volumes that will have far greater collateral effects on minor roads
than the traffic flow on a single minor road could have on a major road. In Chapter 5, four
directed graphs are used to estimate the intermolecular forces and other forces acting upon
a molecule. The intermolecular forces again do not necessarily act symmetrically between
atoms, and nor do groups of atoms, which together may exert forces upon other atoms or
groups of atoms; such physical dynamics may be encoded as weighted, directed edges.

1.1.2 Learning on the Edge Structures of Graphs

Representations may be structured on the vertices or edges of a graph. Existing techniques
incorporate vertex and edge signals into their definitions of convolution, notable amongst
which are the graph-based models that have been applied to molecular learning (Kearnes
et al., 2016). Accordingly, the incorporation of edge features in general is a question of
the particular nature of the application domain. The optimal means of incorporating
edge features into convolution is an ongoing research question that has led to a range of
techniques. One approach is to use linegraphs, which represent the second-order structure
of graph and hence the second-order interactions within a domain (Chen, Bruna, and Li,
2019). In Chapter 3 we present a technique for learning on the edge structure of a graph
by using a directed linegraph. We consider the theoretical difficulties of definition that
arise from applying convolution to a directed linegraph. In Chapter 5 we use a directed
linegraph to learn edge representations in application to molecular prediction and also
describe an approach for learning the interactions of edge features in a second-order
structure, which we call the linegraph complement. We also present an approach for
propagating learned edge features over two different second-order structures and for
combining the representations for molecular property prediction.
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1.1. Motivations

1.1.3 Graph Estimation

Graph estimation has been yet to be formalised comprehensively, such that no consensus
has emerged for a single umbrella term (see Georgousis, Kenning, and Xie, 2021 for
an attempt to formalise the area; see Ma and Tang, 2021, §15.4 for a brief discussion
of related work), although the characteristics of graph estimation can be identified in
many existing works (Georgousis, Kenning, and Xie, 2021). The applications of graph
estimation are far broader than either learning on directed graphs or edge learning, since
it covers all manner of variants on the graphs. In Chapter 3 we apply our proposed
graph estimation technique to the learning of graph structure from long- and short-term
information in a traffic prediction task. The technique uses different compositions of
information to discover complementary but differing structures in order to aid learning
on traffic data. In Chapter 5 we apply graph estimation for the purposes of learning a
complementary structure in order to predict molecular properties. The complementary
structures represent the first- and second-order structures not definitionally present in
the original graph. The purpose is to discover implicit relations in the graph-structured
molecular features that inform the determination of molecular features and therefore the
prediction of properties, namely intramolecular forces (Xiong et al., 2020).

1.1.4 Objective

Although there is already diverse work available on the use of edge representations
in the aforementioned domains and directed graphs are not new in the field, the two
directions of research, edge learning and learning on directed structures, especially
when the two are taken together, receive comparatively less attention compared to graph
convolution applied to other domains. An objective of this thesis is to study techniques
to work with directed graph and directed linegraphs. By contrast, graph estimation is
a formally inchoate field with no single widely used term to describe the overarching
objective. It is possible to discern various approaches in one direction or another in the
literature (Georgousis, Kenning, and Xie, 2021), but the overall directions are diffuse and
difficult to harmonise with one another without a clear theoretical framework. Broadly
speaking, techniques are characterised as direct and indirect means of learning the graph
structure via the adjacency matrix, or learning an interaction function for entities. Our
objective is to broaden the application of graph estimation to different compositions of
information, as is the purpose of Chapter 4, and to different combinations of structure,
as in Chapter 5, with a focus on directed graphs and the edge structures thereof. The
approaches presented in this work can therefore be considered as one of many indirect
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means of learning the graph. The proposed methods are not limited to the domains they
target; they demonstrate of what it is possible to do with an estimated graph structure.
Ultimately, the purpose of this work is to consider more advanced problems of learning
on graphs and estimating the graphs themselves.

1.2 Overview

In light of the motivations presented in Section 1.1, the aim of this work is to elaborate
applications of graph estimation, convolution on directed graphs and edge-focussed
learning to new formulations of existing problems. We present two new approaches to
learning on directed structures and two new approaches for estimating graph structures.
Chapter 3 concerns itself with the unique problems that arise from using a directed
linegraph to structure edge learning. In the first graph estimation approach in Chapter 4
we present a technique for learning complementary graphs for a temporal problem from
two combinations of cyclical data. This approach has applications to domains where
there are static and dynamic temporal structures that need to be balanced in predicting
outcomes in domains. The directed attention-based approach to graph convolution
presented therein is able to factor features into their respective information flows learned
in the graph estimation approach. In the second graph estimation approach in Chapter 5
we draw together the work from the previous two sections by designing a graph estimation
procedure to complement two existing graph structures. The estimated graph structures
complement both first- and second-order structures in the data and enrich the vertex and
edge representations learned for predicting molecular properties.

1.3 Contributions

The main contributions of this work are the following:

A technique for structuring learning on graph edges. We present two methods for learn-
ing on the edge structure or second-order structure of graphs representing domains.
The first method uses the directed linegraph to define the second-order structure of a
datacentre. We consider in particular the special case of inverse edges that arise from
the construction of directed linegraphs on directed graphs and present a method
to learn on inverse edges. We evaluate the approach on datacentre simulations
of link-faults and find that the approach more accurately localises link faults in a
datacentre than undirected convolution and non-graph learning algorithms. The
second method uses a directed linegraph for the propagation of edge representations,
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which are further propagated by the linegraph complement, a graph that, as far
as we know, has not been presented in the literature. We evaluate the approach
on two benchmark molecule datasets and find that the linegraph complement, in
combination with an original linegraph, is able to propagate edge features globally
and reduce prediction errors, as well as simultaneously reducing the number of
propagation steps necessary for learning.

An isotropic method for convolution on directed graphs. We present an isotropic ker-
nel for directed graphs that factors neighbouring signals into two groups according
to their incidence to a focal vertex. It is a simple construction with only a few
parameters per output channel. The method is evaluated on a datacentre simulation,
where we find that the inclusion of inverse edges as a separate term or as part of
the neighbourhood worsened the performance, thereby justifying our decision to
separate out inverse edges as a term altogether.

A technique for estimating graph structure from temporal, cyclical data. We present an
attention-based approach to graph estimation that uses two compositions of cyclical
data, which we call static–dynamic fusion, to make two complementary estimations
of the graph structure inhered in the input. In the evaluation of the approach on
two popular traffic datasets, we find that the high quantity of missing data in one
dataset leads to large errors in the baselines that did not use graph estimation. On
the contrary, graph estimation reduces the error caused by the missing data, which
is robustly handled by the static–dynamic fusion approach.

An anisotropic, attention-based convolution for directed graphs. We present an aniso-
tropic, attention-based convolution for directed graphs that separates neighbour-
hoods into their incidence to focal vertices. In the evaluation on the two traffic
datasets, we find that the directed attention was robust to missing data in the more
difficult dataset, and in one case is as capable as the static–dynamic fusion approach
to estimation described above in reducing prediction error, and moreover even avoids
a period of high error that knocks the approaches using static–dynamic fusion off
kilter.

A new graph to supplement a predefined structure. We present an attention-based ap-
proach to graph estimation that learns the higher-order interactions on a molecular
graph. The molecular graphs are defined solely in terms of chemical bonding; the
complementary structure, which we call a graph complement, can learn the structure
of the intramolecular relations in the molecule. The downstream learning is further
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factorised into the different structures to allow the model to separately learn the two
different structures. The approach is validated on two popular molecule benchmark
dataset, in which we find that the graph complements improve the prediction errors
on two benchmark datasets. Analysis additionally showed that the complement
graphs reduce the number of propagation steps necessary to achieve an optimal
result. To the best of our knowledge, no technique has been presented to estimate
such graph structures end-to-end in learning molecular representations.

The outcomes of this thesis have also contributed to several publications as outlined
in the List of Publications. The key contributions of each paper to the contents of the
thesis are summarised below:

Stavros Georgousis, Michael P. Kenning, and Xianghua Xie (2021). “Graph Deep

Learning: State of the Art and Challenges”. In: IEEE Access 9, pp. 22106–22140.

issn: 2169-3536. doi: 10.1109/ACCESS.2021.3055280.

We conduct survey of the state of the art in graph deep learning. The discussions
on the various challenges of deep learning on graphs contributed significantly to
the discussions in this thesis in Chapter 2.

Michael Kenning et al. (2021). “Locating Datacenter Link Faults with a Directed Graph

Convolutional Neural Network”. In: Proceedings of the International Conference
on Pattern Recognition Applications and Methods. SCITEPRESS - Science and

Technology Publications, pp. 312–320. doi: 10.5220/0010301403120320.

We present the directed graph convolution applied to the structure of the linegraph
in application to link-fault detection in datacentre simulations. It contributes the
theoretical presentation of the method and its results to Chapter 4.

Michael P. Kenning et al. (2022). “A directed graph convolutional neural network for

edge-structured signals in link-fault detection”. In: Pattern Recognition Letters
153, pp. 100–106. issn: 01678655. doi: 10.1016/j.patrec.2021.12.003.

We present more detailed exploration and set of result of the directed graph applied to
the structure of the linegraph in application to link-fault detection in datacentre simu-
lations. It contributes to the discussion, set of results and discussion presented
in Chapter 4.
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Michael Kenning and Xianghua Xie (2023). “Attention-based Graph Estimation and

Directed Convolution for Prediction of Traffic Conditions”. In: Proceedings of the
10th Internatinal Workshop on Deep Learning on Graphs. (To be published.)

We present the static–dynamic fusion approach to graph estimation and the directed
attention-based graph convolution. A narrower set of results are presented in the
paper. The methodology and part of the results and discussion contribute to Chapter 5.

1.4 Outline

The rest of this work is structured as follows:

Chapter 2: Background In this chapter we first review the theoretical underpinnings
of deep learning and the motivation for deep learning. The discussion leads to
the drawbacks of conventional deep learning, which in turn motivates the use of
graphs in structuring some irregular domains. The graph and its characteristics,
variants and data structures are described. Next we describe convolution on graphs,
enumerating prominent techniques for graph convolution and the key challenges of
learning on graphs which we address in the work presented in this thesis. Finally
we review some applications of graph deep learning, with particular reference to
those challenges.

Chapter 3: Directed Linegraph for Learning on Edges The topic of this chapter is the
use of the directed linegraph to structure a learning problem on the edges of a graph,
specifically the localisation of link faults in a datacentre. Using a directed linegraph,
which is definitionally a directed graph, we design a convolution technique for
directed graphs with an isotropic kernel that factorises signals into separate streams
of information and the signals of inverse edges. We use the structure of the directed
graph and the proposed convolution technique to design a graph-based convolutional
neural network, which we evaluate against a feed-forward neural network and a
random forest.

Chapter 4: Graph Estimation on Directed Graphs and Directed Graph Attention In this
chapter we describe our approach to estimating a traffic graph from temporal, cyclical
data. We use a novel combination of different periods of traffic data to estimate
two graph structures, one relating to the long-term structure and the other to the
short-term structure. We also propose an attention-based convolution technique for
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1. Introduction

directed graphs. We evaluate the resulting model against our own implementation
of a state-of-the-art method.

Chapter 5: Estimation of Graph Complements In this chapter we define a new kind of
graph, the graph complement. We then describe our approach to graph estimation
which we apply to learning molecular structures alongside predefined molecular
graphs. The result is evaluated on two commonly used baseline molecular datasets.

Chapter 6: Conclusions and Future Work To conclude, we recapitulate the outcomes of
the work in the thesis and consider future work in the field.
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2.1. Statistical and Mathematical Background

The world is its own best model.

Rodney A. Brooks, 1991

The majority of the material relevant to graph deep learning that is cited in this literature
review was published with the title “Graph Deep Learning: State of the Art and Challenges”
as a journal paper in IEEE Access (Georgousis, Kenning, and Xie, 2021). The work described
therein is supplemented here by additional or more recent work where the subject demands
it. This literature review covers a swathe of subject-matter as is relevant as background
or supporting work to the thesis of this doctoral work. The more detailed discussions
naturally focus on the theory of deep learning in respect of this work.

The first section describes the development of the field of machine learning, from
its conceptual origin of self-organising networks in the eighteenth century and the
first perceptrons, through to the fall of perceptrons in the 1970s, leading finally to the
renascence of neural networks in the second decade of the twenty-first century. The
second section traces the development of neural networks into their modern incarnation
as deep learning. With the advent of deep learning, the application of deep learning
to irregular domains, notably graphs, is of central importance to this thesis. The final
section elucidates some domain-specific problems, which serve as the motivation for
the theoretical work of the thesis.

The author is indebted to several textbooks which aided in elucidating the theoretical
development of machine learning. Any background on computational technology is
owed to A History of Computing Technology by Williams (1997). The statistics, mathematics
and background on machine learning owes a great deal to Machine Learning and Pattern
Recognition by Bishop (2006), The Elements of Statistical Learning by Hastie, Tibshirani, and
Friedman (2009) and Deep Learning by Goodfellow, Bengio, and Courville (2016). The
sections on graph theory draw on the work of Bollobás (1979). Background information
on graph deep learning has also been supplemented by Deep Learning on Graphs by
Ma and Tang (2021).

2.1 Statistical and Mathematical Background

First we will cover the mathematical and statistical background in order to establish
the notation we use in this thesis.
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2. Background

2.1.1 Preliminary Remarks

The general formulation of an input–output mapping is the function f : X → Y , where X
is the input variable and Y is the output variable. X could be a continuous function that f
maps to another continuous function Y . In machine learning the input and output are
discretised. X,Y can be scalars x, y, vectors x,y ∈ Rc, or matricesX,Y ∈ Rk×c. A set of
input vectors can also be constructed as a design matrix [x0,x1, . . . ,xk−1]

⊤ = X ∈ Rk×c

and xi is the ith feature vector of X . We denote the selection of a row i of X as Xi

or the selection of a column i as X:,i = X⊤
i .

The feature matrix is a set of observations of some space X . Each column corresponds
to a feature or channel and each row is an observation, also called a row vector. Each column
of X is referred to as a channel vector, or more generally a column vector. The vector of
values for each channel of a given observation is called a feature vector. The channel vectors
are linearly independent if

∑c
i=0 αiX:,i = 0 iff all αi = 0. When this property does not hold,

the vectors are called linearly dependent. This means essentially that no column can be
expressed as a linear combination of the others. Accordingly the channels can be seen as
linearly independent, meaning they represent independent sources of information. This
is important later when we consider dimensionality reduction.

In cases where X is square and, one may decompose X into its eigenvectors and
eigenvalues:

X = QΛQ−1, (2.1)

whereQ is the set of column eigenvectors,Q−1 is its inverse and Λ is a diagonal matrix
of eigenvalues. The design matrix is more often rectangular, however, in which case
singular-value decomposition (SVD) can be used to decompose the matrix:

X = UΣV ⊤ (2.2)

whereU ∈ Rk×k and V ∈ Rc×c are the left- and right-singular vectors ofX and Σ ∈ Rk×c

is a diagonal matrix of singular values of X .

2.1.2 The Estimation of Data-generating Distributions

The function f : X → Y represents a mapping from input to output. It may also be viewed
as a probability distribution p(Y |X). The aim of machine learning is to approximate
this data-generating distribution (Goodfellow, Bengio, and Courville, 2016, p. 108). The
function f(X) is thus approximating the data-generating distribution p(Y |X). In learning
algorithms the function is parametrised with a set of variables θ such that it takes the
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form f(X,θ). Formally the approximation is

f(X,θ) = p(Y |X) + ϵ (2.3)

where ϵ is the error of estimation. The set of parameters of the function that best
approximates p(Y |X) is denoted θ∗.

The job of any algorithm is to make the error ϵ as small as possible by changing the
values of the parameters θ. The whole range of possible values of θ is the search space
or hypothesis space; the more parameters, the larger the search space, the more complex
the function can be. Approximation of the parameters is performed on a training set
and validated against a test set. Ideally the error on one should match the other, but
it is often the case that the errors are not proportionate. The first possible problem
is that the function f(X,θ) underfits the training data, meaning it approximates the
data-generating distribution with a large error. The second possible problem is that the
function overfits the training data, which means that the error is low on the training set
but incommensurately high on the test set. Both issues are related to the capacity of
a model, which is partly connected to the number of parameters in the model. More
parameters means a greater capacity which means a higher chance that the model will
overfit. Too few parameters means a model is not able to estimate the data-distribution
which means the function underfits the data-generating distribution. The challenge in
learning algorithms is to balance these two problems.

One process of adjusting the parameters θ to obtain an approximation of p(Y |X) is
termed maximum likelihood estimation. Formally the problem is

θ∗ = argmin
θ
J
(
Ŷ , Y

)
, (2.4)

where J(−,−) is the cost or objective function, which measures the difference between the
approximated output Ŷ = f(X) and the target Y ; in machine learning it is also called
the loss function. The form of the function f is determined by one’s knowledge of the
distribution to be approximated. Whatever the function, the error, computed by the
objective function J(−,−) must be measured somehow in order that Eq. 2.4 can work. A
simple example is the L1 norm, which measures the sum of absolute differences between
a predicted output ŷ and an target y:

J(ŷ,y) = |ŷ − y|. (2.5)
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This function has a discontinuity at the y-intersect, however; a simple alternative is the L2

norm, which is essentially the Euclidean distance between the predictions ŷ and an target y:

J(ŷ,y) =

√
|ŷ − y|2 = |ŷ − y|22. (2.6)

This function has the properties of both being continuous around the y-intersect and
penalising large errors. Such a function is called convex (Bishop, 2006, p. 56).

There is another aspect to consider when we think of multiple training samples. When
we draw a set of samples X from the data-generating distribution, the samples have a bias
and a variance, both of which affect the learning algorithm. The distance of the sample
mean from the data-generating distribution’s mean is called bias. The spread of the samples
from the sample mean is measured as variance. A biased sample can lead to a biased model,
which means the model systematically makes incorrect predictions owing to insufficient
data or a poor selection of variables. A high variance on the other hand can lead to a
model that makes unstable decisions that poorly generalise to data outside the training set.

2.1.3 Gradient Descent

A straightforward way of adjusting the parameters θ during maximum likelihood estima-
tion is simply to directly change the parameters according to whatever measure of error.
But this does not account for the changes in the gradient as the parameters approach their
optimal values. In other words, the parameter updates should shrink as the parameter
approaches the correct value to avoid the learning from overshooting the optimum value
and jumping around an optimal point because it uses constant weight updates. Using
gradients to update weights gradually is called gradient descent.

The basic algorithm is to compute the average error across the whole dataset, measured
using the objective function, then compute the gradients of the parameters with respect
to the error, the magnitudes of which are used to update the model’s parameters. The
speed of change is modulated by a value called the learning rate, denoted η or λ, which is
determined outside the learning algorithm. This is why it is important to have a convex
loss function; it is then possible to descend a gradient slowly to a low point in the loss
function, where the inverse gradient from all direction points to a minimum. This does not
mean, however, that the functions of parameters with respect to an input are also convex.
Indeed there may be many local minima that yield a suboptimal performance but which
the learning algorithm can get stuck in, since it is a point at which there are only climbing
gradients in each direction of change. The other risk is that the algorithm with respect
to its parameters gets stuck at saddle points, where there is a local zero gradient. A zero
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gradient means that there is no value with respect to which the parameter can change.
These are issues that are always in the background of machine learning algorithms; one
must remain vigilant towards them.

2.2 Early Approaches to Machine Learning

In this section we will describe the purpose of machine learning, the elementary kinds of
tasks and some elementary computational techniques to learn patterns in data.

2.2.1 Elementary Tasks in Machine Learning

Typically the objective of a machine learning algorithm is to discover the set of mathematical
operations that reliably maps a set of n inputs X = {x0, x1, . . . , xn−1} to a set of d outputs
Y . The choice of algorithm reflects the nature of the task, for the nature of the algorithm
imposes an a priori constraint on the solution that may be sought.

Tasks generally fall into one of the following categories:

• Regression, the prediction of a target value Y from a set of inputs. For example,
predictions of economic growth as a percentage of gross domestic product or the
price of stocks from a collection of economic indicators.

• Classification, the assignment of a category labels to observations. For example, the
identification of plant species from sepal and petal lengths and widths (Fisher, 1936)
or the diagnosis of disease from health indicators.

• Clustering, the grouping of observations according to their providence, e.g., the
grouping of molecules according to the similarity of their structures and/or proper-
ties.

These categories are not exhaustive, but such labels help us to determine what form a
learning algorithm should take and what measures we require.

A further distinction is drawn between supervised and unsupervised models. A su-
pervised model is presented with labels at training time and learns to map input to an
explicit output. Classification and regression tasks are mainly supervised tasks. On
the other hand, unsupervised models are not fed any targets, but rather are permitted
to determine whatever pattern is necessary to minimise a measurable outcome that is
not tied to a learning objective. We describe examples of supervised and unsupervised
models in the next section.
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A machine learning algorithm is programmed to optimise an objective function or
loss function. These functions represent the learning task for the algorithm, measuring
the closeness of the model’s output to the answer we expect. Ideally the loss should
be zero: the larger the loss, the more incorrect our model. Hence the loss can also be
considered as a measure of error.

The output of whatever model we choose is compared to our desired output, the
ground-truth, what we consider to be correct. If the outputs are very wrong, the model
is altered by adjusting its parameters. The parameters are scalar values, so they may be
increased or decreased. By calculating the derivative of the loss with respect to each
parameter, we know the direction in which a parameter should be changed, given by the
sign of the derivative, as well as the magnitude of its change.

The space of the parameters of a model is termed the hypothesis space or search space.
Ideally the search space is concave with respect to the loss, which means there is a single,
unique, optimal solution. There is seldom a problem in which this is true in practice,
where search spaces contain many local minima, many of which of suboptimal. The
model may become stuck in any of these minima, and it is difficult if not impossible
to know if it’s locally or globally optimal: the complexity of the search space does not
allow it. There are ways to reduce the chances of falling into local minima, but there
is no general way to avoid it completely.

2.2.2 Elementary Techniques in Machine Learning

The elementary machine learning techniques in this section are described as parametric
or non-parametric. Parametric models make an assumption about the distribution of
data, from which point it is necessary only to estimate the parameters that best fit the
data to the distribution. On the one hand, the advantage of parametric models is that
inference is cheap and the models tend to be small. On the other hand, the assumed
distribution will not be valid for all data.

By contrast, non-parametric models make no assumption about the distribution, but
rely on a large training set. The advantage that a non-parametric model is flexible to the
data distribution is offset by the computational expense of inference, since it works by
reference to the training data instead of a small set of parameters.

2.2.2.1 Linear Regression

Linear regression is a parametric method. In its simplest form, linear regression is a
mapping from a single input x to a single output y, with a single coefficient θ and a single
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Linear regression, with y = 2x

Figure 2.1: Linear regression can be used to separate two classes during classi-
fication. In this figure the line y = 2x is plotted. The points above the line can be
considered the positive class and the points below the negative class. The figure
has been adapted from Kenning (2019).

bias b. In the simplest form, the linear regression has the following formula:

y = θx+ b.

Alternatively one may map from multiple inputs x = [x0, x1, . . . , xp−1]
⊤ ∈ Rp with p

features to multiple outputs y = [y0, y1, . . . , yq]
⊤ ∈ Rq. The set of parameters is thereby a

matrix Θ ∈ Rp×q. Including the vector of biases b ∈ Rq, one per output, the formula is:

y = Θx+ b. (2.7)

Non-linear transformations may be applied to the inputs x before they are linearly
combined. One example is the radial basis function.

Linear regression is more conventionally used to regress on real values. It can however
be adapted to classification, for which a decision boundary is required. Any prediction of
y above that line belongs to a positive class; otherwise a negative class. (See Fig. 2.1.)

Logistic regression is a variation on linear regression, where the output is bounded
on the interval (0, 1). It has the form

y = σ (Θx+ b) (2.8)
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where σ(−) is the sigmoid function

σ(z) =
1

1 + e−z
=

ez

ez + 1
. (2.9)

Let z = Θx + b. Logistic regression is used for binary classification tasks or decision
tasks. The value σ(z) = 0.5 is the decision boundary. A value above the decision boundary
is a positive decision; below is a negative decision.

2.2.2.2 k Nearest Neighbours

The k nearest neighbours (KNN) algorithm requires a large training set against which new
samples can be compared. The training set usually consists of a set of observations with
their own class labels. The inferential set is a set of observations without class labels. The
task is to infer the class labels of the inferential set from the class labels of the training set.

The sole decision criterion is the distance measurement. Most simply one measures
the Euclidean distance between an inference observation x and every member of the
training set X. The closest k training samples determine the label ŷ of the observation.
If k = 1 then the observation x is classified with the same label as the closest sample,
ŷ = yi, where i = argmini ||Xi − x||22.

When k > 1, what happens depends on the kind of task. If KNN is used for regression,
then ŷ is an average of the k closest samples. For classification on the other hand, in
the simplest case, the modal class among the nearest examples is the assigned class. Of
course other refinements are possible.

KNN is only evaluated against other training samples; there are no trained parameters.
As such KNN is a non-parametric approach. Inference is consequently very slow, since
it is necessary to run a full evaluation of the training set—unless of course some search
optimisation is employed. It is also unsupervised since no explicit training target is
supplied to the algorithm.

Non-linear projection of the data before KNN is applied is also possible, similar to
what is possible with linear regression.

2.2.2.3 k Means

The k means algorithm may be used to cluster a set of data, but it can be further used to
classify new datapoints. It is crucially necessary that k > 1, for otherwise the algorithm is
complete before it has started. The datapoints of a training set X is first assigned randomly
to k different classes. The average position of each class, called the centroid, is computed.
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The datapoints are reassigned a class according to the nearest centroid. The algorithm
thus reiterates until the centroids no longer shift or shift below a threshold.

Like KNN, the sole decision criterion for class membership is the distance measure.
Typically, again, this is the Euclidean distance. Other distance measures may also be used,
of course. As mentioned above, k means may be used to cluster training data. Like KNN
it may also be applied to classification. The decision boundaries of the k means algorithm
are more jagged. The algorithm is still non-parametric, but it is more efficient than KNN
since one need only compare new points to the small number of centroids.

2.2.2.4 Gaussian Mixture Model

The Gaussian mixture model (GMM) is superficially similar to the k means algorithm.
The GMM however requires a labelled training set. Each data class is assumed to have
a normal/Gaussian form. Each class consequently has its own Gaussian component
with a vector of means µ and a covariance matrix Σ. The distributions are moreover
weighted according to a prior probability, which is the relative frequency of each data
class. The posterior probability tells us the likelihood of a given class given a sample.
Although a Gaussian or normal distribution is parametric, in that it has a mean and
a standard deviation, a mixture of Gaussian models is considered non-parametric—or
at least semi-parametric.

2.2.2.5 Support Vector Machine

The support-vector machine (SVM) is outwardly very similar to linear regression, specif-
ically because it uses a linear function similar to Eq. 2.7. The SVM is only capable of
outputting class labels, however. A single SVM can only classify according to positive
and negative classes. In the simplest case, the SVM learns a set of parameters θ for
the following formula:

y = θ⊤x+ b. (2.10)

An observation x is predicted as a member of the positive class when y > 0; when y < 0

then x is predicted a member of the negative class. The parameters θ are optimised to
find a line that maximally separates the two classes. The separation is measured using the
sum of squared differences, which supplies the loss value for the optimisation procedure,
a process called the least squares algorithm.

Normally the SVM assumes that the data is linearly separable. A feature function ϕ(x)
may be defined that maps non-linear features to a smaller space, which permits a certain
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innovation called the kernel trick. This actually allows us to rewrite Eq. 2.10 in terms of
the dot-product of the sample x and m training samples x(i)

θ⊤x+ b = b+
m∑
i=1

θix
⊤x(i), (2.11)

By using a kernel ϕ(x), thanks to the kernel trick, we can write it as follows for some
kernel ϕ(x) · ϕ(x(i)) = k(x,x(i)):

f(x) = b+
m∑
i=1

θik(x,x
(i)). (2.12)

The advantage is that the function f , although non-linear with respect to x, is linear
with respect to ϕ(x) and separately with respect to θ. This is important as it allows
one to use a convex optimisation procedure that is guaranteed to converge efficiently
(Goodfellow, Bengio, and Courville, 2016, p. 138) especially when certain loss functions are
applied to linear models (Hastie, Tibshirani, and Friedman, 2009, p. 192). Accordingly, the
optimisation procedure may consider ϕ(x) to be fixed and only optimise the coefficients θ.
It may be thereby said that the optimisation is independent of the feature function ϕ(x).
This is in fact the standard form of the SVM; them featuresx(i) are termed the support vectors.

The SVM is of course a supervised method. As there is a linear combination of
features weighted by learned coefficients, it is considered parametric. Yet the kernel
trick makes the SVM a very slow method, since it requires an evaluation of a single
point against the whole training dataset.

2.2.2.6 Decision Trees

A decision tree consists of a series of decision points, represented as nodes, which lead to
further decision points and eventually a decision on a class or regression value, which
is termed a leaf. Each leaf requires at least one training example. For a single feature x,
the decision tree would have one level and one decision: either x < θ or x ≥ θ, which
would decide whether it belongs to one class or another. This split into two options is
termed a binary split. Theoretically further splits could be made, but this is generally
inadvisable as it leaves too little data at lower levels. Generally, if multiway splits can
be achieved via multiple binary splits, the latter is to be preferred (Hastie, Tibshirani,
and Friedman, 2009, p. 311). If each level is constrained to one features, and hence
one axis, it can make decisions on the basis of further features. Theoretically however
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Figure 2.2: A simple decision tree with three features, f1, f2, f3. The passage from
the first level to the second level depends on the first decision boundary θ1; the
passage between the second to the third levels depends on the second decision
boundaries θ2, θ3; the passage between the third level and the decision depends in
turn on the decision boundaries θ4, θ5, θ6, θ7.

multiple, disparate leaves in the tree can lead to the same classification decision. Figure 2.2
illustrates an example of a decision tree.

If a decision tree is allowed to grow indefinitely, then it is considered non-parametric.
A decision tree becomes parametric if its growth is constrained according to some limits
on, say, depth, number of leaves, the minimum number of samples at each leaf, etc.

Decision trees are in fact quite brittle and struggle to solve problems where logistic
regression would have no issue (Goodfellow, Bengio, and Courville, 2016, p. 142). Although
decision trees have a low bias, they have high variance (Hastie, Tibshirani, and Friedman,
2009, p. 587–8). Consequently decision trees tend to overfit on the training data.

2.2.2.7 Random Forests

A random forest (RF) consists of an ensemble of decision trees. Each tree is constructed
from a set of samples drawn randomly from the training set, a process called bagging. At
each terminal node of the tree, the algorithm is only allowed to use a subset of features in
deciding a split at each level. The trees thus constituted resemble each other less and are
consequently said to be de-correlated. The prediction for a new observation is determined by
passing it to every tree in the ensemble. For classification, the modal class is the predicted
class. In regression problems, the average of the predictions is the predicted value.
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The bias of the ensemble is the same as any individual tree. Although they are not
independent, the decision trees of an RF are identically distributed. Accordingly, as the
number of trees in the ensemble increases, the variance decreases, leading to a more robust
model than an individual tree (Hastie, Tibshirani, and Friedman, 2009, p. 588).

The construction of the decision trees of course implies that RFs are strictly supervised
learners. As the number of decision trees and the various parameters previously mentioned
in Section 2.2.2.6 are specified at the outset, it is of course a parametric method, too. The
cost of inference is curtailed by a simple evaluation of an observation against each tree
rather than against the whole training set. The computational complexity of a single
decision tree is O(log2(m)), where k is the number of datapoints in each bag of samples.
With b decision trees in the RF, the computational complexity is O(b log2(k)).

2.2.2.8 Principal Component Analysis

More often than not the input features to an algorithm are not linearly independent
(Section 2.1.1). Where there are large numbers of features, which is dangerous owing
to the curse of dimensionality (Section 2.2.2.9), or a high degree of redundancy in the
features, it is helpful to simplify the input data by retaining dimensions in the input space
that correspond to the greatest variance in the input.

Principal component analysis (PCA) is one such technique for dimensionality reduction.
The input design matrix is first decomposed using SVD (Eq. 2.2). The diagonal entries of
the singular-value matrix Σ describe the variance accounted for by each of the orthogonal
right-singular vectors. Usually the first k right-singular vectors, which account for a
percentage of the variance in the data indicated by the same of their corresponding
values in diagonal matrix of singular values, form the principal subspace. This constitutes
a set of column vectors that are used to project the input data into a smaller subspace,
hence reducing the dimensionality.

2.2.2.9 The Curse of Dimensionality

Many machine learning algorithms run into tremendous, insuperable difficulties at high
dimensions (Hastie, Tibshirani, and Friedman, 2009, passim). As we increase the quantity of
variables in the data, the number of their configurations increases exponentially (Goodfellow,
Bengio, and Courville, 2016, p. 151). Essentially it is all well and good to devise a learning
algorithm that can seek the nearest datapoint, as in KNN. Nonetheless, if we supply a
model with ever greater number of variables, eventually one reaches the point where the
number of configurations of those variables exceeds the number of training examples. At
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such a point it is possible that one witnesses an example for which there is no example in
the training set. The assumption that new observations resemble old ones hence becomes
tenuous. The inductive principle underlying the learning algorithms too becomes tenuous.

2.2.2.10 No Free Lunch

An addition to the theoretical troubles of machine learning is the no free lunch theorem,
presented by Wolpert (1996). In brief, the theorem states that, averaged across all data-
generating distributions, every classification algorithm has the same average error rate. The
corollary is that no algorithm is universally better than any other (Goodfellow, Bengio, and
Courville, 2016, p. 113). It does not however mean that it is impossible to find an algorithm
that is optimal for a given problem. It warrants a certain scepticism to the goal of finding a
universally applicable algorithm for all learning problems, though. Indeed, in practice, a
consideration of what is practical and expedient to a specific purpose is wholly appropriate.
The theorem, in combination with the curse of dimensionality, serves as a warning against
the imprudence of entrusting an algorithm wholly with a task, especially tasks that concern
the wellbeing of human beings. This concern is connected to the following issue.

2.2.2.11 The Insufficiency of Data

A comprehensive discussion of the epistemic limitations of science is undoubtedly beyond
the scope of this discussion. Nevertheless it is necessary to discuss the representational
limitations of natural phenomena since it bears keenly on a popular theoretical justification
for deep learning over conventional methods. The following considerations broadly draw
on philosophical traditions in western philosophy (Russell, 2010).

On the elementary questions of the extent to which reality is knowable (which really is
beyond the scope of this), it is customary in science to adopt a positivistic or empirical
attitude to things. From this perspective a considerate but by no means conclusive
discussion of this issue was published by Schrödinger (1992). More generally it regards
the epistemological gap between an object (e.g., Kant’s thing-in-itself, noumenon) and
its perception or representation (the thing-as-perceived, phenomenon). Kant asserts that
the noumenon is wholly inaccessible; a tradition of philosophers going back to Plato
assert that it is accessible. We make no judgement either way; the point is that it
is undecided (and perhaps undecidable). It is noteworthy that the word phenomenon
originally had the specific connotation of what is mentally perceived by a human subject,
what is subjective to the perceiver.
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A more relevant and proportionate concern is the extent to which what is knowable
may be faithfully and accurately representable not merely mathematically but computation-
ally. Partly it is a question of technological boundaries, which are perpetually shifting;
e.g., a machine’s ability to represent computational complexity. Another part is the
appropriateness of numerical or symbolic representation in itself, for quantophrenia can
quickly overtake a scientist’s mind against better judgement.

Scientific theories seek to explain natural phenomena using simplified but underdeter-
mining models. It is not necessary that a scientific model wholly and flawlessly explains a
phenomenon; it is only necessary that the model more completely captures the dynamics
or development of a natural system. A scientific theory should reliably and accurately
explain other relevant phenomena with a tolerable level of error.

Our measurements of phenomena are always peripheral to the things-in-themselves;
we are always using scientific apparatuses to comprehend and in turn explain our universe.
It is too cynical to conclude that the implied distance between objects and our perceptions
means all our perceptions are therefore fundamentally flawed and unreliable. In any
case, there is a distance. In conventional learning algorithms, where the threat of the
curse of dimensionality is ever looming, the necessity of scientific apparatuses and the
measurements therefrom is clear and necessary. It is an expedient that allows us to make
tolerably reliable predictions about our universe.

Nonetheless there is a sense in which these measurements summarise too much in
the sense that they miss crucial patterns in information that might be discovered by
other means. To draw information from what is termed raw information is considered
an improvement over summarising and thus simplifying measurements. The specific
selection of the measurements adds an additional source of bias to the algorithm. Much
better, the thought goes, is to allow the algorithm to learn representations automatically
and directly from the raw information. In spite of the sense of these points, we aver that
the perceptual distance has not disappeared, even if a machine is allowed to automatically
learn from raw information.

Automatic representation learning is at the heart of a set of learning techniques termed
deep learning. At the heart of deep learning is a structure called a neural network. That
is the subject of the next section.

2.3 Neural Approaches to Machine Learning

Neural-based approaches, approaches that use some variation on a neural network,
characterise the vast majority of today’s most advanced algorithms. Central to the
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modern approaches is the more specialised convolutional neural network (CNN), which
is discussed in Section 2.4. In this section we discuss the early rudimentary forms of
perceptrons and later more elaborate neural architectures. The models were largely
developed before the modern renascence of neural networks that was initiated in the
second decade of the twenty-first century.

2.3.1 The Perceptron

The perceptron is the predecessor of the modern neural network. The form of the
neurones that constitute the perceptron is derived from the McCulloch–Pitts logical
neurone (McCulloch and Pitts, 1943), a simplification of the real neurone. A neurone is
a cell body with dendritic branches as chemical inputs and axon branches as chemical
outputs. The chemical signal received along the dendrites accumulates until it exceeds a
threshold, at which point the neurone fires, releasing neurotransmitter hormones down
the axon branches to neighbouring neurones. The activity of a logical neurone on the
other hand is an all-or-nothing response. At any point in time, all that is required to
activate a logical neurone is that a certain number of its synapses are activated, whereas
inhibitory synapses absolutely prevent the excitation of the neurone. The responses of a
perceptron are not all-or-nothing—unless one builds in that property. Moreover, whether
the input to a neurone is excitatory or inhibitory is a question of relative degree. The
neurones of the perceptron with which we are acquainted is for this reason a relaxation
of the McCulloch–Pitts logical neurone.

The perceptron, as introduced by Rosenblatt (1958), is a set of neurones, each of
which takes a vector of input vectors x ∈ Rc which are first transformed by a fixed linear
transformation ϕ(x) ∈ Rd. The transformed input features are bound to a set of trainable
weights ω ∈ Rd and bias term b ∈ R is also added. Conventionally however the zeroth
position of the weight vector ω0 is the bias term, and the corresponding entry in the
input vector x0 is 1. (Later this simplifies the description of the gradient.) Therefore
the formula for a single neurone is written

z = y(x,ω) = ω⊤ϕ(x). (2.13)

The result z is passed through a step function f , essentially classifying the input as positive
or negative (see Fig. 2.3 for an illustration of the perceptron):

f(z) =

+1 z ≥ 0,

−1 z < 0.
(2.14)
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Figure 2.3: The perceptron receives inputs x0, . . . , xn−1 weighted by a set of
parameters θ0, . . . , θn−1, to which a bias term b is added. The weighted sum gives
a prediction ŷ.

The target value for the ith sample is therefore ti = {−1,+1} rather than {0, 1}, as
is conventional in modern machine learning. The weights ω are trained on a target
by stochastic gradient descent with respect to the classification error, measured by the
loss function. Yet the loss function is not merely the number of incorrectly classified
samples since the function would be discontinuous (Bishop, 2006, p. 193). Instead a
perceptron criterion E is used that sums the z for all misclassified samples (correctly
classified samples have a zero error):

E(ω) = −
∑
i∈M

ω⊤ϕ(x)ti (2.15)

where M is the set of indices of misclassified examples.

The weight update at time τ from the weights and error at τ − 1 is therefore

ω(τ) = ω(τ−1) − η▽E(ω) = ω(τ−1) − ηϕ(x)ti, (2.16)

where η is the learning rate. According to Bishop (2006, p. 194), the learning rate
may be set η = 1 since multiplying the perceptron function y(x,ω) by a constant is
unchanged in the output f(z).

The first perceptron to be implemented was the Mark I Perceptron, developed on an
IBM 704 computer by Frank Rosenblatt in 1957 at Cornell Aeronautical Laboratory. It was
programmed with the world’s first machine-learning algorithm, the perceptron learning
algorithm (Smith, 2019, p. 195). The Mark I consisted of a set of 400 photoreceptors
with wires literally randomly connected to a set of neurones (Bishop, 2006, p. 196).
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Potentiometers controlled the contribution of each photoreceptor to the output, the
predicted category of the input. Weight updates were performed by motors according
to the equation described in Eq. 2.16. The Mark I was trained on illuminated shapes,
such as letters of the alphabet.

The perceptron is in fact a linear model and is therefore limited to representing linear
functions and therefore limited to distinguishing linearly separable patterns. Minsky and
Papert (1972) demonstrated, among the other limitations of single-layer perceptrons, that
a single-layer perceptron is incapable of representing a XOR function. Their criticisms
were directed at single-layer perceptron and a conjecture that the same problems obtained
in other networks was widely misinterpreted as damning on all neural networks that it
led at length to a substantial decline in research funding for neural networks (Bishop,
2006, p. 193; Goodfellow, Bengio, and Courville, 2016, p. 218). As is later demonstrated
(Cybenko, 1989; Hornik, Stinchcombe, and White, 1989), multi-layer perceptrons (MLPs),
obeying certain conditions, do not suffer from these limitations.

2.3.2 Universal Approximation Theorem

The universal approximation theorem states that any Borel measurable function from
one finite-dimensional space to another finite-dimensional space can approximate any
continuous function to an arbitrary degree of error. Since any continuous function on
a closed and bounded subset of Rn is Borel measurable, it means that a neural network
can approximate any function (Goodfellow, Bengio, and Courville, 2016, p.192). The
degree of error is dictated by the size of the neural network—in its breadth (the quantity
of neurones in a layer) or depth (the number of successive perceptron layers) (Hastie,
Tibshirani, and Friedman, 2009, p. 390). The model could contain a single hidden layer
(plus a layer of linear outputs), but the layer would be infeasibly large and fail to learn and
generalise correctly (Goodfellow, Bengio, and Courville, 2016, p. 193). The alternative is
a deeper neural network with more hidden layers, which reduces the requisite number
of neurones in the hidden layers.

The neural network is therefore a universal approximator (Bishop, 2006, p. 230). A
two-layer perceptron for example can approximate any continuous function on a compact
input domain (Bishop, 2006, p. 230) provided that the first hidden layer uses a non-
linear “squashed” activation function on its neurones, e.g., a tanh or sigmoid function
(Goodfellow, Bengio, and Courville, 2016, p. 192).

There are several added difficulties however, both practical and theoretical, described
by Goodfellow, Bengio, and Courville (2016, p. 193). Firstly, a multi-layer network may
be theoretically able to represent a function, but it does not guarantee that the network
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will learn the function. It may be impossible to find the parameters or the network will
simply choose the wrong function because it overfits the training data. Secondly and most
crucially there is no universal procedure for estimating parameters from a training set
that will generalise to samples that are not in the training set.

All that being said, feed-forward neural networks are powerful tools in the approxi-
mation of functions. A deep model is particularly important for statistical reasons and is
to be favoured over a statistical model that makes assumptions of the specific statistical
form of the data, for it encodes a very general belief that the function we want to learn is a
composition of smaller, simple functions (Goodfellow, Bengio, and Courville, 2016, p. 195).

2.3.3 Feed-forward Neural Networks

The feed-forward neural network is identical with an MLP. A feed-forward neural network
is rarely less than two layers deep. What counts as a layer is in contention; for present
purposes a layer is a linear transformation followed by an activation. Feed-forward neural
networks are often described as fully connected. That is, the neurones in a layer fully
connected to every neurone in the next layer. The first and last layers are referred to
as the input and output layers. The input layer is identical with the input features. The
layers between are termed hidden layers.

The input features x ∈ Rc are fed to the first hidden layer of p neurones, where the ith
neurone has a matrix of weights Ω1,i ∈ Rc×d (as before the bias is implicitly included at
the zeroth position). The output of the ith neurone in the first hidden layer is therefore

z
(1)
i = σ

(
Ω⊤

1,ix
)

(2.17)

where the superscript-(1) represents the index of the first layer, σ is a non-linear function
and z(l) ∈ Rd. Every subsequent layer l may then be defined in terms of the previous
layer l − 1’s outputs z(l−1):

z
(l)
i = σ

(
Ω⊤

l,iz
(l−1)

)
(2.18)

The output after L layers is yielded as ŷ = z(L) ∈ Rd, where d is the desired number
of features in the output. Depending on the task, the output could be bounded or
normalised in various ways.

In supervised tasks, the error of the output ŷ is measured against a target y with a
loss function, often referred to simply as the loss. A common supervised loss has already
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been described, namely the L2 norm or Euclidean distance:

L(ŷ, y) = ||ŷ − y||22. (2.19)

Later we discuss how the loss is used to adjust the parameters of the model. Beforehand,
it is worth noting something about the structure of the neural network.

In some tasks our target is not a single value z but actually multiple values. In
multi-class problems, there are c outputs for the c classes. First the output is normalised
with a function called softmax, which bounds the outputs to the interval (0, 1). If the
output vector is a vector a ∈ Ro, then for the class output at ai

ŷi = softmax(a)i =
eai∑c
j=1 e

aj
(2.20)

for the ith class prediction. Softmax is distinct from simply dividing the outputs by the
largest value because it emphasises large values and minimises small values. The labels
for a multi-class problem are encoded as one-hot vectors. The labels of a c-class task would
therefore consist of a vector y where all zero entries except the ith entry which is set to
1 for to represent a positive for the ith class. The softmax’d predictions ŷ and the true
labels y are then compared using cross-entropy, also called Kullback–Leibler divergence
DKL(ŷ ∥ y), yielding a single value for the loss:

H(ŷ,y) = DKL(ŷ ∥ y) = −
c−1∑
i=0

ŷi log yi. (2.21)

Effectively one could describe each of the neural network as a linear combination of
non-linear basis functions (Bishop, 2006, p. 227). According to this interpretation it is
easy to see where the power of approximation lies. In Section 2.2.2 we described the use
of the kernel trick in the SVM that enables the algorithm to learn on non-linear basis
functions via linear combination. The SVM works independently of those basis functions.
By contrast, a neural network actually learns the parameters of the basis functions—and
moreover it is linear to those parameters.

The non-linearity is achieved by the use of non-linear activation functions, or as we refer
to them in Section 2.3.2, “squashed” functions. It was once common to use the sigmoid

σ(z) =
1

1 + e−z
(2.22)
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or tanh

tanh(a) =
ea − e−a

ea + e−a
(2.23)

activation functions, but these functions carry the risk of saturation (Goodfellow, Ben-
gio, and Courville, 2016, p. 189). As a result the use of these activation functions is
discouraged except in the final layer of a neural network, where the optimiser can easily
correct for saturation.

In multi-class problems, where there are multiple classes and therefore multiple
outputs z ∈ d, softmax is used to constrain the outputs to the interval [0, 1). For the
ith class output it has the form

ŷi = softmax(zi) =
ezi∑d
j=0 e

zj
(2.24)

The sum of the outputs is therefore
∑d

i=0 yi = 1, which has the form of a probability
distribution. The outputs therefore reflect the class probabilities for a multi-class output.

2.3.4 Backpropagation through a Neural Network

Backpropagation, or simply backprop, is the process of discovering the gradients present
in the forward propagation of signals through a neural network. The cost from the loss
function is propagated backwards from the end of the network through all the weights of
the network to discover their gradients (Goodfellow, Bengio, and Courville, 2016, p. 197).

The chief mathematical tool behind backpropagation is the chain rule of calculus. The
description here is adapted from Goodfellow, Bengio, and Courville (2016, p. 197). Suppose
we have an input x and two functions f and g such that y = f(x) and z = g(f(x)) = g(y).
The chain rule states that

dz

dx
=

dz

dy

dy

dx
. (2.25)

This equation may be generalised to vectors. Suppose we have x ∈ Rc,y ∈ Rd, f : Rc → Rd

and g : Rd → R. The composition of the functions then looks like y = f(x) and z = g(y).
The chain rule for vectors is

∂z

∂xi
=
∑
i

∂z

∂yi

∂yi
∂xi

, (2.26)
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which in vector notation may be written

▽xz =

(
∂y

∂x

)⊤
▽yz, (2.27)

where ∂y
∂x is the d× c Jacobian matrix of g. Hence we can see that obtaining the gradient

of a variable x is a simple multiplication of the Jacobian matrix ∂y
∂x by the gradient

▽yz. The backpropagation is the progressive computation of these gradients for each
operation in the neural network.

The value z in a neural network is the loss. The size of the weights update is controlled
by a learning rate η which scales the loss. It is termed a hyperparameter because it controls
the algorithm that trains the model parameters. Models can be sensitive to the choice of η
and it is common that in training a model several learning rates differing in magnitude are
compared experimentally to determine the most appropriate learning rate.

2.3.5 Mini-batch Gradient Descent

We have described gradient descent in Section 2.1.3. Normally gradient descent, specifically
batch gradient descent, implies a full evaluation of the error on the training set, with
which the parameters of the model are optimised. This is computationally very expensive.
Additionally there is a high degree of redundancy in training sets, especially in large
datasets, that means it is superfluous to evaluate every sample. The extreme alternative
is to evaluate the model and update the parameters one sample at a time, a process
sometimes called stochastic gradient descent, as we have seen. The disadvantage is of
course the length of time it takes to iterate through a large training set one by one. The
other disadvantage is the risk of knocking a model’s training of kilter by one anomalous
or highly unusual example, to protect against which would require a very low learning
rate, which would further slow down learning.

A intermediate approach is mini-batch gradient descent, sometimes referred to as simple
stochastic gradient descent (Goodfellow, Bengio, and Courville, 2016, p. 272). For the model
training, the training set is subsampled into smaller batches with an arbitrary number of
samples. These smaller batches are called mini-batches, but also confusingly called batches in
the literature. Each subsample is used to update the model’s weights. A full cycle through
every mini-batch is termed an epoch. By randomly sampling a subset, one reduces the
computational cost of weight updates, but moreover learns on a subset that is distributed
identically with the original training set, and therefore lead to unbiased estimates of the
gradient, with a variance inversely proportional to the size of the mini-batch.
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There are concomitant questions here regarding the appropriate size of the mini-
batches, termed the batch size. The larger the batch size, the smaller its variance. Larger
batch sizes mean fewer iterations per epoch which means faster training. Any edge cases
are also subsumed in a larger set of more normal samples. Smaller batch sizes expose edge
cases to the model, however, and potentially encourage a model to incorporate edge cases
in its approximation of the data-generating distribution. Small batch sizes can induce
a small regularising effect on the model, too (Goodfellow, Bengio, and Courville, 2016,
p. 272). How large the batch size should be is ultimately a matter of experimentation.
One rule of thumb is that batch sizes should be set in powers of 2, especially when using
graphics processing units (GPUs), since the GPU may avail itself of these sizes in setting
up parallelised operations owing to its architecture.

It is also common that the mini-batches are shuffled. Random selection is one means of
shuffling the dataset. Further randomisation is achieved by resampling the mini-batches
every epoch. When a model has a high enough capacity, there is a risk that it will overfit on
specific configurations of samples. Varying the composition of the mini-batches combats
this fact. On the other hand, the risk diminishes with very large datasets even if they are
shuffled just once (Goodfellow, Bengio, and Courville, 2016, p. 273).

Finally there is the matter of data imbalance to consider. Data imbalance arises when
the quantity of one class is far in excess of the other class. This is very common in
modelling medical phenomena where there are far more healthy patients than unhealthy
patients. There are two basic remedies in this situation: (1) the sampling of the training
set is skewed proportionately to favour the smaller class; or (2) the losses computed on
the smaller class are scaled by amount proportionate to its infrequency.

2.3.6 Technological Limitations and Stagnation

The neural network is said to have undergone three waves of popularity (Goodfellow,
Bengio, and Courville, 2016, pp. 14–18). The first wave crested with the perceptron
(Rosenblatt, 1958) and broke with the publication of Perceptrons (Minsky and Papert, 1972),
ending in a trough following a substantial decline in research funding (Bishop, 2006, p. 193).
The second wave began with the research into symbolic AI, culminating in a discipline of
cognitive science called connectionism, before finally falling at the onset of the so-called AI
Winter that ended in the 1980s (Goodfellow, Bengio, and Courville, 2016, p. 16; Howe, 2007).

Neural networks have been renascent since after 2006 with the presentation of deep
belief networks (Hinton, Osindero, and Teh, 2006), which presented an efficient strategy to
train deep neural networks, namely by greedy layer-wise pretraining, which reveals the
technological problems until that point. The lull in interest till that point is owed in no
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mean part to the difficulty of training neural networks efficiently (Goodfellow, Bengio,
and Courville, 2016, p. 18). Besides, other non-neural techniques were making strides and
therefore more attractive, especially in light of the perceived failures of connectionism
at the end of the second wave (Goodfellow, Bengio, and Courville, 2016, p. 17). RFs and
SVMs continued to be a popular approach to machine learning. Eventually, however,
neural models would come to the forefront of machine learning.

2.4 Deep Learning

In the time until the point of renascence in 2007 some fairly impressive demonstrations of
neural networks were made, even amid the slump in research and funding. Most notably
this took the form of the convolutional neural network, called LeNet-5 (LeCun et al., 1998),
which achieved an impressive performance over conventional techniques on a common
benchmark, the MNIST dataset: the error rate for a simple linear classifier being 12%, for a
carefully designed SVM 0.56% and for a convolutional neural network 0.4% (Bishop, 2006,
p. 677). As has been mentioned, a fillip to research was the deep belief network presented by
Hinton, Osindero, and Teh (2006). It demonstrated specifically that a neural network could
outperform an SVM with an radial basis function on MNIST. Other significant publications
drew attention to deep neural networks in the following years (Bengio and LeCun, 2007;
Ranzato, Boureau, and Cun, 2007). These papers coincided with the popularisation
of the term deep learning, used to describe networks that used network depth to attain
performances that exceeded conventional techniques relying so-called hand-crafted features.

Repeatedly in the literature, culminating in the landmark paper Deep Learning by
LeCun, Bengio, and Hinton (2015), a repeated justification for deep learning techniques
recurs. In conventional learning techniques it is necessary to select a set of basis functions
or even design summary features to feed to a learning algorithm. The reasons are two-fold:
(1) some assumption needs to be made about the form of the data-generating distribution
that is to be modelled; and (2) the curse of dimensionality meant that one must pare
out redundant features, hence techniques like PCA.

By contrast, neural networks, especially convolutional neural networks (CNNs), scale
well to high-dimensional data and approximate any continuous function. The need of a
human intermediary who designs various summary features or selects basis functions
is wholly circumvented. Indeed, key to turning away from the hand-crafted features
that are fundamental to conventional learning algorithms is that they otherwise stand
in the way of modelling the variability and richness present in “natural data”, and that
it is impossible by such means to build an accurate recognition system entirely by hand
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(LeCun et al., 1998). The argument became increasingly convincing over the years too, as
the power of GPUs increased and the price of computational power decreased, such that it
made neural networks yet more feasible. In short, neural networks work directly on raw
information and avoid hand-crafted features (LeCun, Bengio, and Hinton, 2015).

2.4.1 Convolution

Before we discuss the CNN, it is necessary to describe the convolutional kernel and the
convolution operation. Convolution is the integration of one signal, termed a kernel w
in the field of deep learning, over another signal, termed the input. Convolution can be
applied to a sequence of information, for example a function x over time and the function
w weights the function according to the distance from t:

s(t) =

∫
a
x(a)w(t− a) = (x ∗ w)(t), (2.28)

where s(t) is the convolved signal and ⋆ denotes the convolution operation. The require-
ment here is that both functions x and w are continuous.

In computing applications convolution must be discrete1. Time-series are discretised
into even timesteps. In the above case, the function x could run forever, in which case the
convolution is a infinite sum of the two functions retrospectively at a point in time t:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a). (2.29)

Often the length of the kernel w is smaller than the length of the input, in which case we
assume that the function is simply zero but in the finite set of values we are concerned
with (Goodfellow, Bengio, and Courville, 2016, p. 323).

Convolution may also be performed on more than one axis, especially in the case of
images. Suppose I represents a function over the two-dimensional surface of an image
and I(i, j) represents the signal of the pixel in the ith row and jth column. Suppose
further that K represents the function of a two-dimensional kernel. Discrete convolution
over the kernel is therefore:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, i− n), (2.30)

1Although analogue computers have been developed Paleja (2023), they are not available.
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Image Kernel New image

* =

Figure 2.4: Two three-by-three matrices, an image (left) and a kernel (right). The
entries that are multiplied together share a colour. The product of the paired entries
are summed. Hence the all orders of summation are equivalent. The illustration
here assumes that there is no striding and boundary conditions are ignored. The
commutativity of convolution arises because the kernel is flipped with respect to
the input image, which is useful in writing proofs, but this is usually relaxed in
implementations since the kernel entries take on arbitrary values during training
(Goodfellow, Bengio, and Courville, 2016, pp. 323–324).

where S(i, j) is the convolved signal at pixel (i, j). The operation as formulated above
is commutative and may be equivalently written

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, i− n)K(m,n). (2.31)

The two operations are equivalent because the same indices are multiplied in either case.
The first starts in the top-left corner of the image and the bottom-right corner of the kernel
and iterates through; the second starts at the bottom-right corner of the image and the
top-left corner of the kernel and iterates through. Ultimately the orders in which the
products of the two function values are summed are thus equal. The result is a sum of
the corresponding entries, which means the two are commutative (Fig. 2.4). The kernel
is hence flipped in respect of the indices with respect to the image or input.

A related operation where the kernel is not flipped is the cross-correlation:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, i+ n)K(m,n). (2.32)

Cross-correlation is not commutative, however. Many machine learning libraries allegedly
implement cross-correlation but call it convolution (Goodfellow, Bengio, and Courville,
2016, p. 324). We follow Goodfellow, Bengio, and Courville (2016) in using the term
convolution to refer to both, while specifying whether the kernel is flipped where necessary.
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In image processing the kernel used for convolution is typically much smaller than
the image itself. A Gaussian blur is obtained by convolving the Gaussian kernel, such
as the three-by-three Gaussian kernel

1

16

1 2 1

2 4 2

1 2 1

 ,
over the surface of an image. Two further examples of kernels can be used to detect
horizontal and vertical edges respectively:−1 −1 −1

0 0 0

1 1 1

 and

−1 0 1

−1 0 1

−1 0 1

 .
Since the kernel is smaller than the image, it must be iterated over the surface of the
image. The algorithm is called the sliding window.

The sliding window has several parameters that affect the output size of the image.
The first parameter is the stride, or the steps of the iteration. By default the stride is
1, as in Eq. 2.31, but if the stride is increased beyond 1, the dimension of the output
decreases. The second parameter concerns boundary conditions. A “valid” convolution
would not allow the kernel to overstep the bounds of the image. In such a case, the
result of convolution with the identity kernel0 0 0

0 1 0

0 0 0


would yield the same image with the pixels on the boundary missing. The dimension of
the result is however smaller than the input. Alternatively the input may be padded, which
means that the dimensionality is retained after convolution is performed (see Fig. 2.6).

2.4.2 The Convolutional Neural Network

The CNN is built on convolution (but it does not wholly consist of convolutional operations,
as we discuss in Section 2.4.2.1). Yet, rather than using fixed kernels like those described
above, the kernels’ entries are learned by backpropagation. Like the feed-forward neural
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Image Kernel New image
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(a) Stride of 1.

Image Kernel New image

* =

(b) Stride of 2.

Figure 2.5: Assuming the use of “same convolution” (Fig. 2.6), a stride of 1 will yield
an output image with the same dimensions as the input image (top). A stride of 2
will halve the dimensions of the output relative to the input (bottom). The convolved
locations are colour-coded on the bottom image. Each quadrant of four pixels is
multiplied with the kernel to yield a corresponding cell in the new image.

network, the CNN is built of a composition of non-linear functions over successive layers,
but the functions are more compact.

The operation of a single convolutional layer and its constituent neurones are commonly
reckoned as a set of convolution operations. Each neurone corresponds to a single kernel
that yields one channel in the output. Continuing the example of an image, suppose that
I(i, j, q) represents an image’s pixel value in row i, column j and channel q. Suppose I
has c channels. The kernel K also has c channels. The output channel o is computed thus:

S(i, j, o) = (K ∗ I)(i, j, k) =
∑
q

∑
m

∑
n

I(i−m, i− n, q)K(m,n, k). (2.33)
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Figure 2.6: If we restrict the convolution to the boundaries of the image, the output
will be smaller. This operation is called “valid” convolution. (The figure is adapted
from Goodfellow, Bengio, and Courville, 2016, p. 325.) On the other hand, one
could pad the image in some way before performing convolution. This is necessary
to preserve the image dimensions, for example, which altogether is called “same
convolution”.

Equation 2.33 describes the computation on a single neurone. If there are d output channels
in one layer, there are d neurones in that layer. In fact, after a certain point we ditch the
terminology of neurones entirely and speak only of layers and the number of their outputs.
Consequently, I ∈ Rn×m×c,K ∈ Rk×k×c and S ∈ Ru×v×d, such that

S = K ∗ I, (2.34)

the result of which S is passed through an activation function.

The CNN has three important and interrelated properties. The first is the sparse
interactions. In contrast to the feed-forward neural network, the CNN has highly sparse
interactions between layers. In a feed-forward neural network, a neurone in one hidden
layer is fully connected to the output of the previous layer. The connections between two
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layers are described by a matrix operation with a complexity of O(c× d). In the CNN, the
connections are sparse owing to the kernel’s being magnitudes smaller than the input. The
kernel is a square matrix k× k and the image is n×m, and k2 is often magnitudes smaller
than n ×m. The computational complexity of the convolution operation is O(k2 × d).
Consequently the convolutional neural networks require far less computation per neurone
than the feed-forward neural network.

The second property is parameter sharing. Since the same, compact kernel is convolved
over the surface of the input, rather than learning a set of parameters for each location, we
learn a single set of parameters applied everywhere. From another perspective, shared
parameters are called tied weights, because the weights applied in one region of the input
are tied to those applied to another region. Furthermore the k2 parameters occupy small
amounts of memory compared to the situation in the feed-forward neural network a
unique weight is tied to every location in the input.

The third property is equivariant representations. Over successive layers, the small
functions represented by the kernels are composed into larger patterns. Low-level features,
such as edges, are composed over the multiple layers into higher-level features, such as
curves. Moreover, although the low-level kernels are interacting with small regions in
the input, with the passage of information through later layers, the later layers interact
indirectly with large portions of the input (Goodfellow, Bengio, and Courville, 2016, p. 326).
In other words, the receptive field of low-level kernels is small, but with composition the
receptive field grows larger. Moreover, since the kernels small and the weights are tied
over the space, the convolutional network is also translation invariant. A pattern may
occur anywhere in the input and still be detected.

These properties lend the CNN its enormous power, a drastic demonstration of which
was made for the 2012 International Large-Scale Visual Recognition Challenge after a CNN
designed by Krizhevsky, Sutskever, and Hinton (2017) attained a 11.1 percentage point lead
of the top-5 error lead over the next best learning algorithm. Another group of researchers
(Zeiler and Fergus, 2014) used this model to demonstrate composition of low-level features
into high-level features was demonstrated by using deconvolution. They found among
other things that invariance to scale and translation improve with network depth, but that
CNNs are not invariant to rotations of rotationally asymmetrical inputs. Successive years
produced ever lower rates of error with variations on the CNN. Over the years refinements
and extensions of the CNN have been presented, which now discuss briefly.
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2.4.2.1 Other Deep Neural Networks

Other convolutional neural networks. InceptionNet (Szegedy et al., 2015) use multiple,
parallel, differently sized kernels, called an Inception module, in 22 layers. One of those
kernels is 1× 1 in dimension, which essentially result in a scaled mapping of the input
to the output. It could otherwise be termed a skip connection, since the original image
signal is being scaled and passed forward. The model uses fewer parameters than that
of Krizhevsky, Sutskever, and Hinton (2017) but attains a much lower training error:
6.7% top-5 error rate versus 15.3%.

ResNet (He et al., 2016) uses residual layers where the skip connections are unaltered,
i.e., they are simply added together. The purpose is to counteract the deleterious effect
of increasing network depth on the model’s learned representations, whereby a deeper
model produces a higher training error than a shallower model. Oddly, the authors believe
degradation with depth is not a consequence of overfitting, which they did deduce from
other experiments on a much larger, 1202-layer model. ResNet nearly halved the top-5
error rate of InceptionNet with 3.7%, although it uses layers (34) than InceptionNet.

Temporal models. Other CNNs have been designed to model temporal data. Recurrent
neural networks (RNNs) consume a sequence of temporal data one timestep at a time. The
neurones consume each timestep in sequence. The hidden state at each timestep is fed back
into the neurone along with the next timestep of the input. At training, the predictions
are compared stepwise with the output, with the targets fed to the model instead of the
output of the RNN. This is called teacher forcing (Goodfellow, Bengio, and Courville, 2016,
pp. 372ff.). On occasion the model may be introduced to predicted outputs rather than the
targets; this is called using the free-running inputs (ibid.). Various other training techniques
exist. The training error is then passed back through an unrolled computational graph
using the algorithm called backpropagation through time. At inference, where a predicted
sequence is generated, the RNN is left to run on its own predictions.

The output of a RNN can also be used to generate a context for a second RNN,
in which case the RNNs are referred to respectively as the encoder and decoder. The
output of the decoder is fed to the decoder as an input and as a context, like the way
the hidden state are fed to successive timesteps. Such a model is useful for translating
one sequence to another, such as predicting stocks or translating natural language. For
that purpose there is an entire class of RNNs in the literature grouped under the term
seq2seq (sequence-to-sequence, e.g., Li et al., 2018c).

So far the description has concerned the single-layer RNN. To achieve multiple layers,
the number of neurones is simply multiplied. The kind of connections may vary according
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to desire (Goodfellow, Bengio, and Courville, 2016, p. 388), but the most straightforward
way is to pass the outputs up through a chain of neurones for a single timestep, where
each neurones is still fed with its hidden state from the previous timestep.

There are two challenges that arise with RNNs. The first is the challenge of learning
long-term dependencies, in that gradients propagated over many stages explode or vanish
(Goodfellow, Bengio, and Courville, 2016, p. 390). A notable example that redresses the
difficulty is the long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997).
Like the RNN, an LSTM unit takes an input, yields an output and passes a hidden state to
itself for the following timestep. The difference is that there are extra sigmoid-activated
gates. The input gate controls how much the input contributes to the computation of a new
state. The forget gate controls how much of the previous should be contributed to the new
state. Finally the output gate controls how much of the output, computed from the gated
input and state, to emit from the model. These gates moderate the risk of exploding and
vanishing gradients, which means that a LSTM learn long-term dependencies more easily
than a RNN. LSTM units can be stacked into multiple layers similar to the RNN.

The second issue is autoregression. When a signal at timestep t depends on its value
at timestep t − 1, it is easier for a model to make a prediction that simply matches the
value at the previous timestep. Indeed a model can achieve a reasonably low training
error by simply duplicating the previous timestep. It is necessary to notice when a
sequence is highly autoregressive in order to counter its deleterious effects on learning.
One example of highly autoregressive sequences are stock prices. A common remedy
in the case of sequences with similar properties to stock prices is to use the change in
price rather than the stock price.

The transformer. The transformer is a non-recurrent neural network that is able to
map from one sequence to another. The transformer was first presented by Vaswani
et al. (2017). The structure is similar to the encoder-decoder architecture discussed in
the section above on RNNs, except it is invariant to sequence length. Each step of the
input features are first linearly transformed and packed altogether into three spaces for
the queries, keys and values Q,K, V ∈ Rdmodel . The result is then multiplied by three
matrices, the query, key and value matrices,WQ,WK ∈ Rdmodel×dk andW V ∈ Rdmodel×dv

respectively, where dmodel is the dimensionality of the model’s hidden layers and dv, dk
is the dimensionality of the values and keys, yielding

Q′ = QWQ, K ′ = KWK , V ′ = VW V . (2.35)
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In an operation called scaled dot-product attention the queries and keys are multiplied together
multiplied by a scaling factor 1/

√
d, the result of which is multiplied by the value matrix:

Attention(Q′, U ′, V ′) = softmax

(
Q′K ′⊤
√
dmodel

)
V ′ ∈ Rdmodel×dv (2.36)

The transformer accommodates further for multiple heads h, such that there are h query,
key and value matrices. Their output is concatenated along the feature axis dv, yielding
an output Z ∈ Rhdv , which is multiplied with an output weight matrix W o ∈ Rhdv×dmodel :

Z ′ = ZW o ∈ Rdmodel . (2.37)

The input works solely on self-attention; that is the input sequence constitutes the
queries, keys and values. This is termed self-attention, and the attention blocks in the
encoder consist only of self-attention mechanisms. The decoder works slightly differently
because its attention blocks consist firstly of self-attention, followed by an attention
mechanism where the output of parallel block in the encoder forms the keys and output
sequence forms the queries and values.

Since there is no recursion, there is no sense of order in the input. To add a sense
of order, Vaswani et al. (2017) add a positional encoding to both the input and output
sequences that imparts an idea sequential order in the features. An additional problem
is that, as the data is supplied simultaneously, the transformer can search ahead of a
position at future steps in temporal sequences. A further stage is added in the process
that masks out future steps after each step.

At inference, since there is no target sequence, the decoder is simply predicts a
sequence step for step, like the RNN. The advantage of parallelism remains during
training, however, which means the transformer is much faster to train than the RNN.
The transformer is a very powerful tool for sequence-to-sequence processing. It lies at
the core of the OpenAI GPT models.

Generative adversarial networks. A whole class of models called generative adversarial
networks (GANs) utilise two models to train adversarially to a target, first introduced
by Goodfellow et al. (2020). One model, called the generator, is trained to mimic data
drawn from a data-generating distribution. The task of the discriminator is to judge
which of two samples is the generated image. Training works in cycles and with time
the generator generates fake data that the discriminator cannot distinguish from data
actually drawn from the distribution. GANs have developed to the point where very
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convincing generated data is being produced, so much so that there is arising concern
about the potential of GANs to be used for nefarious purposes. Such a usage is for the
purpose of generating so-called deep fakes.

2.4.2.2 Other Layers in Convolutional Neural Networks

Several other layers are also present in CNNs that are worth briefly discussing. It is worth
noting at this point, again, that what is considered a layer is ever in contention. Some
consider activation functions to be a inseparable part of a convolution layer, while others
consider them altogether separate. For the sake of discussion, we treat them separately here.

Activation functions. The most common layers to be found are the activations functions.
We have already seen the sigmoid and tanh functions in Section 2.3.3. Today, as we men-
tioned before, these are generally discouraged within the hidden layers of a model. Instead
other, simpler functions are used. The most common is the rectified linear unit (ReLU):

ReLU(a) =

a a > 0,

0 otherwise.
(2.38)

It is a computationally very simple layer. The discontinuity at zero presents problems,
however, specifically the idea of dead neurones. Variations on ReLU have instead been
proposed. It is not necessary to enumerate them all, but the most common variation
is the leaky ReLU

LeakyReLU(a) =

a a > 0

ζa otherwise.
(2.39)

The leaky ReLU guarantees that there is a gradient on the negative side of the activation
function. Of course there is still a discontinuity, as a result of which other variations
use smoother curves, such as the exponential linear unit. Each has its own advantages
and they are variously used according to application.

Pooling. Pooling is often used in CNNs to reduce the dimensionality of hidden layers, but
it also helps in generalising learned representations. It also helps in making representations
approximately invariant to translation (Goodfellow, Bengio, and Courville, 2016, p. 330).
In pooling a square of pixels in an image, for example, is extracted and some summary
measure is made on it, producing a new value for that location and discarding all others.
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A very common pooling method is max pooling, where the pixel with the largest value is
taken as the new value. The invariance arises because the exact point of detection of a
feature matters less, since the highest detection is extracted in any case. Indeed, together,
convolution and pooling in a network act as a strong prior on invariance to permutation
and translation (Goodfellow, Bengio, and Courville, 2016, pp. 334ff.).

The final dense layers. The final, dense or fully connected layers of a CNN summarise
the features detected in the earlier layers. One may add any number of dense layers
at the end, although the benefit to training error in the case of learning on images is
doubtful (Zeiler and Fergus, 2014). Certainly it is necessary to have at least one dense
layer, especially as the dimensionality of the output must be reduced to the output size.

2.4.3 Improving the Optimisation Process

We have already described the most basic process for learning the parameters of a
neural network, backpropagation, in Section 2.3.4. Backpropagation can be augmented
in a number of ways to accelerate learning or to avoid saddle points in the objective
function (see Section 2.1.3).

Momentum. Gradient descent can be made adaptive by the inclusion of a momentum term
to the loss function. The momentum term keeps a moving average of previous gradients.
Common optimisers that use momentum are AdaGrad (Duchi, Hazan, and Singer, 2011),
RMSProp (Hinton, 2012), the Adam optimiser (Kingma and Ba, 2015) and a modification
of Adam called AMSGrad (Reddi, Kale, and Kumar, 2018). In AdaGrad, every model
parameter has its own learning rate that is adjusted inversely proportional to the square
root of the sum of all the historical squared values of the gradients (Goodfellow, Bengio,
and Courville, 2016, p. 299). RMSProp improves on AdaGrad by using an exponentially
weighted average of the gradients. Adam improves on RMSProp further by incorporating
the first- and second-order moments of the gradients to calculate weight updates.

AMSGrad fixes a convergence issue in the Adam optimiser, which was observed
occasionally not to optimise in certain conditions. The exponential by using the maximum
of past squared gradients rather than an exponential weighting. The idea is that parameters
with a large historical gradient will change rapidly, while those with historically small
gradients will change slowly. RMSProp and Adam both add an additional decay rate on
the accumulated gradients that controls the mix of old gradient values with the new. Adam
contains two decay rates, one for the first-moment and another for the second-moment.
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The foregoing refinements of optimisation algorithms have a drawback in that they
add further hyperparameters that need to be evaluated. The Adam paper recommends
defaults, but the ultimate choice lies with the architect of the model.

Regularisation. The capacity of a model may be controlled by adding or removing
functions or constraining the set of solutions or a functions a model is allowed to learn.
One way of forcing the model onto a smaller set of weights, thereby compelling the model
to learn weights that are small and do not overly emphasise one feature or another, is
to add a penalty to the loss function called a regulariser. The two primary and most
general forms of regularisation are the L1 norm, computes the sum of absolute gradient
values, and L2 norm, which computes the sum of squared gradient values. Whichever
one is chosen is added to the loss function. The result is passed to the backpropagation
algorithm. In general, the aim of regularisation is to reduce the generalisation error but
not the training error (Goodfellow, Bengio, and Courville, 2016, p. 117).

Dropout. Dropout (Srivastava et al., 2014) is intended to prevent the co-adaptation of
neurones in a network by randomly setting a subset of outputs to zero at training. It
means that at each training step, a subnetwork is essentially selected. Each training step is
consequently training a different, thinner network. At inference dropout is never applied.
Dropout essentially applies masking noise to the hidden layers of a network. It forces
a network to seek redundant features or alternative patterns in the data (Goodfellow,
Bengio, and Courville, 2016, p. 260).

Layer and batch normalisation. Two methods are used to normalise the inputs to layers:
The first method is batch normalisation (Ioffe and Szegedy, 2015). The purpose of batch
normalisation is to reduce what the authors term internal covariant shift, which is the
tendency of the distribution of a hidden layer’s input values to shift. Essentially a batch
normalisation layer maintains a running average and standard deviation of the input
layer for inference. During training simply the average and standard deviation of the
batch are used for normalisation. The stabilisation of the input distribution also speeds
up training by making it easier for the model to coordinate weight updates. Owing to
this normalisation, batch normalisation also combats vanishing and exploding gradients.
It also has a regularising effect on the weights.

The second method is layer normalisation (Ba, Kiros, and Hinton, 2016). Whereas batch
normalisation normalises across a batch, layer normalisation computes an average and
standard deviation for all the values of a sample to normalise the input. The original
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motivation for layer normalisation was to address the shortcomings of batch normalisation.
Layer normalisation is however best deployed in RNNs and transformers, whereas batch
normalisation is usually used in networks that do not involve the modelling of sequences.
It is advisable to use either batch normalisation or dropout, but not together.

Alternatives to backpropagation. There is no real alternative to back-propagation, but
one extension of the backpropagation algorithm has produced some interesting results.
Kuo and Chen (2018) introduced the subspace approximation with augmented kernels
(Saak) transform as a reformulation of the convolutional layer. As with rectified correlations
on a sphere, introduced in an earlier paper (Kuo, 2016), each layer as a Saak transform is
the projection of an input onto a set of anchor vectors. The resultant projection values are
rectified using ReLU—with the exception of the zeroth index, which forms the basis of
reconstruction of the inverse Saak transformation. Saak transforms permit feed-forward
training of a network (hence an architecture constructed using Saak transforms is described
as a feed-forward network). In a single pass, the network is able to obtain an accuracy
approaching that of a CNN trained using back-propagation of errors. A feed-forward
network constructed from Saak transforms is also far more resilient to adversarial input
examples than a traditional CNN (Kuo et al., 2019).

2.4.4 Limitations with Respect to Regular Domains

The CNN is only suitable to domains where the data has a regular structure. We have
already seen how a discretised time sequence is discretised and an image is indexed
by pixel location (Section 2.4.1). The regular, grid-like structure of an image allows one
to slide a square kernel over the image’s surface, permitting convolution to be defined.
Accordingly, allowing for boundary conditions, one may place the kernel anywhere on
the image’s discrete space and it will fit. There is, in other words, a regular relationship
between a pixel and its neighbours. One might think of the relationship of a pixel with a
neighbours as the relation of a sampled point with the other sampled points. Each sampled
point is a constant distance from its immediate neighbours, which are likewise a constant
distant from their neighbours, and so on (Fig. 2.7)—again, boundary conditions allowing.

Many domains do not exhibit regular structure, however, and it is inappropriate to
apply a CNN to them. Forcing irregularly structured information into a regular space risks
undermining a model’s ability to learn data by losing important information embedded
in the irregular structure (Shuman et al., 2013). Electroencephalography (EEG) sensors
(Song et al., 2019; Jang, Moon, and Lee, 2018; Li et al., 2019b; Rui, Nejati, and Cheung,
2016), sensors on the surface of the Earth or on a road network (Li et al., 2018a; Cai
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(a) An image as a grid.
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(b) A single dimension of an image as discretely sampled function.

Figure 2.7: The pixels of an image can be represented as a grid (top). Each cell of
the grid is equidistant to its immediate neighbours. The distance to further points are
a distance that is a factor of the distance of each pixel to its neighbours. An image’s
pixels can also be reframed as discrete, regular sampling of a continuous function
(bottom); in this case we visualise a single dimension as a function.

et al., 2020), the positional readings from points on the human body (Edwards and Xie,
2017)—each are examples of domains where there is no regular relationship between
the datapoints in an observation.

Consequently a flourishing field of deep learning on irregular domains has arisen that
takes irregular domains as its learning target (Shuman et al., 2013; Bronstein et al., 2017),
in particular on graphs, reflected in the growing number of surveys on the topic (Wu et al.,
2019b; Zhou et al., 2018; Zhang, Cui, and Zhu, 2020; Georgousis, Kenning, and Xie, 2021).
In the next section we discuss the field of deep learning on graphs.
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2.5 Graph Deep Learning

The graph is a useful and very general way of representing discretely sampled information.
It may be used to describe very complex relations between the sampled points. The
assumption of regularity, embedded in the grid structure, that is made by the CNN
is relaxed in the graph: related sampled points are not constrained to have a certain
relationship to other sampled points. Indeed, graphs can even be used to structure images
(Edwards and Xie, 2016); regularity violates no constraint.

In this section we describe deep learning techniques applied to graphs. First we will
review what an irregular domain is. Then we will elucidate graph-theoretical definitions
which we will use throughout this thesis. Final we will discuss techniques and common
arising problems in graph deep learning.

2.5.1 What is an Irregular Domain?

In Euclid’s treatise Elements, written in the third century B.C.E., the set of definitions,
axioms and postulates are described that underpin regular geometry. The postulates
are self-evident facts of geometry that cannot be derived from any other geometric rules.
The fifth postulate in particular states that

if a line, falling on two lines, should make two angles on the same side [of that
intersecting line] smaller than right angles, the two lines, having been drawn to infinity,
are to meet at a point on the same side [of the intersecting line] as the two angles
smaller than right angles2 (author’s translation).

The postulate states in a effect that two lines will meet at some point if no line drawn
across them produces two right angles. The corollary of that statement means that two
lines never meet if that intersecting line produces two right angles. For this reason, the
fifth postulate is also called the parallel postulate.

The postulate describes regular geometry, but it is not self-evidently true. New fields of
geometry can be defined without the fifth postulate, called non-Euclidean geometry, such
as hyperbolic geometry. The graph is a topology that can be used to represent functions
in non-Euclidean, hence irregular spaces or domains.

2.5.2 Graph-theoretical Definitions

We now enumerate the various theorems and corollaries of graphs that will be helpful in
this thesis. In Sections 2.5.2.4 to 2.5.2.7 we describe several extensions of the graph, but

2
καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας

ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ᾿ ἄπειρον συμπίπτειν, ἐφ᾿ ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.
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Figure 2.8: A common example of a graph is the star graph. It consists of four
vertices or nodes connected to another, central vertex by four edges.

the key thing to bear in mind is that these are all still graphs. That is, the rules that we
enumerate about graphs in general apply just as much to these graphs as others.

2.5.2.1 General Graph Definitions

A graph G (Fig. 2.8) is an ordered pair of finite sets (V,E), where V is the set of vertices
or nodes and edges E is the set of edges. E is a subset of unordered pairs of V . The
subset consists of all vertices x, y that are adjacent, such that {x, y} ∈ E. {x, y}may also
be written xy, exy or e. Reflexively, an edge is always adjacent to two vertices x and
y, called its endvertices. Two edges are said to be adjacent if they share a vertex. The
vertices and edges of a graph can also be described as functions V (G) and E(G). The
number of vertices in a graph is its order n = |V | and its size is the number of edges
m = |E|. A graph with n vertices is termed an n-graph and is denoted Gn. Generally
graph vertices have no self-loops, i.e., an edge joining a vertex to itself, unless otherwise
specified. A subgraph of G is a graph H = {W,F} such that W ⊂ V and F ⊂ E. A
graph is weighted if the edges map to a set of real values.

2.5.2.2 Degree and Neighbourhoods

The number of edges incident to a vertex x is denoted d(x), a quantity termed the degree of
x. The minimum degree of a graph is denoted δ(G) and the maximum degree is denoted
∆(G). The degree of a vertex x is equal to the first-order, one-hop or first neighbours, denoted
Γ(x), hence Γ(x) = d(x). The vertex at the centre of a neighbourhood is the target or locus
vertex. The ith neighbourhood of a vertex Γi(x) is the set of vertices at most i steps from
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	𝑥
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Γ!(𝑥)

Figure 2.9: The neighbourhood of a vertex is conventionally the set of adjacent
vertices. One can expand the definition of neighbours by thinking of different orders
of neighbours that correspond to vertices at increasing distance from the focal vertex
x. x is not guaranteed to be a member of Γ(x). This figure has been adapted from
Georgousis, Kenning, and Xie, 2021.

the locus vertex. The neighbourhood Γ is fundamental to spatial definitions of graph
convolution because they describe the receptive field.

It should be noted that by the standard definitionx /∈ Γ(x)unless the graph contains self-
loops. It could be argued that inasmuch as Γ(x) ⊂ Γ2(x), if Γ0(x) = {x} then Γ0(x) ⊂ Γ(x).
See Fig. 2.9 for an illustration of the graph neighbourhoods. The foregoing definitions of
graph convolution generally assume to the contrary that x ∈ Γ(x) unless otherwise stated.

2.5.2.3 The Connectivity of Graphs

A graph with no edges between its n vertices is an empty n-graph En. A complete n-graph
Kn has an edge between every pair of vertices. A graph where the δ(G) = ∆(G) = k

is a termed a k-regular graph and is denoted Rk. A graph with a minimum degree
k = δ(G) < ∆(G) is k-connected. All n-complete graphs are (n− 1)-connected. A graph
is connected if there is a path between every pair of vertices in the graph.

2.5.2.4 Directed Graphs

The graphs described hitherto are undirected, meaning ∀xy ∈ G, ∃yx ∈ G s.t. xy = yx.
A graph is described as directed if xy ∈ E ≠⇒ yx ∈ E. That is, the edge set E is
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Figure 2.10: The graphs on the left describe the construction of an undirected
linegraph from an underlying graph. The graphs on the right show the construction
of a directed linegraph from a directed graph. The red edges in the upper graphs
correspond to the red vertices in the lower graphs. This figure has been adapted
from Kenning et al. (2021).

the set of ordered pairs of V . Every directed edge joins a vertex x, the startvertex, to a
vertex y, the endvertex. An additional property arises from the orientation of edges in
the directed graph. It is possible for two given edges to have both vertices in common
in opposite directions. Suppose xy, yx ∈ E: We call a directed edge yx ∈ E, which
joins an startvertex y to the endvertex x, the inverse edge of xy ∈ E. Inverse edges are
central to the work presented in Chapter 3.

Since a vertex x in a directed graph can be both a start- and endvertex, the neighbour-
hoodΓ(x) is split into two groups of neighbours. The first groupΓin(x) = {y|yx ∈ E} is the
set of in-neighbours, and the corresponding measure of degree is denoted din(x) = |Γin(x)|.
The second group Γout(x) = {y|xy ∈ E} is the set of out-neighbours, and the correspond-
ing measure of degree is denoted dout(x) = |Γout(x)|. The neighbourhood of x is thus
redefined as Γ(x) = Γin(x) ∪ Γout(x) and degree is redefined as d(x) = din(x) + dout(x).
Note that the vertex x is a member of neither Γin(x) nor Γout(x). Additionally, strictly
speaking, an inverse edge belongs to both the in- and out-neighbourhoods, but one could
also argue for its exclusion from Γin(x) nor Γout(x) but simultaneously its inclusion in Γ(x).

The orientation of the graph’s edges results in additional properties not present in
undirected graphs. A directed graph where there is a path between every pair of vertices
is strongly connected. A directed graph that is connected, i.e., there is a path between every
pair of vertices but not in both directions, is weakly connected.

2.5.2.5 Linegraphs

A linegraph L(G) = (G(E), EL) is constructed from an underlying graph G = (V,E)

(Temperley, 1981, p. 15; see Fig. 2.10). The edges of the underlying graph bĳectively map to

53



2. Background

𝐺 �̅�
Figure 2.11: Suppose the graph G is a star graph. The complement G of the star
graph G is illustrated on the right. It has the same vertices but all the edges not
present in the graph G.

the vertices of the linegraph V (L(G)) = E(G). Suppose a mapping g : V (L(G))→ E(G)

bĳectively maps the vertices of the linegraph back to the edges of the underlying graph
G. A pair of vertices α, β in the linegraph are adjacent iff their corresponding edges in
the underlying graph g(α) = eα, g(β) = eβ are also adjacent.

A directed linegraph is constructed from an underlying directed graph. As defined by
Aigner (1967), a directed edge in the linegraph is drawn between two of its vertices α, β if
the underlying edges on the original graph G have the same orientation, i.e., α = xy and
β = yz. By either definition, a linegraph represents the edge-adjacency or second-order
structure of its underlying graph. Moreover, since the linegraph is in fact a graph, it has
all the properties of a graph described in this section.

2.5.2.6 The Graph Complement

Given an undirected graph G = (V,E), its graph complement is G = (V,E), where
E = E \ E and E is the set of unordered pairs of V . An example using the star-graph
is illustrated in Fig. 2.11.

2.5.2.7 Subgraphs and Spanning Subgraphs and Graphs

G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊂ V and E′ ⊂ E. The subgraph G′ is a
spanning subgraph of G if there is a function ϕ : E′ → E such that ∀x, y ∈ V ′, ∃xy ∈ E′

such that ∃w = ϕ(x), z = ϕ(y) ∈ V, ∃wz ∈ E. In other words, for every pair of adjacent
vertices in the subgraph G′, if there is a mapping to a pair of adjacent vertices in the graph
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G, G′ is a spanning subgraph of G. As far as we know, there is no term to describe a graph
G′ = (V ′, E′) where E′ ⊂ E but V ′ = V . Such a graph we designate a spanning graph.

2.5.2.8 Matrix Representations of Graphs

There are several ways to represent graph structure as a matrix. When multiple matrices
are used simultaneously, there must be assumption of some order to the vertices and
edges. In other words, the vertex and edge sets acquire an order. It is accomplished by
assigning each vertex and edge an index. The order is arbitrary and does not matter.
When the vertices of a graph have been indexed, we denote the ith vertex xi; likewise
the ith edge is ei. If the graph already has some cardinal order, where vertices have some
domain-defined order, then the indices are already defined. Graphs with a cardinal
ordering are called positional graphs (Gori, Monfardini, and Scarselli, 2005). Otherwise
graphs are assumed to be non-positional.

An adjacency matrix of an n-graph is a binary n× n matrixA, where a non-zero entry
at Aij means that there is an edge between vertices xi, xj ∈ V . For undirected graphs, the
entries are symmetrical; soAij = Aji. Otherwise the entries are zero. The n-graph’s degree
matrix D is a diagonal matrix where the ith diagonal entry is d(xi). More compactly,
D = diag(A1), where 1 is a vector of 1’s with a length equal to the number of rows inA.

From the adjacency and degree matrices we can compute the graph Laplacian matrix
L = D −A, often simply called the graph Laplacian or Laplacian. The normalised graph
Laplacian matrix is L̂ = I−D−1/2LD−1/2. The Laplacian matrix has some useful properties:
since it is symmetric and semidefinite, an eigenvalue decomposition yields a full set of
eigenvectors and eigenvalues. As we will see later (Section 2.5.4.1), spectral approaches
to graph convolution avail themselves of the eigenvalue composition.

If a graph is weighted, we use a weight matrix W for the adjacency matrix in the
calculation of the Laplacian. W is defined similarly toA, except it is a real-valued matrix.
Entries correspond to real-valued weights of edges rather than the mere presence of an edge.
The degree of the weight matrix is accordingly computed differently: D = diag(W1).

There are differences in some matrices for directed graphs. The adjacency and weight
matrices of a directed graph are not guaranteed to be symmetrical, since an edge in one
direction does not mean there is an edge in the other direction. Concretely this means
that a non-zero entry at row i and column j of the adjacency or weight matrix of a
directed graph does not imply a non-zero entry at row j, column i. As a consequence,
there are two different degree matrices for directed graphs, one recording the in-degrees
Din = diag(A⊤1), since columns correspond to in-neighbours, and Dout = diag(A1),
since rows correspond to out-neighbours.
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An additional consequence of the asymmetry of the directed graph is that the Laplacian
matrix is not symmetric. This presents problems later in Section 2.5.4.1, where defining
spectral techniques for convolution on directed graphs is more of a challenge.

For undirected and directed graphs alike, we can also compute a transition matrix
P =D−1A, where the entry Pij is the probability of transitioning from vertex xi to vertex
xj in one step. Transition probabilities over further steps can be obtained by powers of the
transition matrix, where P k is the matrix of probabilities over k steps. It is trivial to show
that the transition matrix of a directed graph is not guaranteed to be symmetrical.

2.5.2.9 Signals Structured on Graphs

A signal over a graph’s vertices is a mapping f : V → Rc, thus every signal has a c-channel
signal associated with it. Likewise one may speak of signals over a graph’s edges, a
mapping f : E → Rc′ . Overloading notation one may talk of signals on the vertices
f(V ) ∈ Rn×c and on the edges f(E) ∈ Rn×c′ . There is also a mapping from individual
vertices f(x) ∈ Rc. We write f to refer to signals structured on the graph when it is
clear from the context that the signal is structured on the vertices or edges. The graph
signal, unless otherwise stated, is the data that is supplied to the first layer of a graph
convolutional model. Equivalently we write h0 = f(G). The graph features attributed to
vertex x in layer l is denoted hl(x) or hl,x. Unless otherwise stated, we denote the number
of input features to a given layer by c and the number of output features by d.

2.5.3 Early Approaches to Learning on Graphs

There are some very early examples of neural networks on graphs. The earliest to the best of
our knowledge was presented by Sperduti and Starita (1997), where a graph is first encoded
into a vector that is passed to a feed-forward neural network to classify the whole graph.
A RNN is used to propagate labels across a directed graph and use sigmoidal activation.
Since the graphs are cyclic, the RNN units, in this context called recursive neurones, re-feed
the output information at previous timesteps as input at successive timesteps.

Gori, Monfardini, and Scarselli (2005) presented the first graph neural network (GNN).
In the GNN, each vertex has a state and a label which are propagated over several stages
until a stable point is reached. Notably the vertex’s own state and label is propagated to
neighbours, but not to itself—though its label is. The whole propagation process is iterative
and defined by a parametric function common to every vertex. The parametric function
is a sum over neighbours’ features, termed contributions in the paper, when the graph is
non-positional; otherwise the weights associated with vertex positions are used to scale
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contributions. For non-positional graphs the parametric function has the following form:

hl+1,x =
∑

y∈Γ(x)

hθ (l(x), hl,y, l(y)) , (2.40)

where the function l(−) is a mapping from vertices to their labels. The output of the
parametric function is passed to a sigmoid function (Eq. 2.9) and is therefore non-linear.
The general form of the output function is

o(x) = gθ(hl,x, l(x)) , (2.41)

where l is the number of the final layer. The algorithm works on directed edges, too, for
which the parametric function need only be extended to indicate whether a neighbour
is an in-neighbour or an out-neighbour. A paper published later (Di Massa et al., 2006)
compares the two approaches and demonstrates that the GNN almost always outperforms
the RNN-based approaches. Scarselli et al. (2009) extended Gori, Monfardini, and
Scarselli’s model to include edge labels, too.

Finally Micheli (2009) proposed a neural network for graphs, essentially a variation
on the GNN that does not produce a distinction between vertex states and labels in the
propagations and takes no edge labels. The only vertex label is present at the first iteration
on each node, after which it is consumed by the first propagation. The result of each
propagation is sigmoid-activated. In these respects it is similar to the network proposed
by Sperduti and Starita (1997), since it includes the focal vertex in the computation of new
vertex representations. A key difference is that it incrementally adds hidden units that are
frozen and all contribute to the new representation of each added hidden state with some
learned weighting. Each hidden unit is learned separately on the previous hidden units,
already trained, rather than propagating an error backwards through an unfolded network.

The methods described above share some common attributes that recur in modern
graph-based convolutional neural networks (GCNNs). Firstly the features of a focal vertex’s
neighbours are combined with the focal vertex’s features to produce a new representation
at each iteration, followed by an activation function, altogether termed the function is
called the local transition function (Scarselli et al., 2009), state transition function (Di Massa
et al., 2006) or simply transition function (Gori, Monfardini, and Scarselli, 2005). A second
function, the local output function (Scarselli et al., 2009) or simply output function (Gori,
Monfardini, and Scarselli, 2005; Di Massa et al., 2006), is then used to map the final vertex
representations to the output space. Although the other papers (Sperduti and Starita,
1997; Micheli, 2009) do not have names for their functions, they do have functions with
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alike purposes. The approach by Scarselli et al. (2009) also accepts edge labels, which
today we more commonly refer to as edge attributes. Similar functions appear in the
frameworks we discuss in the next section.

2.5.4 Definitions of Convolution on Graphs

Concurrently with the development of graph convolutional models, several frameworks
have been described to generalise the common attributes of GCNNs and formalise a
general procedure for GCNN architectures.

The earliest framework is the message-passing neural network (MPNN) (Gilmer et al.,
2017). The MPNN, like the GNN proposed by Scarselli et al. (2009), accepts an undirected
graph with vertex and edge attributes, but also works with directed graph and multigraphs.
The framework consists of two phases: a message-passing phase and a readout phase,
similar to the transition function and output function described in Section 2.5.3. The
earlier approaches iterate the passage of graph signals through recurrent units until
a stable point is reached using a contracting function or weight decay to enforce the
property. The MPNN does not strictly adhere to this property and simply uses the
propagations to learn some vertex representations. Multiple message-passing phases
stacked one after the other creates model depth and expands the receptive field of the
model. The terminology introduced by Gilmer et al. (2017) is still in use today and many
techniques can be described in this manner.

Note that these two processes of message-passing and readout bear a resemblance
to the Weisfeiler–Lehman test of isomorphism. The purpose of the test is to produce a
canonical form for a graph. Two isomorphic graphs will share the same canonical form.
In the test, for each vertex the neighbouring vertices’ labels are gathered at the focal
vertex along with its current label, from which a new label is computed by compressing
the gathered labels using, for instance, a hash function. The labels are gathered and
hashed repeatedly until the partitioning of the graph on according to the labels no
longer changes. In GCNN architectures the compression function is replaced by a neural
network. It has been demonstrated, among other related findings, that GCNNs are
at most as powerful as the Weisfeiler–Lehman test of isomorphism in distinguishing
graph structures (Xu et al., 2019b).

The Graph Network (GN) framework (Battaglia et al., 2018) is more broadly defined
than the MPNN. In contrast to the MPNN, it is designed to operate on directed multigraphs,
which lends a designer a great deal of flexibility in designing a convolutional layer. The
MPNN can be thought of as a more constrained GN. A single GN block consists of
three separate update functions for attribute updates on the edges and vertices and
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attributes for the whole graph:

e′k = ϕe(ek,vrk ,vsk ,u), (2.42)

v′i = ϕv(ēi,vi,u), (2.43)

u′ = ϕu(ē′, v̄′,u). (2.44)

The terms ēi, ē′, v̄′ are computed from three aggregation functions: one local function
that aggregates neighbours’ vertex features to focal vertices, and two global functions, one
which aggregates edge features and the other that aggregates vertex features:

ē′i = ρe→v(E′
i), (2.45)

ē′ = ρe→u(E′), (2.46)

v̄′ = ρv→u(V ′). (2.47)

The terms ē′, v̄′ are variables that are computed from all vertex and edge attributes
respectively, namel The global vertex and edge features are subsequently used in the
computation of a new global feature (Eq. 2.44) and included in the computation of edge
and vertex features (Eqs. 2.42 and 2.43).y E′) and V ′. The hat on the symbols thus
represents an intermediate value before the computation of the global attribute. The
attribute of a given edge is denoted E′

i.

The update procedure at each layer has three steps, stated in Eqs. 2.42 to 2.44. Firstly
the current attributes of each edge, its endvertices and the global representation are used
to update the edge attributes (Eq. 2.42). Secondly, for every vertex, the incident edge
attributes are aggregated with each vertex’s current attributes and the global attribute
(Eq. 2.43). The global attributes are then updated (Eq. 2.44) with the aggregation of all
edge attributes (Eq. 2.46), all vertex attributes (Eq. 2.47) and the previous global attributes.

Various GCNNs can be constructed by composing multiple GN blocks or excluding
different parts of the GN block. Most of the techniques described below do not have global
attributes, for example, which means the corresponding components may be excluded
from the GN block. As with the MPNN, the stacking of multiple GN blocks in depth
yields a deeper model with a larger receptive field.

The frameworks discussed above appear to more accurately suit the definition of
spatial definitions of convolution. There is also a category of convolutions which we
term spectral definitions. In fact these frameworks fit both definitions since spectral
convolution is formulaically equivalent to spatial convolution (Bracewell, 2000, p. 163;
Shuman et al., 2013). Indeed there are cases where definitions of graph convolutions
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that have developed from spectral definitions are equivalent to spatial formulations in
certain conditions (Kipf and Welling, 2017).

2.5.4.1 Spectral Graph Convolution

Graph Fourier transformation. First we must consider how one obtains a spectrum from
graph signals. The graph Laplacian matrix represents the graph structure (Section 2.5.2.8).
Since the Laplacian matrix is symmetric and semidefinite, its eigenvalue decomposition
yields a full set of eigenvalues and eigenvectors,

L = UΛU⊤, (2.48)

where U ∈ Rn×n = [u⊤
0 , . . . ,u

⊤
n−1], the Fourier basis of n eigenvectors, and Λ =

diag([λ0, . . . , λn−1]) ∈ Rn×n. The eigenvectors can be used to transform graph signals into
the spectral domain, termed graph Fourier transformation or simply Fourier transformation.
Forward Fourier transformation yields the spectrum of the graph signals

f̃ = U⊤f. (2.49)

and we can recover the spatial graph signals using reverse Fourier transformation:

f = U f̃ . (2.50)

In recent work (Xu et al., 2019a; Li et al., 2020b; Zheng et al., 2020), the graph Fourier trans-
formation is generalised as the matrix multiplication of a matrix Φ with the graph signal:

f̃ = Φ⊤f. (2.51)

and likewise,

f = Φf̃ . (2.52)

Φ is thus the basis of the transformation that could be the eigenvectors or collection
of wavelets.

Eigenvectors as a Fourier basis. On this basis, the spectral graph convolution was first
described by Bruna et al. (2014) and uses the eigenvectors as the Fourier basis. A spatial
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convolution is in fact equivalent to the Hadamard product of a filter in the spectral domain:

f ∗ g = U
((
U⊤
)
f ⊙ g̃

)
, (2.53)

where ⊙ is the Hadamard product and g̃ is the spectrum of the spatial kernel g. Let
gθ = diag(U⊤g). Equation 2.53 consequently becomes

f ∗ g = UgθU
⊤f, (2.54)

where the entries of gθ are the trainable parameters of the convolution. The term gθ

is a function of L and equivalently a function of its eigenvalues gθ(L) = gθ(UλU
⊤) =

Ugθ(Λ)U⊤, so a more appropriate representation would be gθ(Λ). This statement holds
for both normalised and unnormalised Laplacian matrices as long as they are well
defined. The operation on the spectral domain described in Eq. 2.54 may be viewed
from another perspective as a spectral filter. The result of the convolution is passed
to an activation layer, giving

hl = σ (hl−1 ∗ g) = σ
(
UgθU

⊤hl−1

)
, (2.55)

for the lth layer, where σ(−) is the activation function.
This definition of convolution is expensive. The graph need only be calculated once

with O(n2), which is however computationally prohibitively expensive as the order of the
graph grows. An additional O(n2) computational cost is present in the forward Fourier
transformation. The number of weights in the spectral filter gθ also grows linearly O(θ)
per layer, so the memory consumption grows linearly with the number of vertices at every
layer. Alternative ways to approximate the Fourier basis and define a spectrum are at
the core of later refinements to graph convolution.

Approximating the Fourier basis with Chebyshev polynomials. Hammond, Van-
dergheynst, and Gribonval (2011) proposed a polynomial approximation of the wavelet
basis Φ using Chebyshev polynomials. Defferrard, Bresson, and Vandergheynst (2016)
used the definition as a basis for a graph convolutional layer.

The Chebyshev polynomial of order k is

Tk(x) = 2xTk−1(x)− Tk−2(x) (2.56)

where T0 = 1 and T1 = x. Defined in terms of the eigenvalues, the ith term of the
Chebyshev polynomial expansion is denoted Ti(Λ). The computation of the Chebyshev
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polynomials is O(kn) for the polynomials 0 ≤ i < k. The filter gθ is then defined as
a k-order polynomial of Λ:

gθ(Λ) ≈
k−1∑
i=0

θiTi(Λ), (2.57)

where Ti(Λ) ∈ Rn×n, θi is its learned coefficient and Λ = 2Λ/λmax − In is the rescaled set
of eigenvalues, where λmax is the largest eigenvalue in Λ. To avoid eigendecomposition,
we can instead approximate gθ with the normalised Laplacian matrix L̂.

Redefining the convolution with the Chebyshev filter gθ we obtain

gθ(L)f ≈
k−1∑
i=0

θiTi(L)f (2.58)

where L = 2L̂/λmax − In is the rescaled Laplacian matrix. The output of the lth
convolutional layer is therefore

hl = σ (hl−1 ∗ g) = σ

(
k−1∑
i=0

θiTi(L)hl−1

)
. (2.59)

First-order approximation of the spectral convolution. Approximation using the kth-
order Chebyshev polynomial means that the model is k-localised. Kipf and Welling
(2017) proposed using a first-order approximation of the Chebyshev polynomial to
define convolution. This restricts the receptive field of the convolution to the immediate
neighbourhood of each vertex, but by stacking the layers over successive steps, one can
obtain larger receptive fields by depth instead.

Equation 2.59 is correspondingly altered in accordance with the first-order Chebyshev
polynomial expansion in Eq. 2.56 to

f ∗ gθ ≈
1∑

i=0

θiTi(L̂) = θ0f + θ1(L− In)f

= θ0f − θ1D−1/2AD−1/2f.

(2.60)

where θ0, θ1 are free parameters and assuming λmax ≈ 2. In practice Kipf and Welling
(2017) constrained the free parameters such that θ0 = −θ1 = θ, giving

f ∗ gθ = θ
(
In +D−1/2AD−1/2

)
f. (2.61)
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The authors approximate λmax ≈ 2 and state that the neural network can be expected
to adapt to this change in scale in the process of learning. If λmax ≈ 2, the eigenvalues of
In−D−1/2AD−1/2 are within the interval (0, 2), which leads to numerical instabilities over
multiple layers. The authors therefore introduce what they call the renormalisation trick
to combat this, where the normalisation In −D−1/2AD−1/2 is redefined to D̃−1/2ÃD̃−1/2

where Ã = A + In and D̃ = diag(Ã1). With the renormalisation trick the Chebyshev
convolution reduces to

f ∗ gθ = θ
(
In +D−1/2AD−1/2

)
f = θD̃−1/2ÃD̃−1/2f, (2.62)

such that Φ = D̃−1/2ÃD̃−1/2.
The convolutional layer using the first-order Chebyshev polynomial is therefore

σ(f ∗ gθ) = σ
(
θD̃−1/2ÃD̃−1/2f

)
. (2.63)

Since D̃−1/2ÃD̃−1/2 remains constant during training, it can be implemented as a
sparse matrix and thereby the complexity is O(mcd).

Cayley filters. The Cayley polynomial expansion is a series of rational complex functions
that have been proposed as a Fourier basis (Levie et al., 2019). Like the Chebyshev filters
proposed by Defferrard, Bresson, and Vandergheynst (2016), a Fourier basis approximated
by Cayley polynomials does not require an eigendecomposition of the Laplacian matrix,
has the same computational complexity as a sparse Laplacian of O(n) and the locality of
the spectral convolution. One disadvantage of the Cayley filters is that its spectrum of
polynomials is limited to the interval [−1, 1] linearly, limiting their ability to specialise in
small spectral bands. To mitigate this drawback, a spectral zoom coefficient is introduced.

Wavelet methods. The graph wavelet neural network (Xu et al., 2019a) uses a collection
of wavelet functions as a Fourier basis. Each wavelet function is localised on the vertices
spatially. Each wavelet is also able to specialise on different regions of the spectrum with a
scaling parameter. The set of wavelet basis functions together produce a very sparse basis
for transformation, making it a computationally efficient mode of spectral transformation.
However this advantage only stands as long as one uses a sparse approximation, such as
the Chebyshev polynomial expansion, which does not require an eigendecomposition. The
method has a computational complexity of O(kn) for k basis functions. Two approaches
using Haar wavelets as a Fourier basis have been proposed (Li et al., 2020b; Zheng
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et al., 2020). Haar functions are likewise sparse approximations of the Fourier basis
and are likewise more efficient.

Spectral convolution on directed graphs. As we described in Section 2.5.2.8, the Lapla-
cian matrix of a directed graph is asymmetric, therefore one cannot compute the full set of
eigenvectors and eigenvalues from it. The Laplacian matrix therefore cannot be used to
define spectral convolution on graphs; an alternative formulation is necessary.

Two distinct methods have been proposed. The first method proposed by Ma et al.
(2019) avails the Perron–Frobenius theorem to compute the eigenvalues from the transition
probability matrix P . The theorem states that an irreducible, semidefinite matrix has a
unique positive real-valued eigenvalue ρ = λmax with an associated eigenvector ψ ∈ Rn

called the Perron vector. The transition matrix P is irreducible and semidefinite, we can
apply this theorem such that ψi > 0 where 0 ≤ i < n− 1 and ψP = ρ(P )ψ. A diagonal
matrix Ψ = diagψnorm can then be constructed such that

L = I −D−1/2AD−1/2 (2.64)

Substitute P for A:

L = I −D−1/2PD−1/2 (2.65)

Substitute Ψ for D:

L = I −Ψ−1/2PΨ−1/2. (2.66)

As we stated in Section 2.5.2.8, P is not guaranteed to be symmetric for directed graphs.
The normalised symmetric Laplacian of the directed graph is therefore

Lsym = I − 1

2

(
Ψ

1/2PΨ−1/2 +Ψ−1/2P⊤Ψ
1/2
)

(2.67)

This may be rescaled using a variation of the renormalisation trick, whereby P is derived
instead from A = A + In, Dout = A1, Din = A⊤1 and P = DoutA, such that

Lsym =
1

2

(
Ψ

1/2PΨ−1/2 +Ψ−1/2P⊤Ψ
1/2
)

(2.68)

which is very similar to L = (L + L⊤)/2 for undirected graphs.
SinceLsym is symmetric, with it we can approximate the Fourier basis using Chebyshev

polynomials and obtain a function similar to that of Eq. 2.63.
A refinement of this approach, proposed by Li et al. (2020a) and called the fast directed

graph convolutional network, uses an approximation of Ψ, since an evaluation of the
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Perron vector has polynomial time complexity. By fixing the Perron vector ψ such that
ψi = (1/n)n 3 for all 0 ≤ i < n−1, a decomposition-free convolutional layer may be written

f ∗ gθ ≈
θ

2

((
1√
n
In

)
P
(√
nIn

)
+
(√
nIn

)
P⊤

(
1√
n
In

))
f (2.69)

=
θ

2
P + P⊤f (2.70)

A problem arises in weakly-connected directed graphs whereby a vertex may not have
any out-neighbours. As a consequence there is a risk that a row of P might sum to
zero, which does not conform to the definition of a probability matrix. For this reason
a self-loop is added to A, which in effect yields the same set of renormalisations as
earlier for A and Dout, such that

f ∗ gθ ≈
θ

2
P + P⊤f (2.71)

=
θ

2
D−1

out(A+ In) + (A+ In)
⊤D−1

outf (2.72)

=
θ

2
D

−1/2
out AD

−1/2
out +D

−1/2
out A

⊤D
−1/2
out f (2.73)

=
θ

2
D

−1/2
out

(
A+A⊤

)
D

−1/2
out f. (2.74)

In a convolutional layer this approximation of f ∗ gθ is passed through an activation layer.

2.5.4.2 Spatial Graph Convolution

Definitions of spatial graph convolution are devised solely on the space of the graph. The
definitions are in general easier to understand. It is also easier to translate domain-specific
goals into spatial definitions of graph convolution. The frameworks we discussed at the
beginning of this section are phrased largely in terms of physical convolution. In this
section we discuss particular techniques in the literature.

The definition of local structure is most simply each vertex x’s immediate neighbours
Γ(x), the one-step neighbours Theoretically one could include neighbours any number of
steps away from the focal vertex x, much like one sets the size of a convolutional kernel to
be some odd width and height larger than 1. Vertices that are more distantly are however
usually captured by stacking multiple layers. The graph is irregular, however, and the
sparsity of the graph can affect the computational expense of convolutions depending

3In the original paper the authors state that the vector is fixed at (1/n, ..., 1/n)n. We assume that the n is
either supposed to be the symbol for transposition ⊤ or is a statement of the vector length n. Later calculations
would not make sense if it meant a power.

65



2. Background

on the application. Sometimes it is appropriate, according to the domain’s requirements,
to subsample vertices for convolution. Subsampling vertices however becomes difficult
when there is a highly variable vertex degree in the graph. Instead a cap might be
placed on the number of vertices in a neighbourhood. Or again one might choose some
heuristic by which to prune edges. Graphs offer freedom and a great deal of choice,
for all the burden of choice it also causes.

The bigger question is what function to apply to the signals once they have been
aggregated at each vertex. (In the context of the earlier approaches, this is the transition
function.) It is in this respect that the approaches we discuss below will differ most. There
are two classes of function: isotropic and anisotropic. Isotropic functions assume that
the signals of neighbours contribute equally—or statically, in the case where a weight
matrix determines the contribution but does not change throughout training. Anisotropic
functions allow the contributions to vary throughout training. The weights applied to
the neighbours need not be independent of one another, however. The weights of an
anisotropic kernel are either explicit, where they are adjusted directly with backpropgation,
or implicit, where some secondary process latent in the weight is determining its value.
Isotropic functions are quicker to train and take inferences from and generally have fewer
parameters, but their modelling capacity is lower.

There is an additional problem before we continue with our discussion of approaches.
A pressing issue is, if one is to use an isotropic approach, how one should associate
neighbours’ signals with a parameter. In images it is simple because a kernel is applied
to regularly sized grids of pixels and there is always a correspondence in the sizes.
With graphs, however, (1) the degree of vertices are not guaranteed to be equal, and (2)
the vertices do not have a natural ordering (unless specified in the domain). There is
therefore (1) no way of defining a fixed vector of parameters that works at every focal
vertex and (2) there is no generic way to create, say, a dictionary of weights mapped onto
individual vertices that is invariant up to isomorphism. There are two corresponding
exceptions: (1) the graph is regular, in which case vertex degree is constant across the
graph, and (2) the graph is positional, in which case there is a cardinal order on the
vertices (see Section 2.5.2.8). Some interesting ways around this have been developed,
which we also discuss in this section.

Molecular fingerprints using graphs. Duvenaud et al. (2015) proposed a GCNN to
learn molecular fingerprints, a vector that embeds a whole graph. This recalls the work of
Sperduti and Starita (1997), except here the graph embedding is learned end-to-end in
the neural network. Duvenaud et al.’s model has k successive convolutional layers. Each
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layer aggregates and sums each atom/vertex’s signals together with its neighbours’ and
multiplies the result with a matrix of weights indexed by the focal vertex’s degree:

hl,x = σ

hl−1,x +
∑

y∈Γ(x)

hl−1,y

Θl−1,d(x)

 , (2.75)

where Θl−1,d(x) ∈ Rc×d. The output of each layer is then projected by another weight
matrix into the vector-space of the molecular fingerprint, to which softmax is applied
to sparsify the embedding.

Since the model is learning on organic compounds, the maximum valency is five;
correspondingly there are five sets of weights per layer Θl,i for 0 ≤ l < k − 1, 1 ≤ i ≤ 5.
The method would scale poorly to domains where there is a highly variable vertex degree,
however, the parameters growing by O(k log(k)) where k = ∆(G). Since the local signals
are summed before the weight matrix is applied, the kernel is isotropic. Moreover, the
summation is commutative, which renders the model invariant to the order of vertex
neighbours. The approach does not appear to make an allowance for directed graphs either.

PATCHY-SAN. PATCHY-SAN (Niepert, Ahmed, and Kutzkov, 2016) consists of three
stages: selection, aggregation and normalisation. The selection stage produces a subset
of k vertices that will be the focal vertices during the aggregation process. The subset
is selected using a ranking based on a canonical ordering generated by the Weisfeiler–
Lehman test described in Section 2.5.3. After the vertices have been ordered, every pth
vertex is selected until k vertices have been selected.

In aggregation, the second stage, the signals around the k selected vertices are
aggregated. The neighbouring signals at increasing steps from the focal vertices are
collected into a set B until the point where a threshold q is reached or breached, i.e.,
|B| ≥ q or there are no more vertices to select. For each selected vertex there a subgraph
is therefore constructed of its neighbourhood set B.

The final stage, normalisation, takes each subgraph and normalises it using some
labelling procedure, which also produces a ranking of the vertices. The top k vertices in
the subgraph B are selected for the convolution. Two subgraphs with similar structures
will therefore have a similar ranking over their vertices. A learned one-dimensional
parameter vector is applied over the ordered signals and summed. Thus the vertex signals
are weighted according to their structural role.

The labelling process is expensive as it needs to be applied to input graph and
every subgraph. Canonicalisation with the Weisfeiler–Lehman test however ensures
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that PATCHY-SAN is not sensitive to the ordering of vertices, as all inputted graphs
are represented as their canonical graphs. The sequence of selected vertices of two
isomorphic graphs would be identical.

PATCHY-SAN copes with the varying vertex degrees by subsampling neighbourshoods
and padding receptive fields to a fixed size k. With vertices of small degree, however, the
algorithm would necessitate the sampling of distant, uninformative features and make the
signals in the subgraph noisy. In the worst case it includes counter-informative signals,
harming learning. It is not clear whether a high variation in vertex degree would lead
to comparable vertex rankings across the whole graph. The advantage of the imposed
positionality is that the algorithm is learning an anisotropic kernel over the signals. There
seems to be no allowance for directed graphs, though.

MoNet. MoNet (Monti, Bronstein, and Bresson, 2017) is a general framework for learning
on irregular geometries. The convolutional kernel is a mixture of k normal distributions
with learned means and covariances in a so-called pseudo-coordinate space. The model
parameters are thus learned indirectly. Altering certain aspects of the model allows
for a definition on the graph.

An initial set of coordinates for each vertex and its neighbours is computed, for
which the vertex degree is used:

u(x, y) =

(
1√
d(x)

,
1√
d(y)

)⊤

, (2.76)

where x and y are two vertices in the graph and x is the focal vertex. One could substitute
whatever other structural measures here instead of vertex degree.

The pseudo-coordinates are transformed in a dense layer with a tanh activation function

ũ(x, y) = tanh(Wu(x, y) + b) (2.77)

with learned weights W ∈ Rr×2 and biases b ∈ Rr. The dimensionality of the pseudo-
coordinates r is a hyperparameter; the authors chose r ∈ {2, 3}, depending on the dataset.

The transformed pseudo-coordinates are used in defining the k weight functions
wi : Rr → R by taking the distance of the pseudo-coordinates from the centre of each
Gaussian distribution i parametrised by a set of means µi ∈ Rr and covariances Σr×r,
constrained to be orthogonal:

wi(ũ(x, y)) = exp

(
−1

2
(ũ(x, y)− µi)

⊤Σ−1
i (ũ(x, y)− µi)

)
. (2.78)
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The vertex signals neighbouring vertex x are then scaled by their respective weights:

Di(x)hl =
∑

y∈Γ(x)

wi(ũ(x, y)hl−1,y). (2.79)

Note that an implicit assumption of this approach is that x ∈ Γ(x). The contribution of
each i Gaussian kernel to the new vertex representation is weighted with an additional
parameters θi ∈ R:

hl(x) =
k−1∑
i=0

θiDi(x)hl−1. (2.80)

Each MoNet layer has k kernels, yielding altogether k(r2 + r + 1) parameters, and there
are an additional k parameters to combine the output of each distribution.

MoNet manages varying vertex degrees by using an auxiliary mechanism to compute
the vertex weights. Indirectly, all pairs of vertices with the same ordered pair of degrees
will compute the same initial pseudo-coordinates in Eq. 2.76 and consequently the same
weight is applied to the neighbouring signals following the transformation in the dense
layer in Eq. 2.77. Yet it avoids depending on an ordering of the vertices because it
does not need to index weights. Although the convolution is limited to the first-order
neighbourhood, multiple layers may be composed to obtain wider receptive fields. It is
not clear how this approach could be adapted to directed graphs, however.

GraphSAGE. GraphSAGE (Hamilton, Ying, and Leskovec, 2017b) is a conceptually
simpler GCNN. Unlike PATCHY-SAN, where the graph is subsampled before and during
convolution, GraphSAGE takes all vertices in the graph as focal vertices. Each layer consists
of two principal procedures: sampling and aggregation. Because GraphSAGE is designed
to work on very large graphs with high vertex degrees, in the sampling stage, a subset
of each vertex’s neighbours is uniformly sampled. A different sampling is made at each
layer and the number of samples is a hyperparameter.

The aggregation stage follows on the back of the sampling stage. The features of
the sampled vertices are aggregated,

hl,Γ(x) = aggregatel ({hl−1,y∀y ∈ Γ(x)}) ∈ Rc, (2.81)

and concatenated with the focal vertex’s features and passed through a dense layer:

hl,x = σ
(
(hl−1,x ∥ hl,Γ(x))W l

)
, (2.82)

69



2. Background

where W l ∈ R2c×d is a matrix of learned weights for the lth layer and σ is a non-linear
activation function.

There are three options for the aggregator function aggregatorl proposed by the authors,
although conceivably any other symmetric function could be used. The LSTM aggregator
is one example. The LSTM unit makes an implicit assumption of order, though, so the
inputs have to be shuffled to enforce the property of symmetry. The pooling aggregator
simply takes the maximum value for each channel in the aggregation.

For the mean aggregator Eqs. 2.81 and 2.82 need to be short-circuited. Instead, assuming
the neighbourhood includes the focal vertex, the output of the layer is

hl,x = σ

 1

|Γ(x)|
∑

y∈Γ(x)

hl−1,y

W l

 , (2.83)

where W l ∈ Rc×d is the weight matrix for the lth layer.
By fixing the number of vertices sampled at each layer, GraphSAGE is able to constrain

the computational complexity of the graph, while the different sampling at each layer
means that GraphSAGE can capture overlapping, distinct structures at each vertex. The
sampling also has an additional mechanism whereby vertices with degrees lower than the
sample size are oversampled, which ensures that unhelpful information is not included
as in PATCHY-SAN. With the aggregator function it uses pooling, for example, the
oversampling is obscured by the discarding of non-maximal values, and the average in
the mean aggregator flattens out the contributions of oversampled vertices.

The weight applied to the vertices is however isotropic, since the vertex features are
summed without distinction. This reduces the modelling capacity, which might not be
an issue in the tasks with the large networks that GraphSAGE was evaluated. Ultimately,
the role that vertices play structurally within a layer is lost and only recovered partially
in the stacking of layers with subsamples of vertices. There is however no clear way of
adapting this approach to directed graphs.

The Graph Convolutional Network. We have already described the Graph Convolutional
Network (GCN) by Kipf and Welling (2017) in Section 2.5.4.1. Yet it is worth mentioning
among the various definitions of spatial convolutions for its superficial similarity to spatial
convolution. Indeed, the definition of the GCN reveals how spectral definitions can be
constrained to become identical with spatial definitions. The Fourier basis in Eq. 2.63
D̃−1/2ÃD̃−1/2, obtained from the first-order Chebyshev approximation of the Laplacian,
when multiplied with the graph signals, is essentially summing the signals of the focal
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vertex and its neighbours and scaling the result by a learned parameter θ. As before,
there is no clear way of adapting this approach to directed graphs unless we use some
alternative definition of the Laplacian matrix. Many spatial techniques take the GCN
as a basis for defining spatial convolution.

The Directed Graph Convolutional Network. The Directed Graph Convolutional Net-
work (DGCN) proposed by Tong et al. (2020) defines a spatial convolution that incorporates
first- and second-order neighbourhoods in the aggregation. Each convolutional layer of
the model consists of three adjacency matrices: a first-order convolution, a second-order
convolution of in-neighbours, and a second-order convolution of out-nighbours. Each
convolution is implemented using the GCN definition of spatial convolution. Effectively
the first-order convolution describes the undirected interactions of each vertex with its
neighbours. The second-order contributions describe the contribution of the focal vertex’s
neighbours as a fraction that the edge weighs of the neighbours’ own adjacent vertices.

The first-order adjacency matrix A is the symmetricised adjacency matrix of the
directed graph. It is not explicitly described in the paper, but a symmetric adjacency
matrix of a directed (therefore asymmetric) adjacency matrix is a simple addition of the
adjacency matrix with the transpose of itself.

The second-order matrices are descriptions of the relative contributions of neighbours
to focal vertices. Consider the case with the out-neighbours. Suppose we have a vertex
x ∈ G, which has an out-neighbour y ∈ Γout(x). SupposeK = {z | z ∈ G, y ∈ Γout(z)∧x ∈
Γout(x)}, the set of all vertices that also have y as an out-neighbour. Suppose further
that Axy is the edge weight between vertices x and y. The second-order matrix for the
out-neighbours Aout is calculated with the following formula:

Aout,xy =
∑
z∈K

AxyAzy∑
v∈K Avy

. (2.84)

The second-order in-neighbour adjacency matrix Ain is calculated similarly.
A useful property of this approach is that the three matricesA,Ain,Aout are symmetric,

which makes the choice of definition of convolution for designing GCNN flexible, all
the while maintaining the difference between the in- and out-neighbours. The matrices
Ain,Aout are moreover computed using a symmetric measure, so really only (n2 + n)/2

entries need to be computed for the upper triangles of both matrices.

The Graph Attention Network. The graph attention network (GAT) (Veličković et
al., 2018) is an interesting example of a spatial technique. At the core is an attention
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mechanism that maps every pair of adjacent vertices’ signals to a coefficient. Consider
the case of two adjacent vertices x, y ∈ G with vertex features hl−1,x,hl−1,y at layer l − 1.
The vertex features are first projected through a weight matrix W ∈ Rd′×c such that
h′
l−1,x =Whl−1,x ∈ Rd′ and h′

l−1,y =Whl−1,y ∈ Rd. The projected representations are
passed into the attention mechanism to yield a coefficient Cl,xy like so:

Cl,xy = a(h′
l−1,x,h

′
l−1,y). (2.85)

Although it could be defined otherwise, the attention mechanism is in this case a single
dense layer with a weight vector a ∈ R2d′ applied to the concatenated vertex features:

Cl,xy = LeakyReLU(a[(hl−1,x ∥ hl−1,y)]) (2.86)

where the slope in the leaky ReLU layer is set to 0.2.
The attention coefficients are then normalised by a softmax function over their

neighbourhoods:

αl,xy = softmaxΓ(x)(Cl,xy) =
exp(Cl,xy)∑

z∈Γ(x) exp(Cl,cz)
, (2.87)

where αl,xy is the normalised attention coefficient for the vertex pair x, y. In fact the
attention mechanism here is centred on the focal vertex x. Consequently αl,xy ̸= αl,yx.

With the attention coefficients calculated, we can finally carry out the convolution
by applying the weights:

hl,x = σ

 ∑
y∈Γ(x)

αl,xyW lhl−1,y

 (2.88)

whereW l ∈ Rd×d′ is the weight matrix for layer l, σ is some non-linear activation function.
Again, the focal vertex is being implicitly included in the neighbourhood of x.

The GCN also optionally includes k attention heads in each layer. Till now the method
we have described has one attention head, but we can combine the outputs of several
parallel attention mechanisms by duplicating the whole attention mechanism, yielding
αl,i,xy for 0 ≤ i < k− 1. The output of the attention mechanisms can then be concatenated
along the channels or alternatively averaged, such that

hl,x = σ

 k∑
i=0

∑
y∈Γ(x)

αl,i,xyW lhl−1,y

 ∈ Rd . (2.89)
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Several parallel attention heads can learn different structures like several convolutional
kernels on an image. This is called a multi-head attention mechanism. There composition
hence yields a higher-capacity model.

The attention mechanism, especially with multiple heads, therefore allows the model
to learn anisotropic functions over the vertex neighbourhoods. Moreover, as before,
composing several multi-head attention mechanisms produces a broader receptive field.

The Graph Isomorphism Network. Finding that the GCN and GraphSAGE are incapable
of discriminating certain graph structures, the graph isomorphic network (GIN) (Xu et al.,
2019b) was proposed as a simple yet elegant spatial convolution approach. Each layer
l of the GIN is its own feed-forward neural network or MLP, defined

hl,x = MLPl

(1 + ϵl) · hl−1,x +
∑

y∈Γ(x)

hl−1,y

 , (2.90)

where MLP is a multi-layer perceptron and ϵl ∈ R is a learned parameter of each layer or
a constant across all layers. Experimentally it was found that the model attains a good
performance when ϵl = 0 for all l. Unless the vertex features are one-hot vectors, the
features are first projected into a new space through another MLP before being passed
to the first layer of the GIN.

The GIN is as powerful as the Weisfeiler–Lehman test for isormorphism. The MLP
of each layer embeds the vertex representations in the previous layer into a lower-
dimensional space where similar structures can be embedded closely. This embedding
allows the network to discriminate different structures that the authors demonstrate
previous techniques could not discriminate.

Like GraphSAGE, GIN uses an isotropic kernel, although the MLP may of course
approximate any function per universal approximation theorem. Once again, it is not
clear how a directed graph could work in this model.

Directional message-passing. We now come to some methods that do work on directed
graphs. The DimeNet proposed by Gasteiger, Groß, and Günnemann (2020) factorises the
contributions of neighbours to the focal vertex’s new representation into incoming and
outgoing messages. It is specifically intended to be applied to molecules, so the terminology
used here will sometimes reflect that. The vertices of the molecular graph represent atoms
and edges represent chemical bonds. The representation of a vertex x at layer l is denoted
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hl,x and is computed by summing the messages passed from its adjacent vertices, such that

hl,x =
∑

y∈Γ(x)

ml,yx (2.91)

where ml,yx is a message from vertex y to vertex x and is defined in terms of its ad-
jacent messages:

ml,yx = fupdate

ml−1,yx,
∑

z∈Γ(y)\{x}

fint (ml−1,zy, e (y, x) , a (zy, yx))

 (2.92)

where e(y, x) is the radial basis function of the atomic distance of the atoms represented by
y and x and a(zy, yx) is the bonding angle of the bonds between the atoms represented by
vertices z and y on the one hand and y and z on the other. The authors note that the messages
effectively act as edge embeddings as used in the Weisfeiler–Lehman test, claiming in turn
that DimeNet can provably distinguish molecules that a regular GCNN cannot.

The model is therefore able to model directed graphs, but it is not able to model the
in-neighbours and out-neighbours as distinctive flows.

Directed diffusion. Directed diffusion on graphs was originally proposed Li et al. (2018a)
as a way of modelling flows of traffic in a network. It is an extension of the k-step diffusion
process on a graph. It is an interesting formulation that measures the contributions of in-
and out-neighbours of a focal vertex separately over several diffusion steps. Convolution
is defined as a summation of k diffusion steps over the input:

hl ∗ gθ,l =
k−1∑
i=0

(
θl,k,1(D

−1
outW )i + θl,k,2(D

−1
in W

⊤)i
)
hl−1, (2.93)

whereW is the graph’s weight matrix. The result of the diffusion is then passed through
an activation function.

The parameters of the network factors the flows of information to and from a given
vertex into two learning problems, but the kernels are effectively anisotropic over each
direction and each diffusion step. The directed diffusion therefore does not share the
flexibility of the kernel that, say, the GAT has.

The diffusion convolution is able to adjust the coefficients of a directed process across
the graph in a receptive field, the breadth of which is proportionate to the value of k
chosen as a hyperparameter. The risk of stacking layers with a broad receptive field is
graph smoothing, which can occur over multiple successive graph layers unless remedial

74



2.5. Graph Deep Learning

means are taken to mitigate it. We briefly discuss over-smoothing in the next section
on graph-related problems.

2.5.5 Over-smoothing in Deep Graph Neural Networks

A full treatment of learning issues on graphs is beyond the scope of this work, for which
see Georgousis, Kenning, and Xie (2021). Here we discuss one problem that plagues
GCNNs: graph smoothing.

It has been observed empirically that networks with a depth greater than two convolu-
tional layers suffer degradation in performance on vertex classification tasks (Kipf and
Welling, 2017; Wu et al., 2019a). The term over-smoothing was first coined by Li et al. (2019a),
who found that graph convolution is a kind of Laplacian smoothing. Over several layers
the vertex signals become more alike to one another and eventually the only differentiating
information between vertices lies in the structure. Since the vertex representations have
become so alike, deep GCNNs suffer from poor performance on vertex classification
tasks. The degradation of performance appears to be related to the spectral properties
of a graph, too, namely the smallest positive eigenvalue of the normalised Laplacian
matrix. The problem is worsened as the order and density of the graph grows (Oono and
Suzuki, 2020). These results were confirmed by Cai and Wang (2020), who additionally
found that the ReLU and leaky ReLU activation functions reduce expressive power and
thereby contribute to over-smoothing. Another work found that tanh retains the linear
independence of features (Luan et al., 2019). Another paper suggests that the coupling
of transformation and propagation layers worsens the problem, showing that using k
successive MLP layers followed by a k aggregations a model’s performance degrades in
terms of test accuracy and a measure of graph smoothness.

Whatever the case, there are three common solutions for mitigating over-smoothing:
residual connections, weight or feature normalisation and edge sampling (Georgousis,
Kenning, and Xie, 2021). Residual connections mitigate over-smoothing and serve to
delay its appearance in a model, allowing deeper models (Li et al., 2019a; Chen et al.,
2020b). Finally, adding a weighted residual connection imposes a degree of weight
normalisation (Oono and Suzuki, 2020).

The purpose of normalisation of weights and features is to regularise the model, as
with layer normalisation (Ba, Kiros, and Hinton, 2016) and batch normalisation (Ioffe and
Szegedy, 2015). One approach involves normalising intermediate vertex representations
by scaling them to the same L2 norm (Zhao and Akoglu, 2020). Another approach is to
normalise groups of similar vertices independently by learning a clustering assignment
matrix (Zhou et al., 2020).
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Edge sampling on the other hand sparsifies the graph and slows down the onset
of over-smoothing (Oono and Suzuki, 2020). The random sampling of edges in each
training step has been experimentally demonstrated to reduce over-smoothing and even
improve classification accuracy (Rong et al., 2020a).

We conjecture that the radius of the graph is the upper bound for a graph convolution
before graph smoothing occurs, which is somewhat related to graph density.

2.5.6 Learning on Graph Edges

We have already seen an early GNN (Di Massa et al., 2006) that included edge attributes in
the transition function. An example among recent works is the GN framework (Hamilton,
Ying, and Leskovec, 2017a), which includes edge attributes in the updates of vertex
attributes. Most prominent modern architectures forgo edge attributes altogether, however.
A weaker example of edge updates is also found in the DimeNet (Gasteiger, Groß,
and Günnemann, 2020), which in essence computes a second- and third-order attribute
corresponding to the atom distance and bonding angle of two atoms respectively. We
consider it a weak example because such scalar values serve auxiliary purposes in the
course of learning vertex representations and, as scalar real-valued weights, insofar as
they are positive, can be encoded in a graph’s weight matrix W .

By and large, however, edge attributes occupy a peripheral, auxiliary role to the
vertices, contextualising or enriching details on vertex relations. In fact, edge attributes can
express all manners of relations not wholly independent but expressive beyond the entities
represented by graph vertices. There are sundry ways of incorporating edge attributes
in the aggregation and transition functions of a convolutional layer. In the terminology
of the message-passing network, edge attributes can alter the passage of a message, alter
the message itself, or form its own message-passing network.

The ways in which edge attributes may be incorporated into definitions of convolution
fall into three kinds: (1) edge attributes for modifying, selecting or indexing message-
passing functions; (2) edge attributes that are integrated into a message between two
vertices; and (3) edge attributes as a representation that is learned. We discuss each
in turn in the following sections.

2.5.6.1 Edge Attributes as Function Selectors

Edge attributes as edge types have been used to characterise the kind of interaction between
two vertices. Discrete edge types can be used to describe bonds in a molecule, for
example, where the bond-type is encoded as a one-hot vector as is very common in
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molecular graphs (Kearnes et al., 2016; Danel et al., 2020; Maziarka et al., 2020; Ma et al.,
2022). The Know-Evolve network (Trivedi, Yang, and Zha, 2020) and edge-conditioned
convolution (Simonovsky and Komodakis, 2017) are two examples where edge types
are used to select functions.

2.5.6.2 Edge Attributes as Auxiliary Features

Incorporating edge attributes as auxiliary information is common in molecular applications
(Gasteiger, Groß, and Günnemann, 2020; Kearnes et al., 2016; Danel et al., 2020; Maziarka
et al., 2020; Ma et al., 2022). Vertex features describe properties of atoms and edge features
describe the bonding between pairs of atoms. The two sets of features are combined in
graph convolution. Modern GCNNs usually lack a mechanism to include edges, as we
saw in Sections 2.5.4.1 and 2.5.4.2, and as a consequence the GCNNs applied to molecules
make alterations on the usual definitions to include them. As a consequence, molecular
models are the source of domain-inspired innovations in GCNN architectures.

On the one hand, edge attributes can directly inform convolution, as in the material
graph network (MEGNet). In each layer of the MEGNet, edge features are updated by
a function over the edge features and source and destination vertices’ features and a set
of global features coming from the previous layer. The new edge features are then used
to update the vertex representations in another update.

On the other hand, edge attributes can form their own networks whose representations
are intermingled with the vertex representations produced in their own network. For
instance, the molecular graph convolution (MGC) (Kearnes et al., 2016) incorporates both
vertex and edge features into its network. The MGC consists of successive Weave modules
that separately convolve vertex and edge features before pleating the features together in
four different configurations of vertices and edges. Two transition or message-passing
functions are applied separately over each vertex and edge. Combining the features
allows the model to learn from complementary information that would otherwise be
inaccessible to a conventional modern GCNN.

We have already described the DimeNet (Gasteiger, Groß, and Günnemann, 2020)
in Section 2.5.4.2, which includes second- and third-order structural information in
the message passing process. The model is unique in that, according to the authors,
previous approaches do not include information on torsion and the angles of atomic
bonds; these potential energies are usually otherwise inferred from the higher-order
interactions learned in multiple graph layers.
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2.5.6.3 Edge Attributes as a Learning Goal

Whereas the MGC described above (Kearnes et al., 2016) consists of two parallel and
interweaved networks, the line graph neural network (Chen, Bruna, and Li, 2019) learns
edge signals on the vertices of a linegraph (Section 2.5.2.5). The linegraph permits the
definition of a non-backtracking operator (Krzakala et al., 2013). Unfortunately the use of
a linegraph incurs a high memory complexity of O(2m) linegraph vertices with number
of edges that grows considerably depending on the density of the graph with an upper
bound of O((2m(2m − 1))/2) for undirected linegraphs. Linegraphs do not scale well
to large graphs. Nonetheless, several useful extensions of the linegraph can be inferred.
We have already noted in Section 2.5.2.5 that the linegraph represents the second-order
structure of a graph. In this vein of thought, the authors point out that a hierarchy of
graphs may be constructed from recursive definitions of the linegraph, e.g., the linegraph
of a graph’s linegraph describes the third-order structure. The question is whether this
would lead to denser and denser graphs as one advances up the hierarchy and therefore
eventually become computationally unfeasible. Linegraph-like structures have also been
deployed in the SeqGNN (Xie et al., 2019). The edge features are structured as a linkage
attribute graph, definitionally very similar to a directed linegraph.

Similar to the structure of the MGC, Zhang et al. (2019) designed a graph edge
convolutional neural network (GECNN) for the convolution of edge attributes. They
design a hybrid network that combines the output of two models, one for vertices and
one for edges. The output of the two is combined in two different ways: in the first
model, the sequence-level hybrid model, the output is simply concatenated and passed
through a dense layer; in the other, the body-part-level hybrid model (BPLHM), it is passed
through a shared convolutional layer, a pooling layer and finally a dense layer. They
compared these two models against a single-stream GECNN. The results show that all
three models outperformed the baseline. The BPLHM perfomed the best of the three
and the GECNN performed the worst. It shows that separate edge models, which do
not simply incorporate edge attributes into the vertex convolution, are able to obtain
significant results on some domains.

2.5.6.4 Lacunae

Notably none of the above techniques considers a situation where the signals exist solely
on the edge structure, i.e., the relations of vertices. As a consequence, there is an absense
of methods learning vertex-focused tasks where a task must be completed on edges from
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the edge signals, despite the fact that there is plenty of work on edge-focussed tasks
working solely on vertex features, e.g. edge prediction.

Edge features have already been incorporated into GCNNs for the prediction of
molecular properties and traffic conditions. Such models might feasibly be extended
to, say, physical systems, where there are forces acting at very high degrees, where a
higher-order linegraph might represent the interactions well. A fusion of information
at different levels might accomplish tasks in such cases rather well, but this requires
further investigation.

2.5.7 The Estimation of Graph Structure

In this section we focus on the estimation of graph structure, e.g., the estimation of the
presence of interactions not observed in a fixed graph and how one can estimate their
presence from raw information.

2.5.7.1 General Theoretical Considerations

Before we continue, it is worth briefly considering what a graph is supposed to be
representing. In a given irregular domain one defines a set of discrete points from which
one samples information. The discrete points are related to one another in some way
defined by the domain, determined by the domain, whether it be physical or geometric
distance or some measure of likeness or whatever. These discrete points could also be
called entities, for in some domains the discrete points represent indivisible sources of
information, such as a sensor. The relationships between entities describe their interactions
within the context of a system. Entities are thus represented by vertices and the edges
represent their interactions that are significant by some measure. A graph built of these
vertices and edges thus represents our knowledge of the domain.

A gap in our understanding, our nescience or ignorance, is represented by missing
vertices or edges. One may consider that nescience has two grades in a domain: either (1)
a lack of, little or no knowledge of the relations, but full knowledge of the entities, and
therefore an incomplete representation the edges, which we term relational nescience; or
(2) a lack of, little or no knowledge of both the relations and entities, and therefore an
incomplete structural representation of both vertices and edges, which we term formal
nescience. There are several terms used in the literature to describe the process of estimating
the structure from raw information: e.g., neural relational inference, graph estimation,
graph generation and structure learning. Formal nescience is beyond the scope of this
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discussion (see Section VI.B of Georgousis, Kenning, and Xie, 2021). For relational
nescience, we prefer the term graph estimation.

The crucial assumption of graph estimation is that the structure of a domain can be
recovered from raw information. For temporal problems in physical system this means
learning the fixed rules governing the interaction of physical objects over time (Kipf et al.,
2018; Santoro et al., 2017; Watters et al., 2017; Steenkiste et al., 2018; Alet et al., 2019). One
might for instance discover the discriminative structure inhered in electroencephalography
data (Song et al., 2019; Li et al., 2019b), which would be helpful in a domain where several
possible graph connectivities exist to represent brain signals, each capturing a different
neurological perspective (Rui, Nejati, and Cheung, 2016). Graph estimation strategies have
also been applied to text and object prediction (Henaff, Bruna, and LeCun, 2015), traffic
prediction (Wu et al., 2019c), interactions in multi-agent systems (Sukhbaatar, Szlam, and
Fergus, 2016), reasoning problems (Santoro et al., 2017; Johnson, 2017), the generation
of new molecules (Simonovsky and Komodakis, 2017; Li et al., 2018b; You et al., 2018;
Rigoni, Navarin, and Sperduti, 2020; Jin, Barzilay, and Jaakkola., 2018), the mapping of
airwaves in the lungs (Selvan et al., 2020), human-action recognition (Kipf et al., 2018) and
citation networks (Franceschi et al., 2019), although to the best of our knowledge none
has been applied to the estimation of molecular properties.

2.5.7.2 Obstacles to Graph Estimation

There are several obstacles to graph estimation that need to be considered in the design
of a graph estimation strategy. Firstly, the computational cost of estimating a graph is
a serious impediment. Combinatorially the search-space of all possible n-graphs is 2n2 .
This fact limits some approaches to the estimation of graphs with only tens of vertices.

Secondly, a graph is a discrete structure and therefore taken as a whole is non-
differentiable. Either the graph estimation therefore becomes a continuous relaxation
or it is represented as a probability distribution over the vertices and edges. That the
graph is discrete and therefore non-differentiable is not so much a serious impediment,
but it requires one to think of certain optimisations to sparsify its weights if a continuous
relaxation is used.

Thirdly, one must consider the type of graph one wants to create, directed or undirected
etc. Constraints on these properties must be incorporated in the graph estimation procedure
or the loss function or both. There may be domain-motivated structural constraints, such as
those placed on the chemical stability of molecular substructures that would render certain
generated graphs invalid (You et al., 2018; Rigoni, Navarin, and Sperduti, 2020). On the
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one hand, lacing constraints offers its own advantages in limiting the 2n
2 search-space; on

the other hand, constraints might burden an algorithm with further checks to its capacity.
Fourthly and finally, one must consider what the original graph ought to be. It is

an open question how the choice of the initial graph affect graph estimation. There
are several elementary choices: (1) start with an empty or complete graph, making no
a priori assumption of graph structure, from which point edges are either added or
subtracted respectively; (2) start with a random graph, like starting with random weights
in a model; (3) start with a graph that represents domain knowledge, from which point
the graph is manipulated in whatever direction; (4) start with a statistical metric, such
as the correlation coefficient of every pair of vertex signals (Henaff, Bruna, and LeCun,
2015; Jang, Moon, and Lee, 2018).

2.5.7.3 Approaches to Graph Estimation

The two approaches to graph estimation that concern us in this thesis are graph estimation
via learning the entries of a weight matrix and via interaction functions. Two other
approaches to generating graphs are described in Georgousis, Kenning, and Xie (2021),
namely the sequential model-based generation of graphs and model-based generation of
whole graphs. We will mention one special case, however, of an evolutionary algorithm
for network fault localisation (Yang et al., 2022), where what is effectively a graph
topology is evolved by the addition of hidden units and connections. It represents a
radical departure from the other kinds of graph estimation, but it is closest aligned
with sequential graph generation.

Learning the entries of a weight matrix. With a continuous relaxation of the problem,
it is possible to learn the entries of the graph’s weight matrix end-to-end in the model
via backpropagation. Henaff, Bruna, and LeCun (2015) used the parameters of the first
layer of an MLP trained on a learning task with vertex-wise labelling to compute a weight
matrix. The distance between weights of each vertex pair constitute the entries of the
weight matrix. The advantage of using distance is its commutativity, which means the
weight matrix is consequently symmetric, allowing it to be used with most spectral
methods. Clearly, however, some non-commutative metric would need to be used for
computing a directed graph.

In contrast to Henaff, Bruna, and LeCun (2015), Song et al. (2019) and Wu et al.
(2019c) proposed a method where the the weight matrix’s entries are adjusted directly
by backpropagation. The model proposed by Song et al. (2019), like that proposed by
Henaff, Bruna, and LeCun (2015), can only learn undirected graphs, owing to the choice of
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convolutional technique. The model proposed by Wu et al. (2019c) incorporates existing
directed knowledge by factorising the graph weight matrix into a known component,
representing in- and out-flows, and an unknown component that is directly modelled. The
model also makes use of a definition of convolution that does not depend on symmetry
in the weight matrix. Yet another technique is present in the model proposed by Li et al.
(2019b), where the model also backpropagates over the weight matrix, but learns a separate
adjacency matrix at each layer. A graph is then constructed of an average of the edge
weights in each layer. The initial graph for this model is a complete graph.

Learning interaction functions. Rather than learn graph representations directly as
above, some approaches to graph approximation learn an interaction function. It has
the advantage that one need no predefined graph to model interactions. The Interaction
Network (IN) (Battaglia et al., 2016) consists of a set of functions—in their case MLP—which
jointly learn the interactions of objects in a physical system, notably as different kinds of
forces acting on the objects. The Relational Network (Santoro et al., 2017) simplifies the
model by modelling edges as a function of vertex attributes, modelled again using an MLP.
These approaches are however computationally intensive, since the functions are applied to
all n2 edges. The problem is doubly bad in the IN where there are two edge-wise functions.

The Communication Network (CommNet) (Sukhbaatar, Szlam, and Fergus, 2016)
models the interactions in a multi-agent system. The interactions between multiple agents
varies with time, so the model is designed to scale to accommodate an increase in the
number of agents. It is accomplished by two functions, one to model communication
and the other to map vertex attributes from one step to the next. The latter function
makes no distinction between the adjacent edges of a vertex. An extension of CommNet,
the Vertex Attention Interaction Network (Hoshen, 2017), circumvents the problem by
learning an attention vector for each vertex and an additional communication vector
on each vertex rather than each pair. The negative Euclidean distance of each vertex
pair’s attributes, passed through a softmax function, weights the communication vectors.
The attention mechanism has several advantages over IN and CommNet. Firstly it
reduces the computational expense by evaluating the MLP that models the communication
vector n times rather than n2 − n times. Secondly, unlike CommNet, the interactions are
explicitly modelled, taking the burden of modelling instead of a later MLP. The interactions
may potentially be better interpreted, too. Thirdly, the attention coefficients can model
the higher-order interactions of agents indirectly. Fourthly and finally it permits local
modelling of objects and consequently the model needs no predefined graph as an input.
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2.6 Applications of Graph Deep Learning

In this section we discuss applications of learning algorithms to three domains: datacentres,
traffic-flow and molecules. In each case the structure of the domain is realised easily as
a graph. Each has its attendant challenges of course, which we use in the course of this
work to evaluate some challenges of machine learning. Our summaries of each area are
general but motivate the methods proposed in later chapters.

2.6.1 Localising Link-Faults in Datacentres

In the first section we cover the motivation for machine learning approaches as applied to
networks. In the second section we review diagnostic approaches for networks, specifically
how they measure network problems.

2.6.1.1 Machine Learning on Networks

A host of machine learning techniques have been applied to all manner of networking
problems. Datacentres are one kind of network. The issues and challenges of datacentre
management, in particular diagnosing various issues in the datacentres (Gill, Jain, and
Nagappan, 2011), are general issues arising in any networks (Mello et al., 2016). Quick
and effective diagnosis of network problems is necessary to ensure stability in a network,
but the size and complexity of some systems means manual diagnosis is slow. Network
visualisation is one way of improving the manual diagnosis of network problems (Pelkonen
et al., 2015). To some extent the choice of architecture mitigates, but does not eliminate,
network issues. The FAT tree is a popular choice of architecture as it has in-built redundancy
in each level of the architecture, which is important for mitigating the deleterious effect
of faults on traffic-flow (Leiserson, 1985). An alternative is the Clos network (Clos,
1953). Alternatively a more efficient or refined routing algorithm can be used that routes
dynamically in response to traffic conditions (Gálvez and Ruiz, 2013). But again, networks
are so large that automation of certain, tedious diagnostic processes using machine learning
is an attractive propsect for network engineers. The DARPA dataset, for example, is one
dataset that was proposed as a basis specifically for the evaluation of intrusion-detection
algorithms (Lippmann et al., 2000). Indeed, machine learning has been otherwise used
to generate visualisations for diagnostic purposes (Chircu et al., 2019).

The challenge for conventional machine learning is that no one measure provides a
total description of network; however, a suite of complementary metrics is necessary to
diagnose network failures (Gill, Jain, and Nagappan, 2011). Moreover, a large number
of diagnostic tasks can be automated using machine learning, such as the prediction
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of traffic volume, traffic classification, congestion control and job scheduling among
others (Wang et al., 2018a). The term coined for a framework for machine learning
techniques applied to networking problems is anomography, a portmanteau of anomalous
and tomography (Zhang et al., 2005). It its simplest form, solving network problems is
most simply the solution to the linear equation

b = Ax (2.94)

where b is the vector of link measurements andA is the routing matrix; x is therefore the
unknown traffic elements as a vector, which a learning algorithm is to solve. The actual
interactions in the network are more complicated, of course. The paper (Zhang et al.,
2005) elucidates the various, more elaborate approaches to diagnosing traffic conditions,
including spatial anomographical techniques, such as PCA; temporal anomographical
techniques, such as auto-regressive integrated moving average, Fourier analysis, wavelet
analysis and temporal analysis; and finally inferential anomographical techniques, such
as the pseudoinverse solution (of the linear equation above), sparsity maximisation
and greedy algorithms.

Beyond these basic analytical techniques, MLP, RF and SVM has been applied to
localisation of link-faults (Srinivasan, Truong-Huu, and Gurusamy, 2019), where the RF
performed best. MLPs have also been applied to networks for diagnostic purposes. Rafique
et al. (2018) applied a three-layered MLP to fault detection. DeepTP (Feng et al., 2018) is
a sequence-to-sequence model of LSTM units applied to model cellular traffic. DeepTP
also uses an attention mechanism to weight the initial features supplied to the decoder
by the encoder. The hierarchical spatial-temporal features-based intrusion detection
system (Wang et al., 2018b), applied to intrusion detection, transforms temporal traffic
data into two-dimensional images, on which a CNN outputs a sequence of packet vectors
that are fed to an LSTM. Ji et al. (2018) proposed a CNN to step through the entries
of a log file for log prediction. Xiao et al. (2019) reshape a one-dimensional vector of
features from a network intrusion dataset into a matrix, to which they applied a CNN
to predict network intrusions. We believe that the CNN models use an inappropriate
mechanism to learn the network data. In the first case (Wang et al., 2018b) traffic data is
rendered as two-dimensional images. Convolution simply does not properly represent
the irregular structure of a network. The second case of stepping through log files (Ji
et al., 2018) is less clear in the assumption of structure, but the third case (Xiao et al.,
2019), where feature vectors are reshaped into matrices, places the features in arbitrary
and potentially uncorrelated relation to one another.
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A graph avoids the awkwardness that the CNN imposes on data domains by repre-
senting the structure of a network directly. A datacentre is represented as a graph when
machines are assigned vertices and edges are drawn between vertices whose machines are
directly connected (Section 3.3.1). Undirected graphs have been used to structure a GCNN
to model traffic loads on cellular networks (Fang et al., 2018) and anomaly detection in
a Internet-of-Things network (Protogerou et al., 2020). Directed graphs have been used
as early as 2013 to represent network topology (Gálvez and Ruiz, 2013). The diffusion
convolution network, which as we have seen separates flows into in- and out-flows in a
directed graph, has been applied to predicting traffic loads on links (Andreoletti et al.,
2019). A GCNN has also been applied to predicting cellular traffic (Wang et al., 2019), as
well as to modelling and optimising traffic flow (Li, Sun, and Hu, 2020).

A radically different technique uses a deep evolutionary neural network (Yang et al.,
2022) to evolve a neural network for fault localisation. This approach, as we briefly mention
in the introduction to Section 2.5.7.3, is effectively a graph estimation procedure.

2.6.2 Traffic Prediction

We now consider graph deep learning applied to road traffic prediction. We first consider
some graph-based techniques from the literature, followed by a discussion of approaches
to graph estimation as applied to traffic prediction.

2.6.2.1 Graph Deep Learning Applied to Traffic Prediction

Various temporal models have been employed to predict traffic conditions. The majority
uses recursive neural networks to model the temporal behaviour of traffic and a graph-
based convolution to model the spatial behaviour (Li et al., 2018a; Zhao et al., 2019; Li
et al., 2019c; Wang et al., 2020; Li et al., 2022; Deng et al., 2022). Alternatively, some authors
avoid techniques employing recurrent units, owing to their needing to be unrolled, by
using temporal convolution (Yu, Yin, and Zhu, 2018; Ta et al., 2022).

One successful implementation of transformers to traffic prediction is the Traffic
Transformer (Cai et al., 2020). The traffic transformer essentially replaces the word
embeddings in the original transformer (Vaswani et al., 2017) with graph embeddings
computed by a graph convolutional layer. A vector is thus computed from the graph signal
at each timestep in the source and target input sequences. The output of the decoder is
projected to the shape of the graph, yielding a graph-wide prediction of each timestep.
The traffic transformer has attained excellent results on the METR-LA and PeMS-Bay
datasets, far exceeding the performance of its baselines.
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2.6.2.2 Graph Estimation Applied to Traffic Prediction

The principle of using data to estimate graphs is derived from the assumption that the
influence of one point/sensor/road on another is to be discovered in the dynamics inhered
in the data (Yu, 2022). Hitherto the graph estimation techniques for traffic prediction
can be distinguished according to whether they estimate the adjacency matrix’s entries
directly or whether they use an attention mechanism to do it indirectly. The separation
of the two kinds is crude, but it is a scheme of learning that is often adopted in the
literature. The separation occurs in time-series data, too, but it is of a different nature,
specifically of stability, which is only a question of degree. Sometimes it is useful in
traffic prediction problems to make a distinction between static, stable structures of a
network and dynamic, transitory structures. Two graphs are consequently learned that
complement one another and therefore yield two different interpretations of traffic data.
A static graph is a stable structure, observed over long periods, relatively unchanged with
the passage of time. The dynamic graph is less stable and corresponds to ephemeral but
consequential changes in structure. In the context of a traffic network, we may conceive of
the static (more stable) structure as the roads and its junctions, while the dynamic (less
stable) structure will be disruptions, such as road closures. A road closure causes the
displacement of traffic, overwhelming nearby junctions or alternative routes through the
traffic grid, which the static graph, representing the more stable structures, would not
capture. Static structures are only stable relative to a frame of time, therefore a method
that is able to adapt to changes in long-term structure is desirable.

One example of direct estimation is found in Guo et al.’s work (2022), where they
propose learning a weight matrix directly and adding it to an existing graph, which together
supplement the adjacency matrices learned from the data for each timestep of the LSTM.

There are several examples of techniques using attention mechanisms. Tang et al. (2020)
used a simple global attention mechanism, such that the attention coefficients are used to
fill the entries of the weight matrix, which structures the spatial convolutions, implemented
using the GCN, of a spatio-temporal model. There is no restriction on the weight matrix
apart from being normalised. Likewise Guo et al. (2019) modified the values of the
Chebyshev polynomial terms of a predefined adjacency matrix with values of a global
attention mechanism, a spatial attention matrix, computed from the previous hour of traffic
data. The same spatial attention matrix is used to modify the spatial convolutions in the
three model streams for the three time-segments: hourly-, daily- and weekly-periodic data.

The graph estimator GALEN (Yu, 2022) uses a multi-layer GAT to reconstruct a target
sequence from a source sequence; it is not intended as a predictive model, but as an
adjunct graph estimator, the structure from which is fed to the traffic predictor. The GAT’s
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attention coefficients are scaled by the vertex-wise reconstruction percentage error at
each timestep of the edge’s source vertex. The average of the scaled coefficients over all
layers and timesteps yields an attention score, which is used to structure the predictor. To
make the modelling more efficient by reducing the initial adjacencies, the initial graph
to the model is a set of k mutually exclusive subgraphs, constructed by an k-medoid
algorithm from the geographic distance of the vertices.

The top s vertices for each vertex according to the attention score are selected to form
the new graph; thus the degree of each vertex is fixed and the complexity of prediction
restrained. The multi-layer GAT thus allows geographically distant vertices to be joined
according to their similarity as adjudged by the attention score.

Several methods use a fusion of two complementary sources of structural information
to estimate the graph. Kong et al. (2020) propose two complementary pipelines, one where
the model is structured using a static graph, and the other where the graph structure is
learned from the data; that is to say, the weight matrix is learned directly. The graph is
initialised on the latter branch as a matrix of ones. Likewise Ta et al. (2022) used two
parallel streams of to learn the graph, which they refer to as micro- and macro-level
learning. The macro-level graph learner supplements a predefined graph structure with
a identically sized matrix of directly learned parameters. Its purpose is to supplement
the existing graph structure with missing relations. On the contrary, the micro-level
graph learner computes edge weights from the dot-product of the pairs of learned vertex
representations. Its purpose is to capture temporary changes in graph structure. In
contrast to Kong et al. (2020), in Ta et al.’s work the two graphs are combined and used in
a temporal model to structure graph convolutions. Zhang et al. (2020) describe a more
elaborate model consisting of a global and a local module. Both modules partition the
modelling of static and dynamic structures. The static structure is the structure that is
consistent for all samples, whereas the dynamic structure varies depending on the input.
Chen et al. (2020a) takes a different tact by first separating the data into weekly, daily and
hourly streams. Each stream is then passed through a sequence of diffusion convolutions
that are augmentations on the original (Li et al., 2018a): an additional global weight matrix
is constructed by taking 3-step random walks over a given graph. The forward, backward
and global matrices are altered by a learned attention matrix.

A important delineation between the architectures in the literature regards the means
by which different graph structures are learned and the information supplied to the
graph estimation approaches. The first kind is such methods that fuse the outputs of
two distinct models, the result of which is regressed against a learning objective after
being passed through an interposing dense layer (Kong et al., 2020; Chen et al., 2020a).
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The second kind is the set of methods that start the pipeline with a graph estimation
module which computes a graph from the input data in some way and feeds the learned
graph to downstream graph convolutional layers (Ta et al., 2022). Methods of the third
kind estimates a new graph on the input to each layer of the model (Zhang et al., 2020).
Nonetheless the aforementioned approaches all likewise conceptually distinguish between
long-term or static structures and short-term or dynamic structures.

2.6.3 Prediction of Molecular Properties

Over the last decade and a half, deep learning has risen to the fore in molecular applications
(Chen et al., 2018). Graph-based methods in particular have arisen to compete with the
traditional techniques in computational chemistry and biology (Zhang et al., 2022). Two
main areas of focus obtain in molecular deep learning: graph generation and molecular
representation learning. A range of graph-based deep learning techniques have been
proposed for molecular graph generation (Chen et al., 2018; Xu et al., 2019c), particularly
attractive in an application that is otherwise very expensive (Chen et al., 2018). Increasingly
research is also conducted into graph-based deep learning techniques for molecular
representation learning, which is the focus of this section.

Several surveys over recent years have demonstrated that molecular representations
learned by deep learning techniques perform on par or better than earlier human-designed
rules-based methods and other traditional models (Wu et al., 2018; Faber et al., 2017; Yang
et al., 2019; St. John et al., 2019; Atz, Grisoni, and Schneider, 2021), with one exception (Mayr
et al., 2018). GCNN are counted under an umbrella of approaches called message-passing
neural networks (MPNNs) (Gilmer et al., 2017), a framework we described in Section 2.5.4,
consisting of a message-passing phase and readout phase. Part of the advantage of
graph-based methods is that they do not rely on hand-crafted features (Shui and Karypis,
2020); indeed, graph-based approaches have obtained state-of-the-art performance with
molecular representations learned on only a few features (Chen et al., 2019). Graphs also
act as a useful inductive bias on a model (Gilmer et al., 2017; Battaglia et al., 2018; Morgan,
Paiement, and Klinke, 2022). Graphs also however embed certain kinds of invariance,
which is vital to learning stable and generalisable molecular models (Chen et al., 2019).

On the basis of the GCNN presented by Duvenaud et al. (2015) and presented in
Section 2.5.4.2, which first described how molecular fingerprints could be learned in a
differentiable algorithm, several extensions and improvements have been produced that
address various problems arising with learning on molecules, in particular problems
of invariance. Duvenaud et al. (2015) proposed commutative functions as a way to
make graph models invariant to vertex/atom ordering. Originally the atoms would
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have to be ascribed a canonical ordering based on vertex and edges features (Rogers
and Hahn, 2010). The Weave network (Kearnes et al., 2016) encodes vertex and edge
features in two separate streams, whose outputs are merged together. SchNet (Schütt et al.,
2017) introduces continuous functions, which make predictions of molecular energy less
sensitive to minor variations in molecule position. GROVER (Rong et al., 2020b) masks
substructures in a pre-training stage to improve the model’s ability to predict motifs in
molecular structures. The heterogeneous molecular graph neural network (HMGNN)
(Shui and Karypis, 2020) uses a heterogeneous graph to model the interactions in a
molecule between different molecule groups.

Directed graphs serve as a useful inductive bias, too, in describing one-way interactions
between atoms. DimeNet (Gasteiger, Groß, and Günnemann, 2020), and the more efficient
DimeNet++ (Gasteiger et al., 2020), use bonding angles in a directed graph to encode
directional invariance by including bonding angles and rotations in the convolution. Yang
et al. (2019) on the other hand use a special definition of convolution on directed graphs
to mitigate tottering in the propagation of signals.

In some approaches a global vertex or global feature or some mechanism for propagating
features globally is used to enhance molecular descriptions. The MPNN framework
introduces a global master vertex that is connected to all vertices in the graph, allowing the
vertex representations to travel long distances in the graph (Gilmer et al., 2017). Attention
has been used similarly to pass representations locally and globally in the graph. An
auxiliary adjacency matrix where the entries correspond to interatomic distances has been
used within a transformer (Maziarka et al., 2020). Attention to attend to the whole or
parts of the graph. Sun et al. (2021) uses two views of information: local structures of
molecules and global relationships between different molecules. The local structures allow
for augmentation of molecules without changing molecular semantics. Xiong et al. (2020)
propose an attention mechanisms for molecular property prediction that incorporates
non-local, intramolecular effects in the attention convolution.

2.7 Summary

At the beginning of this chapter we reviewed the elementary techniques and concepts
of machine learning. We saw that the field has been refounded on a new class of
learning algorithms, collectively termed deep learning. We discussed the drawbacks of the
conventional techniques in deep learning, namely their restriction to regularly structured
domains; when these conventional techniques are applied to irregular domains, various
transformations are necessary that lead it invalid structural assumptions and the loss
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of structural information that is otherwise informative to a model. The deficiency of
deep learning in this regard motivated our discussion of deep learning on graphs. We
presented a range of deep learning techniques on graphs, both spatial and spectral, and
considered the various graph-related issues that arise in graph deep learning. When
discussing these techniques we repeatedly considered the methods with respect to their
application to directed graphs. We then considered two additional challenges on graphs
in more depth: learning on the edge structures of graphs and graph estimation. Lastly we
described existing work on three application areas: datacentres, road traffic prediction and
molecular property prediction. The three application domains supply a unique setting
within which to investigate techniques to address these issues. The datacentre is a useful
domain on which to develop edge-structured approaches to graph deep learning. The
traffic dataset allows us to consider the use of combinations of information to estimate
graph structures. The two concerns are then drawn together in the final domain, where
the task is to learn on both edge structures and estimate graphs.
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3.1. Introduction

In this section we present our work on detection of link faults in datacentres. Specifically
we use the concept of a linegraph to describe the problem and train a model to identify the
location of multiple link faults in a datacentre simulation. The results of this section has
been published as two works. Part of the results were published as a conference paper:

Michael Kenning et al. (2021). “Locating Datacenter Link Faults with a Directed
Graph Convolutional Neural Network”. In: Proceedings of the International Conference
on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology
Publications, pp. 312–320. doi: 10.5220/0010301403120320.

The full results were published as a journal paper:

Michael P. Kenning et al. (2022). “A directed graph convolutional neural network for
edge-structured signals in link-fault detection”. In: Pattern Recognition Letters 153,
pp. 100–106. issn: 01678655. doi: 10.1016/j.patrec.2021.12.003.

3.1 Introduction

In Section 2.6.1 we considered the range of machine learning approaches that have been
applied to network problems. It costs network administrators time and money when
network errors occur that inhibit proper functioning of the system. Diagnostic systems
are often deployed to assist network administrators in diagnosing the cause of network
problems (Gill, Jain, and Nagappan, 2011; Pelkonen et al., 2015; Chircu et al., 2019).
Machine learning approaches offer a quick and effective means of modelling the high-
order interactions between the machines in a computer networks. To that end various
conventional learning methods have been applied (Wang et al., 2018a; Zhang et al., 2005;
Srinivasan, Truong-Huu, and Gurusamy, 2019; Ren et al., 2020). Neural methods using
MLPs have also been used (Srinivasan, Truong-Huu, and Gurusamy, 2019; Rafique et al.,
2018; Feng et al., 2018). There are also CNN-based approaches (Wang et al., 2018b; Ji
et al., 2018; Xiao et al., 2019), some of which, as we have seen in Section 2.6.1, force data
into grid-like structures and therefore are questionable with respect to the structural
assumptions implicit in a CNN (Wang et al., 2018b; Xiao et al., 2019).

Networks are very represented well by graphs, however, and unsurprisingly a range
of approaches have appeared in recent year that use graphs to structure learning (Fang
et al., 2018; Protogerou et al., 2020), in particular directed graphs (Gálvez and Ruiz, 2013;
Andreoletti et al., 2019; Wang et al., 2019; Li, Sun, and Hu, 2020).

Part of the difficulty of detecting faults in datacentres is on the one hand the shear
complexity of large networks; on the other is the range of measures that only ever produce
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3. Directed Linegraph for Learning on Edges

a partial explanation of the network at any one time (Gill, Jain, and Nagappan, 2011).
Usually a diagnostic system has deployed agents making live measurements on the
system. This comes with its own issues because it should not counter-productively
burden the switches in the network with packets sent out ultimately to prevent traffic
problems, called a probing trade-off (Arzani, Behnaz et al., 2018). Various systems exist to
diagnose network faults, each with their attendant advantages and disadvantages (Guo
et al., 2015; Ren et al., 2020; Arzani, 2018).

A diagnostic system alone is not sufficient, however, since the data it produces still
needs to be studied before a problem is detected. Consider the 007 system, for example
(Arzani, 2018). The diagnostic system consists of agents situated on host machines of
a datacentre which monitor for retransmission errors. When a retransmission error is
detected, the host issues a traceroute command that finds the likely path taken by the
packet. All links found on that route are marked as jointly responsible, called a blame
score. After some time, the blame scores of all hosts are aggregated and summed. The bad
link does not always have the highest aggregated blame score, though; an extra level of
processing must occur. Arzani, Behnaz et al. (2018) propose an optimisation algorithm
that progressively pares links to discover the subset of links that correspond to the most
likely sources of failure. It is possible however to imagine improvements on this algorithm
that uses the network structure as a graph to diagnose efficiently the location of link-faults.

007 presents its own troubles in that the blame scores describe the suspected level of
fault of links between machines, meaning that the features of the dataset are consequently
associated with edges rather than vertices. Additionally problems are presented by
the network architecture used by Arzani, Behnaz et al. (2018). In the Clos topology
(Clos, 1953) described by Arzani, Behnaz et al. (2018), every pair of machines has two
separate flows, upstream and downstream, flowing in opposite directions between the
two machines and corresponding to two different wires. This presents two additional
issues: (1) the edges are directed and must be separately accounted for; and (2) the edges
are the inverse of one another. Added to the fact that, whereas the usual construction
of a directed graph on networks associates vertices with machines (Gálvez and Ruiz,
2013), on which a graph signal is most commonly structured, the features from 007 are
associated with edges. Moreover the edges are directed and every edge from A to B
has an accompanying edge from B to A. The theoretical problems of defining a graph
model in this context are thus very interesting.
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3.2 Proposed Approach

In the introduction we described a particular problem that arises from the architecture of
the network described by Arzani, Behnaz et al. (2018), namely that (1) in light of the usual
definition, the signals are structured on a graph’s edges, (2) the edges are directed and (3)
each edge has an accompanying edge in the opposite direction, which is referred to as an
inverse edge in a directed graph. To address these challenges, we propose the following:

1. We construct a directed linegraph on the directed graph representing the datacentre.
The blame scores are therefore be structured on the vertices of the directed linegraph
rather than the edges of a directed graph. Since graph convolution assumes that
graph signals are structured on vertices, not edges, this transformation permits us to
define graph convolution along the conventional lines described in Section 2.5.4.2.

2. To preserve the directional information, we propose a convolutional technique that
distinguishes neighbouring vertex information by its orientation with respect to a
focal vertex.

3. We propose accounting for the inverse edge separately from the directed neighbours
and the focal vertex.

In Section 3.3.1 we describe how the representation of the datacentre as a directed
linegraph. In Section 3.3.2 we formulate the directed graph convolution that we use in the
directed graph convolutional neural network (DGCNN) described in Section 3.3.3.

3.3 Methodology

3.3.1 The Datacentre as a Directed Linegraph

We have already described the directed graph and the directed linegraph in Sections 2.5.2.4
and 2.5.2.5 respectively. The directed linegraph L(G) is constructed on an underlying
graph G by assigning a new vertex in L(G) to every edge in G. An edge for vertices
α, β ∈ L(G) is added to L(G) if their the two underlying directed edges (1) share a vertex
and (2) are oriented in the same directed. Such is the algorithm explained by Aigner
(1967). Moreover, since the directed linegraph is essentially a graph, the properties of the
directed graph outlined in Section 2.5.2.4 obtain equally in the directed linegraph. As we
said in Section 2.5.2.5, the linegraph, directed or undirected, represents the second-order
structure of the underlying graph. The directed linegraph that represents a datacentre
thus represents the link-level, second-order structure of the datacentre.
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𝐺 𝐿(𝐺)
Figure 3.1: If a directed graph (left, G) has a pair of inverse edges, the directed
linegraph constructed from it (right, L(G)) would contain a pair of inverse edges
(represented by the light-blue, horizontal, double-headed arrow). As a consequence,
a question arises as to whether the inverse edges in the directed linegraph ought
to be excluded altogether, since they lead to problems in the definition of in- and
out-neighbourhoods (see Section 2.5.2.4).

A problem however arises from the nature of the underlying graph in this case,
namely the inverse edges. Since every edge in the underlying graph has a vertex in the
directed linegraph, the two inverse edges in the underlying graph have two vertices in
the directed linegraph. How should the two vertices be connected? The problem is
illustrated in Fig. 3.1. Strictly, following Aigner’s definition, the inverse edges should be
joined by two inverse edges in the directed linegraph. A consequence thereof is that the
two vertices of the inverse edges in the underlying graph would be in both the in- and
out-neighbourhoods of each other, thus occurring twice (see Section 2.5.2.2). The question
therefore is whether to consider the underlying graph’s inverse edges neighbours at all
in the directed linegraph, or whether to make a separate account of the inverse edges.
In the next section, when we define directed graph convolution, we do just that. For
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clarity we factorise the adjacency matrixA into its inverse edgesB; the other adjacencies
are simply denoted A, overloading the notation.

3.3.2 Directed Graph Convolution

In this section we describe our proposed approach for graph convolution. As we noted
above, the directed linegraph for all intents and purposes may be treated as a graph
(Section 2.5.2.5). Our definition of directed graph convolution is therefore not restricted to
use on directed linegraphs but the broader class of directed graphs. We will therefore be
describing the method as applied to a directed graph rather than a directed linegraph.

In Sections 2.5.4.1 and 2.5.4.2 we enumerated various techniques for convolution on
graphs. Few of the methods accounted for direction on the graph. We propose a method
for convolution on directed graphs, where

hl,x =θ0hl−1,x

+
θ1

din(x)

∑
y∈Γin(x)

hl−1,y

+
θ2

dout(x)

∑
y∈Γout(x)

hl−1,y,

(3.1)

where θ0, θ1, θ2 ∈ Rc are the learned parameters for the target vertex’s signals and in-
and out neighbours’ signals respectively. The equation may be formulated generally for
all graph vertices and multiple output channels as

hl = hl−1Θ0 + Â
⊤hl−1Θ1 + Âhl−1Θ2, (3.2)

where Â is the row-normalised adjacency matrix and Θ0,Θ1,Θ2 ∈ Rc×d are the sets of
learned parameters. This formulation does not account for inverse edges, however, so
we extend Eq. 3.2 to include inverse edges as an additional term

hl = hl−1Θ0 + γ0Â
⊤hl−1Θ1 + γ1Âhl−1Θ2 + γ2Bhl−1Θ3, (3.3)

where B ∈ Rn×n is the weight matrix of the non-inverse-edges in the graph. γ0 and γ1

are flags for the inclusion of in- and out-neighbours in the convolution and γ2 is a flag
for including the inverse edges. By default γ0 = γ1 = 1 and γ2 = 0. Note that A and Â
do not contain diagonal entries, for the graph it represents has no self-loops.
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Figure 3.2: Three DGCNN layers are included, whose outputs are passed through
a batch-normalisation layer and an activation function, namely leaky ReLU where
α = 0.3. In the directed graph convolutional neural network with residual connections
(DGCNN-R), skip connections are added to the model to mitigate over-smoothing.
The illustration is adapted from Kenning et al., 2022.

3.3.3 Directed Graph Convolutional Neural Network

The DGCNN we propose, illustrated in Fig. 3.2, consists of three layers of the directed
graph convolution proposed above. The output of each layer is normalised by batch
normalisation to centre the outputs of each layer. We use a momentum of 0.99, which in
experimentation we found stabilises learning. The batch-normalised output is passed
through a leaky ReLU layer, where α = 0.3.

3.4 Experiment

The experiments described below were programmed in Python 3.6.6 and trained in
Tensorflow 2.4.1. The GraphSAGE model is an implementation from the library Spektral
(Grattarola and Alippi, 2020) version 1.0.4.

3.4.1 Dataset

Our model was trained on a dataset generated by the 007 simulator (Arzani, 2018)
developed to test the 007 diagnostic system Arzani, Behnaz et al. (2018). The diagnostic
system is designed to discover link-failures in a Clos network topology (Clos, 1953). The
programme simulates the passage of packets in a datacentre in thirty-second runs. In total
we ran 2,880 30-second-long simulations, representing 24 hours of simulations.

There are several kinds of links in the datacentre simulation owing to the Clos
network topology. The simulated datacentre has four device types: host machines at
the lowest level, to which users have access; top-of-rack (ToR) switches, to which the
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Figure 3.3: The illustration here describes the blame scores on the links of the
dataset after one thirty-second simulation. The green lines indicate the faulty links;
the numbers they are labelled with give their probability of dropping their packet. In
this example there are seven link faults. The dark-green lines represent uplinks; the
light green lines represent downlinks. The red lines indicate functioning links. The
orange lines represent functioning downlinks and the red lines represent functioning
uplinks. This figure has been adapted from Kenning et al. (2021).

host machines are connected; T1 switches, to which the ToR switches connect; and
finally the T2 switches, to which the T1 switches connect. The Clos network used by
Arzani, Behnaz et al. (2018) consists of two pods of T1 switches, ToR switches and host
machines. The ToR and T2 switches of a pod are fully connected. Each host machine is
connected to a single ToR switches. Each T1 switch connects to two T2 switches. Each
T2 switch connects to a maximum of one T1 switch from each pod. he outcome of one
simulation is supplied in Fig. 3.3.

We are not interested in the link faults on the host machines: it is trivial to diagnose
link faults at that level because there is a one-to-one pairing between host machine and
ToR switch. We are interested in the four link types that are more difficult to diagnose: the
downstream T1–ToR links type 1; the upstream ToR–T1 links, type 2; the upstream T1–T2
links, type 3; and the downstream T2–T1 links, type 4. For every upstream link joining a pair
of devices in one directed, there is another link joining the pair in the opposite direction.

In our simulations we set the datacentre to have 10 T2 switches and two pods of 10 T1
switches and 10 ToR switches. Each ToR switch is connected to 24 hosts. In total there
are therefore 540 devices and 1,440 links. As we stated above, each simulation is run for
30 seconds. A subset of the datacentre links, between 2 and 10, are selected to be faulty
and drop 1% and 10% of the packets that pass through; that rate is randomly selected
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Table 3.1: A comparison of the models we are evaluating in the experiments. This
table is adapted from the journal paper presented by Kenning et al. (2022).

Name Type Directed Inverse edges Excluding neighbours

DGCNN Spatial ✓ — —
DGCNN-R Spatial ✓ — —
DGCNN/I Spatial ✓ ✓ —
DGCNN-out Spatial ✓ — ✓
DGCNN-in Spatial ✓ — ✓

UGCNN Spatial — — —
UGCNN/I Spatial — ✓ —
UGCNN+I Spatial — ✓ —

GraphSAGE Spatial — — —
P-F model Spectral ✓ — —
Fusion model Spatial ✓ — —

MLP — — — —

RF — — — —

in that interval and fixed for the duration of the simulation. To add noise, healthy links
also drop packets but at a much lower rate of 0.01% of packets.

There is a high inherent degree of class imbalance that must be managed in the learning
algorithm, a problem we described in Section 2.3.5. The datacentre has 1,440 links and
the number of failures is k ∼ U(2, 10), which has an expectation of E(k) = 2 + 10−2

2 = 6.
The expected class imbalance is therefore ρ = E(k)

1,440−E(k) = 4.18 × 10−3 ≪ 1, where
1 would indicate equally balanced classes. We describe our remedies for the class
imbalance in Section 3.4.3.

3.4.2 Baselines and Comparisons

To evaluate the DGCNN architecture we compare it with seven architectural variations on
itself, differing only in the implementation of the convolutional layers. A table comparing
each model in the experiments is presented in Table 3.1.

The DGCNN is run in the experiments as several variations. Recall that the parameters
γ0, γ1, γ2 in Eq. 3.3 control the inclusion of in- and out-neighbours’ and the inverse edges’
signals in the convolution. By default γ0 = γ1 = 0 and γ2 = 1, but we can create three
additional variants on the DGCNN by turning the flags off. When γ0 = γ2 = 0, γ1 = 1,
the in-neighbours’ signals are excluded from the convolution; we call this variation the
DGCNN-out. When γ1 = γ2 = 0, γ0 = 1, the out-neighbours’ signals are excluded from
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the convolution; this variation is called the DGCNN-in. When γ0 = γ1 = γ2 = 1, the
inverse edges’ signals are included; this variation is called the DGCNN/I.

As we noted in Section 2.5.5, over-smoothing in graph models begins to manifest
itself after two layers (Kipf and Welling, 2017; Wu et al., 2019a). Since the DGCNN has
three layers, we test a variant that includes a skip connection between the input and
output of each layer, which we term the directed graph convolutional neural network
with residual connections (DGCNN-R). The output zl after the batch normalisation β

and non-linearity σ at layer l is therefore

zl = σ ◦ β (hl) + hl−1Θ (3.4)

where Θ ∈ Rc×d is the learned projection matrix of the original signal and zl is the input to
the next layer; c and d are respectively the number of input and output channels. This is nec-
essary in cases where the input dimensionality is different from the output dimensionality.
The output following the skip connection is passed to the next layer of the network.

We also reformulate the DGCNN to remove the factorisation of the neighbourhoods
into two groups. The DGCNN thus loses its distinction of in- and out-vertices; instead
they are collapsed together and the model becomes undirected. In effect the redefinition
means that Eq. 3.3 is redefined as

hl = hl−1Θ0 + (Â⊤ + Â)hl−1Θ1 + γBhl−1Θ2, (3.5)

where γ is a flag for the inclusion of the inverse edges as a separate term. Where γ = 1, the
undirected model is called the undirected graph convolutional neural network including
the inverse edge separately (UGCNN/I); where γ = 0, thus excluding the term for the
inverse edge, the model is simply called undirected graph convolutional neural network
(UGCNN). Collapsing the in- and out-neighbourhoods into one group allows the inverse
edges to be included in the neighbourhood term without doubly accounting for the inverse
edges. Another variation of the UGCNN model therefore includes the inverse edges
together with the neighbourhoods, as per a strict adherence to Aigner’s definition of
linegraphs (Aigner, 1967), which formulated as

hl = hl−1Θ0 + (Â⊤ + Â+B)hl−1Θ1, (3.6)

which we simply call the undirected graph convolutional neural network including the
inverse edge merged (UGCNN+I).
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3. Directed Linegraph for Learning on Edges

We also evaluated the DGCNN against five baselines. The first three baselines are
layers for graph convolution proposed in the literature that have been described in
Sections 2.5.4.1 and 2.5.4.2. The first is an undirected, spatial technique, GraphSAGE
Hamilton, Ying, and Leskovec (2017b), for which we use the mean aggregator. The
second is the Perron-Frobenius spectral directed model (P-F model), a directed, spectral
technique. The third is the DGCN, a directed, spatial technique, which we called the
Fusion technique in this section to disambiguate it further from the DGCNN. We wish
to compare the efficacy of our directed technique against two directed techniques in the
literature and one undirected technique.

For the two additional baselines we include an MLP, essentially the DGCNN where
the layers are replaced with dense, fully-connected layers. The MLP allows us to validate
the use of graph-based models at all. The other is an RF, against which we evaluate
the deep learning models.

3.4.3 Experimental Conditions

Each model was trained for 50 epochs. The initial training rate is 0.1 and is decayed to
1×10−7 during training using cosine decay. The loss-function is the binary cross-entropy of
the model output and the ground-truth. We make several modifications to the loss function
to mitigate the deleterious effect of the high class-imbalance on learning (see Section 3.4.1).

Firstly, we apply a threshold, the lowest blame-score among the positive samples in
the training set, to exclude the loss on vertices with blame-scores lower than the threshold.
The risk is that the model misses the few samples in the test set where the blame-score of a
defective link falls below the threshold. Though, given the gap between the failure rate of
the healthy and faulty links (see Section 3.4.1), the risk is very low. We also exclude the loss
on links to the Host machines since no fault ever occurs on those links in the simulations.

Secondly, we weight the loss on each vertex by the balanced odds-ratio of positive/faulty
to negative/healthy links. The weight of a positive/faulty link is (neg + pos)/2pos and
(neg + pos)/2neg for negative/healthy links, where pos and neg are the counts of positive
and negative samples above the threshold in each simulation.

Thirdly, we set the bias of the final layer such that the model outputs reflect the prior
distribution of the positive links. The log-ratio of positive to negative links was computed

b = ln

(
pos

negtotal

)
, (3.7)
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where negtotal is the count of negative links, ignoring the threshold. The sigmoid layer
consequently yields the prior:

σ(b) =
pos

negtotal
. (3.8)

These conditions largely cannot apply to the RF. The RF we used in our experiments
consists of 100 estimators, each estimator constructed on a subsample as large as 10%
of the training set. The classes are balanced in each tree according to their proportions
in the tree’s subsample.

3.4.4 Metrics

We compare the model performances on the test set across three primary measures:
precision, recall and F1-score. Precision describes the proportion of links classified as
faulty that are actually faulty. Recall describes the proportion of faulty links correctly
classified as faulty. Ideally the model would maximise both; the F1-score describes the
balance between the precision and the recall. These measures, in particular the F1-score,
help us in the discussion to compare the DGCNN with the comparison models.

We use a secondary measure, McNemar’s test (McNemar, 1947), specifically Ed-
wards’ correction of the test (Edwards, 1948), to compare directly the predictions of
two different models:

χ2 =
(|nsf − nfs| − 1)2

nsf + nfs
, (3.9)

where nsf is the number of samples correctly classified by model 1 (hence “s” for “success”)
that were incorrectly classified by model 2 (hence “f” for “failure”), and nfs is the number
of samples correctly classified by model 2 that were incorrectly classified by model 1.
The value χ2 is approximated by a chi-squared distribution, and therefore we may use a
binomial test to evaluate the null hypothesis, that the performances of the two models
are equal. In our analysis, model 1 is always the DGCNN, i.e., the left side, to which we
compare the outputs of every other model in the experiment.

3.5 Results

The results of our experiments are presented in Table 3.2. With the exception of DGCNN-in
and DGCNN-out, the graph-based models attain better F1-scores than the non-graph
models, the MLP and the RF. With the exception of DGCNN-in and DGCNN-out the
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3. Directed Linegraph for Learning on Edges

variants of the DGCNN attain higher F1-scores than the variants of UGCNN and the
undirected GraphSAGE. The two directed methods from the literature, the P-F model
and the Fusion model, have the worst F1-scores. Whether this is owed to the natures
of the models or faulty implementations, we do not know. The parameter count alone
cannot explain the differences in performance between the DGCNN variants and the
UGCNN variants. The relationship between mere parameter count and performance is
not clear-cut anyway in general (Neyshabur et al., 2017).

It is worth noting a subtle trend in the size of the nsf and nfs for the McNemar’s test
statistic in comparison to the reference model. The chief trend in these numbers lies
in the number of samples that model 1, the DGCNN correctly predicts that the other
models do not. The numbers counts the samples that one model can identify but the
other cannot. It appears that a model that learns to classify one set of observations
correctly cannot correctly classify another set. It is not that it is impossible, since the other
model is capable of correctly identifying the other subset. The trends suggest therefore
that an ensemble of such predictors might pick up on those unsuccessful predictions.
Specifically an ensemble of graph-based methods might work better, since the ensemble
of trees in the RF fails on average on far more samples (nsf = 1043.0) than it succeeds
(nfs = 553.2) in comparison to the DGCNN.

It is also worth noting that the difference in performance observed between the
reference model, the DGCNN, and two directed models, DGCNN-R and the DGCNN/I,
all undirected models, and GraphSAGE are statistically insignificant, indicated by the
p-value higher than 0.05. In spite of the statistical insignificance of the performance
differences, it is still possible to draw some conclusions about the different levels of
performance of the models.

A random forest versus deep learning. By F1-score the RF is outperformed by all
DGCNN variants, all UGCNN variants and the MLP. The RF does have the second-highest
recall score, but it comes at the expense of a low precision score in comparison to the
better-performing deep learning techniques.

Graph deep learning versus non-graph deep learning. The MLP, representing non-
graph deep learning, has a higher F1-score than the DGCNN-in and DGCNN-out. This
is unsurprising since DGCNN-in and DGCNN-out essentially exclude signals from the
convolution. The other DGCNN and UGCNN variants outperform MLP, suggesting that
the graph structure is helping the models to learn better. In other words, the inductive
bias inhered in the graph structure is advantageous for a model.

104



3.5. Results

Ta
bl

e
3.

2:
Th

e
re

su
lts

on
th

e
m

od
el

s
ar

e
av

er
ag

ed
ov

er
th

e
fiv

e
fo

ld
s

of
th

e
te

st
se

t.
Th

e
F
1
-s

co
re

,p
re

ci
si

on
an

d
re

ca
ll

ar
e

ro
un

de
d

to
fiv

e
de

ci
m

al
pl

ac
es

,a
nd

th
e

M
cN

em
ar

’s
te

st
st

at
is

tic
s

to
tw

o
de

ci
m

al
pl

ac
es

.T
he

p-
va

lu
e

is
ro

un
de

d
to

fiv
e

de
cim

al
pl

ac
es

.T
he

re
fe

re
nc

e
m

od
el

fo
rt

he
M

cN
em

ar
’s

te
st

s
is

th
e

di
re

ct
ed

m
od

el
w

ith
th

e
re

si
du

al
co

nn
ec

tio
ns

be
ca

us
e

it
ha

d
th

e
be

st
pe

rfo
rm

an
ce

by
F
1
-s

co
re

.
Th

e
M

cN
em

ar
’s

te
st

-s
ta

tis
tic

fo
rt

he
re

fe
re

nc
e

m
od

el
is

th
er

ef
or

e
no

tg
iv

en
.

Th
e

pa
ra

m
et

er
co

un
ts

of
ea

ch
m

od
el

ar
e

gi
ve

n
fo

rt
he

pe
rs

pe
ct

ive
th

ey
gi

ve
on

ca
pa

cit
y,

tra
in

in
g

an
d

in
fe

re
nc

e
tim

es
,e

tc
.T

hi
s

ta
bl

e
wa

s
ad

ap
te

d
fro

m
th

e
pa

pe
rb

y
Ke

nn
in

g
et

al
.(

20
22

).

M
od

el
N

o.
Pa

ra
m

s.
F
1
-s

co
re

Pr
ec

is
io

n
Re

ca
ll

n
sf

n
f
s

χ
2

p-
va

lu
e

D
G

C
N

N
73

1
0
.7
7
9
8
5
±

0
.0
0
7
8
7

0.
72

25
0
±

0.
01

40
7

0
.8
4
85

3
±

0
.0
36

82
—

—
—

—
D

G
C

N
N

-R
94

1
0
.7
7
76

1
±

0
.0
12

15
0
.7
2
5
7
7
±

0
.0
1
2
3
7

0
.8
39

2
1
±

0
.0
45

52
41

8.
0

41
6.

4
1.

01
0.

40
96

9
D

G
C

N
N

/I
94

1
0
.7
7
62

8
±

0
.0
10

21
0
.7
23

81
±

0.
01

40
9

0
.8
38

70
±

0
.0
42

9
9

53
0.

8
51

6.
8

0.
57

0.
51

48
0

D
G

C
N

N
-o

ut
52

1
0
.7
1
51

4
±

0
.0
51

62
0.
66

75
0
±

0.
0
72

96
0
.7
78

80
±

0
.0
81

51
11

39
.6

64
3.

2
17

5.
28

0.
00

00
0

D
G

C
N

N
-in

52
1

0
.7
4
1
34
±

0
.0
32

82
0.
70

83
6
±

0.
04

1
89

0
.7
92

03
±

0
.1
17

19
78

9.
0

56
0.

6
40

.1
0

0.
00

00
0

U
G

C
N

N
73

1
0
.7
7
67

5
±

0
.0
16

45
0
.7
16

55
±

0.
03

23
9

0
.8
55

14
±

0
.0
79

76
54

9.
2

51
3.

8
2.

30
0.

31
81

6
U

G
C

N
N

/I
94

1
0
.7
6
34

1
±

0
.0
15

71
0
.7
32

82
±

0.
02

45
6

0
.8
00

67
±

0
.0
6
32

6
66

7.
4

61
2.

2
3.

30
0.

28
92

7
U

G
C

N
N

+I
73

1
0
.7
4
53

5
±

0
.0
63

47
0
.6
76

5
0
±

0.
09

30
6

0
.8
42

10
±

0
.0
75

11
88

3.
6

52
2.

4
17

7.
17

0.
19

26
2

G
ra

ph
SA

G
E

52
1

0
.7
0
56

2
±

0
.0
72

61
0
.6
13

86
±

0.
10

33
4

0
.8
39

98
±

0
.0
12

48
13

69
.6

54
3.

6
46

7.
21

0.
16

38
6

P-
F

m
od

el
52

1
0
.1
1
80

0
±

0
.0
54

97
0
.0
66

62
±

0.
03

49
8

0
.5
97

47
±

0
.0
4
49

8
34

12
3.

6
69

6.
6

32
09

1.
83

0.
00

00
0

Fu
si

on
12

43
0
.1
15

80
±

0
.0
76

09
0
.0
65

4
3
±

0.
04

82
2

0
.6
37

00
±

0
.0
81

47
40

39
4.

0
82

8.
6

37
98

0.
77

0.
00

00
0

M
LP

31
1

0
.7
4
30

3
±

0
.0
06

03
0
.6
40

16
±

0.
00

53
2

0
.8
8
5
3
9
±

0
.0
1
1
6
7

97
5.

6
51

4.
4

14
4.

34
0.

00
00

0

RF
10

0
0
.7
3
69

8
±

0
.0
04

63
0
.6
39

52
±

0.
00

57
6

0
.8
69

54
±

0
.0
07

41
10

43
.0

55
3.

2
15

1.
24

0.
00

00
0

105



3. Directed Linegraph for Learning on Edges

Directed versus undirected graph models. The DGCNN and DGCNN-R outperform
the variants of the UGCNN by F1-score. The recall scores of the UGCNN variants are
higher than the DGCNN and DGCNN-R, but the precision is poorer. Additionally, the
directed models were generally more stable than the undirected models. Recall that the
only difference between the UGCNN and the DGCNN is the adjecency matrix and the
additional term. We may therefore conclude that the improvement in performance is
owed to the factorisation by vertex incidence in the model. This conclusion is not firm,
however, since the difference between the best UGCNN variant and the best DGCNN
variant is not statistically significant.

Excluding neighbours. We have already seen that excluding the in- and out-neighbours
in DGCNN-in and DGCNN-out respectively so markedly inhibited their performance
that even the MLP attained better results. The exclusion of out-neighbours is more
deleterious than the exclusion of in-neighbours, which suggests that the in-neighbours
are more informative than the out-neighbours. Moreover the stability of the models
was vastly undermined.

Inverse edges. The signals on the inverse edges, when included, impart no clear
advantage on the DGCNN. The DGCNN/I performed worse than the DGCNN by F1-
score, and moreover the model was less stable. The same trend is apparent in when
comparing the UGCNN with the UGCNN+I or UGCNN/I. The inverse edge worsens
the performance far more when it is included with the neighbours, as in UGCNN+I, as
opposed to when it is included as a separate term in UGCNN/I. Interesting, although the
stability of the UGCNN/I is barely different from the UGCNN, whereas it is worsened
between the DGCNN and DGCNN/I, the stability of the UGCNN+I is nearly four times
worse than the UGCNN. Altogether, these results suggest the inverse edges’ signals are
deleterious to the performance of the model in whatever way they are included.

Spatial versus spectral graph-based approaches. The P-F model and Fusion models
perform by far the worst of all the models. We cannot exclude the possibility that our
implementation of the P-F model and Fusion models were at fault. GraphSAGE is the
best performing of the three models from the literature, the implementation of which
comes from the Spektral library (Grattarola and Alippi, 2020). It does not attain the same
level of performance as even the UGCNN variants, however, which does not distinguish
in the model between the focal vertex’s features and the out-neighbours’ features. This
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3.5. Results

suggests that factorising the convolution into the focal vertex’s signals and neighbouring
signals provides the model with an interpretative advantage.

Performance stability over link-types and number of failures. We visualised the
performance of the models with respect to the F1-scores in Fig. 3.4. In Fig. 3.4a the test
simulations were split into nine groups according to the number of failures present in
each simulation. The average F1-score was then computed within in each group, and the
average of the group averages was plotted for each fold. Across all folds, the performance
of all the models varies little with respect to the number of failures in the simulation,
although the P-F model has a large spread of average.

In Fig. 3.4b for each fold we masked for each edge-type and computed the masked
F1-score over all test simulations. We then computed the average F1-score over the folds
for each edge-type and plotted the results as a box-plot. We can see that there is a great
degree of variance in the results across models. Further analysis showed that the models
struggled particularly to localise fault on the type-3 (T1–T2) and type-4 (T2–T1), the
links that reside furthest from the host machines. We suspect that the connectivity of
these links, and therefore the quantity of information propagated to those vertices, is
responsible. Type-3 links have 11 in-neighbour and 1 out-neighbours and type-4 links
have 1 in-neighbour and 11 out-neighbours. Type-1 and type-2 links on the contrary have
11 in-neighbours and 33 out-neighbours and 33 in-neighbours and 11 out-neighbours
respectively. The sparsity of the connections between T1 and T2 is the cause of this
discrepancy in comparison to those connections between T1 and ToR.

Moreover, a greater number of the type-3 and type-4 links in comparison to the number
of type-1 and type-2 links, are likely to be suspected as a source of link-faults. The upstream
links from the ToR switches are fully connected to the T1 switches. Although each T1
switch connects to two T2 switches, the host machines are still indirectly connected to
every T2 switch at two degrees, as the ToR switches and T1 switches are nonetheless
fully connected. This increases the tendency that type-3 and type-4 switches are falsely
implicated in a failure, decreasing the usefulness of the blame scores, which in turn
renders the localisation of link-faults more difficult, which explains the variance in the
results visualised in Fig. 3.4b.

Additionally, when the faulty links are selected uniformly randomly, the proportion
of failures on the type-1 and type-2 links (there are type-1 and type-2 links) outnum-
ber the failures on type-3 and type-4 links (there are type-3 and type-4 links). The
multiple levels, and therefore several propagation steps, do not appear to make up for
the sparsity of information.
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3. Directed Linegraph for Learning on Edges

(a) Number of failures.

(b) Link-types.

Figure 3.4: In (a) for each model on each fold we grouped the simulations by the
number of failures and computed the F1-scores. In (b) for each model on each fold
we masked for each edge type and then computed the F1-scores. In both cases we
average the scores across the folds. The box-plot shows the average, first standard
deviation and 25th and 75th percentiles of those F1-scores across the folds. Circles
are outlier samples. The models in the visualisation have been ordered on the x-axis
by the F1-score in Table 3.2. These figures have been adapted from Kenning et al.
(2022).
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3.6 Summary

The most important finding of these experiments is that interpreting neighbouring signals
according to direction aids link-fault localisation. This is an important validation of the
directed graph convolution that we propose in Section 3.3.2. An interesting point for future
examination is whether randomly dividing the neighbours into two neighbourhoods,
irrespective of direction, bestows a similar advantage. It is not clear whether the model
is benefiting from factorising direction or just any division of the data into two parts,
which allows the model to make finer distinctions. This question is particularly pertinent
when considering the DGCNN versus DGCNN/I and the UGCNN versus UGCNN/I
and UGCNN+I. We suspect that an arbitrary division of the neighbours irrespective of
direction would not help the model, as the power results on UGCNN suggest, but it
would be interesting to study that experimentally. The exclusion of either direction’s
information is even more harmful to localisation performance.

A second area of future work would be to study experimentally the ways in which
the discrepancy between the F1-scores of different link types may be addressed. One
possible way forward is to manipulate the loss function further to balance the learning
on the link failures within each simulation.

Finally we have demonstrated that in certain domains, in particular datacentres, it
is necessary to disconnect vertices that by the strict construction of linegraphs would
otherwise be connected. The inverse edge’s signals contribute deleteriously to the
model performance. The structure of the datacentre, where the routing table would
exclude the passage of packets down the link in the opposing direction, motivates the
exclusion of inverse edges.

The ecological validity of these approaches applied to a real datacentre is in question,
however. Although the motivation of these experiments was to study the theoretical
viability of the DGCNN, it is an open question how the approach would translate to a
data from a real, non-simulated datacentre.
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4.1. Introduction

Part of the results in this chapter are to be published as a workshop paper:

Michael Kenning and Xianghua Xie (2023). “Attention-based Graph Estimation and
Directed Convolution for Prediction of Traffic Conditions”. In: Proceedings of the 10th
Internatinal Workshop on Deep Learning on Graphs

4.1 Introduction

Traffic prediction is one task to which graph deep learning has applied: the interactions in
a traffic network are complex and the relations between the entities in traffic datasets are
highly irregular. Graphs are often constructed by leveraging knowledge of the domain to
render the graph structure. In traffic networks it is no different; the structure is computed
based using a heuristic that measures, for instance, the geographic distance between
sensors on the traffic network. Such a way of structuring a traffic network, specifically on
the METR-LA and PeMS-Bay datasets, was presented by Li et al. (2018a). The distances
between all sensors having been computed, a Gaussian kernel (Shuman et al., 2013) is
applied to each vertex with respect to all other sensors, and all transformed sensors more
than a given distance from one another are excluded from the graph. The same graph
has been used in later works (Wu et al., 2019c; Kong et al., 2020; Ta et al., 2022) and
similar constructions using a Gaussian kernel have been used elsewhere on different
datasets (Yu, Yin, and Zhu, 2018). Alternatively, some data-driven approximations of
the graph structure are made by measuring correlations between points of data in the
graph Henaff, Bruna, and LeCun, 2015; Jang, Moon, and Lee, 2018. In any case, the
predefined graph structures are fixed throughout learning, however, and cannot adjust
to ephemeral changes in the traffic structure.

An improvement on predefined, fixed graphs would be to learn the graphs directly
from the data. If the motivation for deep neural networks was the automatic learning
of feature representations directly from data rather than learn on features computed by
intermediary heuristics Section 2.4, it follows that the same logic may be extended to
graph structures: If features may be automatically learned from data, its structure can be
learned, too. Indeed, increasingly, graph structure is being learned end-to-end in the model
(Georgousis, Kenning, and Xie, 2021), which in Section 2.5.7 we termed graph estimation.

In Section 2.6.2 we discussed the graph estimation techniques present in the literature
that have been applied to the problem of traffic estimation. We saw that approaches to
graph estimation on traffic datasets distinguish between the long-term or static structures
and the short-term or dynamic structures, each of which is assumed to be present in
the given dataset (Kong et al., 2020; Ta et al., 2022; Zhang et al., 2020; Chen et al.,
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2020a). We propose a technique that similarly reckons with the data according to its
periodicity—weekly, daily, hourly—but it uses two compositions of the periodicities to
discover static and dynamic structures in the data. The graph estimation procedure we
propose is described in Section 4.3. We evaluate our approach on the METR-LA and
PeMS-Bay datasets in Section 4.4.

4.2 Proposed Approach

In Section 4.1 we described the problem of graph estimation for traffic prediction. We saw
namely that traffic data can be understood as distinct flows of information, from which a
model can learn different kinds of structures. In this chapter we propose the following:

1. An approach to graph estimation that fuses the long-term, static graph structure
and short-term, dynamic structure learned from traffic data. The static structure is
learned from a composition of cyclical information from the previous week, day and
hour relative to the input, hence from long-term traffic data. The dynamic structure
is learned only from the previous hour and, at training time, the target sequence,
hence the short-term data.

2. A new directed attention mechanism for graph convolution. The directed diffusion
used in the Traffic Transformer proposed by Cai et al. (2020) separates the signals
around a vertex into two distinct flows, but it uses an isotropic kernel over each
neighbourhood. The directed attention mechanism we propose learns attention
coefficients for the two distinct flows, thus an anisotropic kernel.

4.3 Methodology

The task of the traffic model is to predict traffic conditions on a road network. The model
must predict an hour-long target sequence from three historical hour-long sequences of
traffic data. The three historical sequences record traffic conditions one hour, one day and
one week prior to the target sequence. The Traffic Transformer (Cai et al., 2020) consists of
an encoder and decoder. The encoder is fed the three historic sequences; the decoder is
fed the target sequence at training time as well as the embedding from the hidden layers
of the encoder. It is posited that the historical sequences also encode weekly, daily and
hourly cyclical information of which the encoder can avail itself in learning patterns in
traffic conditions, information which is then passed to the decoder for prediction.
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Previous week Previous day Previous hour Target sequence

Long-term graph Short-term graph

during training

Figure 4.1: The graph estimation process yields two graphs: a long-term graph,
estimated from the weekly-, daily- and hourly-periodic traffic sequences, representing
the more stable structures in the traffic network; and a short-term graph, estimated
from the hourly-periodic and target traffic sequences, representing the ephemeral
structures in the traffic network.

All the sequences are structured as graphs. Each sensor on the network corresponds
to a vertex in the traffic graph. The interrelation of the vertices describes the structure
of the graph, which is constructed using a thresholded Gaussian kernel in the original
paper; we describe the construction in Section 4.3.2. The description of the graph structure,
represented as a weight matrix, is fed to the initial modules of the Traffic Transformer,
which use graph convolution to propagate information across the graph. Of course, we
may replace the description of the graph structure supplied to the graph convolutions
in any way we like. In this section, we describe how we use the sequences to learn
different graph structures from the data.

The model we propose thus consists of two successive phases: A graph is first
estimated as a weight matrixW , a weighted combination of an estimated static/long-term
graph represented as a weight matrixW stat and an estimated dynamic/short-term graph
represented as a weight matrixW dyn. The static graph, encoding long-term, more stable
structures in the traffic data, is estimated using the three historical sequences, whereas
the dynamic graph, encoding short-term, ephemeral structures, is estimated from the
hourly historical sequence, plus the target sequence during training. Figure 4.1 describes
which sequences are used to predict which graphs. The estimated graph is then used in
the Traffic Transformer architecture to structure the graph convolution.

In the rest of this section we describe our approach to graph estimation. In Section 4.3.1
we formulate the problem of traffic prediction, describing the form of the input data.
In Section 4.3.2 we describe the predefined graph used to structure the traffic data
in conventional techniques that do not use graph estimation. The drawbacks of the
conventional structure of the graph motivates our choice of the graph estimation procedure,
which is presented in Section 4.3.3. In the final section, Section 4.3.4, we describe our
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modifications to the Traffic Transformer (Cai et al., 2020) to which the estimated graph
structure is fed. Namely we introduce the attention-based directed graph convolutional
neural network, which uses an anisotropic kernel to learn neighbouring features with
two distinct attention mechanisms for the two orientations of the neighbours. In our
experiments we compare a modification of the traffic transformer using directed attention,
which is the subject of the final subsection.

4.3.1 Traffic Prediction

Our approach builds on the model for traffic prediction presented by Cai et al. (2020). The
traffic transformer presented in that paper receives a source sequence of graph observations
at the encoder, and the decoder predicts the subsequent hour of traffic readings that are
expected from the activations computed by the encoder. Each graph is embedded in a
k-dimensional space before it is passed to the transformer.

The first innovation is in its positional encoding. Since the transformer needs a sense
of order in time, the solution is to modify the data with a positional encoding of some
kind. Usually this is achieved by adding a plain d-dimensional positional encoding to
the data at each timestep i for dimension a, a point on the following function:

π(i)a =


a (mod 2) ≡ 0 sin

(
i

10,000
2a
k

)
a (mod 2) ≡ 1 cos

(
i

10,000
2a
k

) (4.1)

thus π(i) ∈ Rd. However, rather than adding positional embeddings to the data of each
timestep as in a conventional transformer, termed addition-based combination, the model
computes the dot-product of the positional encodings, giving the positional scalar p(i, j)
for each encoding at timesteps i and j

pi,j = π(i)π(j), (4.2)

which scale the coefficients in the attention mechanism, called similarity-based combination.
If the source sequence has l steps and the target sequence has m steps, then the positional
encoding is a matrix π ∈ Rl+m,d and the scalars form a matrix p ∈ Rl+m,l+m.

The second innovation is the use of periodic data. In addition to the source sequence,
Cai et al. propose feeding the encoder with an additional two sets of sequences: the traffic
readings exactly a week (or several weeks) before the target sequence and those exactly a day
(or several days) before the target sequence. The sets of sequences are respectively labelled
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the weekly-periodic and daily-periodic data; the preceding hour of data is thus labelled
the hourly-periodic data. The weekly- and daily-periodic sequences are assigned the
positional scalars of the target sequence, since they are viewed as coincident in periodicity.

We denote the l-timestep-long source sequence as X ∈ Rl×n×c and the m-timestep-
long target and predicted sequences respectively as Y , Ŷ ∈ Rm×n×c for n vertices with c
channels. We denote sets of the weekly-periodic sequences X(w) and the daily-periodic
sequences as X(d), where w and d are constants stating the number of preceding weeks
and days in the sets respectively, thus denoting an offset from the source. As in Cai
et al., 2020, we set w = d = h = 1, meaning we supply the model with sequences
previous to the target sequence by 1 week, 1 day and 1 hour, each an hour long, therefore
l = m = 12 timesteps long,

The model’s parameters are adjusted according to the mean absolute error of the
traffic prediction with respect to a target sequence:

l(Y , Ŷ ) =
1

b

b−1∑
i=0

|Ŷ i − Y i|, (4.3)

where b is the batch size and Ŷ i,Y i are the prediction and target respectively at the
ith timestep. The model implements scheduled sampling to slowly move the model
from learning on the target sequence to learning from its own predictions. The speed
of the prediction is determined by the scheduling function, a value that amortises with
the training step i

ϵi =
i

i+ exp(i/s)
, (4.4)

where the speed s controls the speed with which the model moves to training on its own
predictions. Rather than choose a speed directly, it is selected indirectly by deciding the
epoch by which, of the sequences supplied to the decoder, the ratio of target sequences
to predicted sequences, what we call the scheduling ratio, is 50 per cent. This point can
be computed with the Lambert W-function W0(−), such that

s = s0.5 =
r

W0(bs · r)
, (4.5)

where bs is the number of batches per epoch and r is the epoch at which the scheduling
ratio is 50 per cent.
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4.3.2 The Distance-based Traffic Graph

The static traffic graph is often computed with a Gaussian kernel (Shuman et al., 2013)
using the distances between each pair of vertices dist(a, b):

Wxy =

exp
(
−dist(a, b)2/σ2

)
if dist(a, b) ≤ κ,

0 otherwise,
(4.6)

where σ is the standard deviation of the training samples, κ is a threshold andWxy is the
entry at the xth row and yth column. We also refer to these graphs in this chapter as the
original graphs, against which we will compare our estimated graphs. Such a construction
has been used subsequently in the Traffic Transformer (Cai et al., 2020) and others (Ta
et al., 2022; Yu, Yin, and Zhu, 2018). (In contrast Zhao et al. (Zhao et al., 2019) use an
unweighted adjacency matrix.) The graph hence describes the topological proximity of
sensors, but it does not necessarily describe long-distance interactions in traffic network
beyond the relations described by the graph, nor can it adapt to changes in the traffic
topology over time. This is the main motivation for the graph estimation strategies
presented in the literature and in this work.

4.3.3 Graph Estimation from Cyclical Data

The graph estimation procedure that we propose learns a fusion of two graphs, one
representing the long-term dynamics and the other the short-term dynamics of the traffic
network. In splitting the graph estimation into separate streams, our approach bears a
resemblance to the techniques discussed in the literature review (Kong et al., 2020; Ta
et al., 2022; Zhang et al., 2020; Chen et al., 2020a). The graph structure is interpreted
from the data using two attention-like mechanisms, one for the static structure and the
other for the dynamic structure. We distinguish the attention coefficients computed
in the graph estimation layer from those computed in the convolutional layer by the
terms global and local attention coefficients. There is a nice symmetry in the attention
approaches (for a description of the full set of models, see Section 4.4.1). On the one
hand the global attention coefficients are used to learn global relationships, while the
local attention coefficients learn local interactions, the existence and strength of which
is in turn determined by the global attention coefficients.

Previous work has demonstrated the effectiveness of two fused streams of information
(Ta et al., 2022). Each attention mechanism consists of two d-length vectors for each vertex
in the set V , such that dn≪ n2, where d is the dimensionality of the graph embedding

118



4.3. Methodology

Wemb ∈ Rc×d. This is referred to as a self-adaptive matrix elsewhere (Yu, 2022). We also
use multiple attention heads to diversify the structures identified in the data. Our use
of a multi-head attention mechanism avoids directly modelling the n2 parameters of the
adjacency matrix; this is therefore not a direct method as described in Section 2.5.7.2. There
are three advantages to this approach. Firstly the graph structure is determined by the data
and not fixed after training as in direct methods. Secondly the number of parameters is
lower than a direct method. Thirdly a graph can thereby be constructed for each prediction
problem separately, as we do not average the estimated graphs over the batches.

The long-term structure of the traffic network is inferred from the weekly-, daily-
and hourly-periodic data, X(w), X(d), X(h) ∈ Rt×n×c, with t timesteps, n vertices and
c input channels, composing the patterns of traffic over a long period of time. We
identify the long-term structure observed with the static structure. Each sequence is first
projected into a d-dimensional space using the embedding matrix Z ∈ Rc×d learned
end-to-end in the model:

X ′(w) = X(w)Z

X ′(d) = X(d)Z

X ′(h) = X(h)Z

 ∈ Rt×n×d ; (4.7)

then the sequences are concatenated on the timestep dimension:

X ′
stat =

(
X ′(w)

∥∥
0X

′(d)
∥∥
0X

′(h)
)
∈ R3t×n×d , (4.8)

where ∥0 is a concatenation operation along the first dimension representing timesteps.
An attention vector astat ∈ R2d is then applied to the concatenated features such that:

W stat,xy = ReLU

(
1

3t

3t−1∑
i=0

[
X ′

stat,i,x

∥∥X ′
stat,i,y

]
astat

)
, (4.9)

where X ′
stat,i,x ∈ Rd is the set of features for vertex x at timestep i. The ReLU is applied

to constrain the values of the dynamic matrix in the interval [0,∞). The learned static
weight matrix is denoted W stat.

The short-term structure is inferred from only the hourly-periodic dataX(h), combined
additionally with the target sequence Y during training. (Since the target sequence is what
the model is trying to predict during training, it is used to estimate the graph structure at
inference.) The source and target sequence are especially relevant to the task; they alone
contain any structural information on short-term disturbances, such as road closures,
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which are important to understand in predicting traffic. The model is allowed to interpret
the less stable changes in structure from the short-term information. Therefore we identify
the short-term structure with the dynamic structure. The short-term graph is computed
similarly. The two sequences X(h),Y are first projected into a d-dimensional space with
the embedding matrix U ∈ Rc×d, learned end-to-end in the model as in Eq. 4.7, then the
average over the timesteps and of the three sequences is computed,

X ′
dyn = [(XU)i ∥ ζ · (Y U)i] ∈ R2t×n×d , (4.10)

where ζ is a flag indicating whether the algorithm is training, meaning the target
sequence—and therefore the sequence length, too—is excluded. As above, an attention
vector adyn ∈ R2d is then applied to the concatenated features that are subsequently
passed through a rectified linear unit:

W dyn,xy = ReLU

 1

(1 + ζ) · t

(1+ζ)t−1∑
i=0

[
X ′

dyn,i,x

∥∥X ′
dyn,i,y

]
adyn

 , (4.11)

whereX ′
dyn,i,x ∈ Rd is the feature of vertex x at timestep i. As above, the ReLU is applied

to constrain the values of the dynamic matrix in the interval [0,∞). The learned dynamic
weight matrix is denoted W dyn. Note that we do not use softmax in computing the
attention coefficients. Otherwise it would require us to choose an axis along which to
perform the operation, meaning we would have to decide between doing it on the in-edges
or out-edges. We want to compute a graph that will account for both flows; consequently
there is no way to perform softmax on both axes simultaneously. We decide not to use
softmax, and instead rely on regularisation and thresholding to control the values.

The static and dynamic graphs are then fused with a softmax-activated learned
mixing coefficient β ∈ (0, 1):

W = β ·W stat + (1− β) ·W dyn . (4.12)

In fusing the static structural information with the dynamic structure, we are thereby
combining a stable structure with the unstable but presently relevant structure.

Additionally we implement multi-head attention in graph estimation. The multiple
heads enable the model to estimate several structures from the input data simultaneously.
After the structure has been estimated on multiple heads, the average of the several graphs
is taken. The output of the graph estimation is therefore a single graph for each sample.
Note that we do not apply the same graph to every sample; instead we allow a new graph
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to be estimated for every sample. This follows our assumption that, although the static
structures are relatively stable in relation to the dynamic structures, the static structures
still may change over time. Furthermore, it makes little sense to average the graphs over the
samples since during learning the batches are drawn randomly from the training set, which
means the structures would potentially differ massively if a single graph was learned for
the whole batch. The drawback of course is the increased memory complexity of learning.

In order to validate our fusion approach, we define another graph estimation approach
that does not estimate graphs from two different streams, which we call simple graph
estimation. In effect it means concatenating the weekly-, daily- and hourly-periodic data,
and the target Y during training,

X ′
simple =

(
X ′(w)

∥∥
0X

′(d)
∥∥
0X

′(h)
∥∥
0 ζ · Y Z

)
∈ R(3+ζ)t×n×d , (4.13)

and, with an attention vector asimple ∈ R2d altering Eq. 4.12 to

W = ReLU

 1

(3 + ζ) · t

(3+ζ)(t−1)∑
i=0

[
X ′

simple,i,x

∥∥X ′
simple,i,y

]
asimple

 . (4.14)

Estimating the weight matrix W presents a unique problem, however. There will
be no zero entries in the matrix unless one of the vertex embeddings is zero. Therefore
the weight matrix will be dense. It is necessary to sparsify the weight matrix somehow.
There are many ways to achieve this end (Zhu et al., 2022). We impose a hard threshold
γ = 0.1 on the values of the weight matrix, such that all weights in W below γ are set
to zero. Simultaneously we also add L1 regularisation of the sum of the weight matrix’s
entries. We also constrained the values of the projection matrix and attention mechanism
to the interval [0, 1] by normalising the weights by the minimum and maximum values
in each attention head. The entries of the graph are directly optimised with respect to
the learning goal by back-propagation. Lastly, we apply dropout at 80% to the output of
the graph estimator during training to sparsify the estimated graph, which yields three
advantages: Firstly the sparser graph enables the speed-up gained from sparse operations.
Secondly the graph estimator is effectively focussing on a sampled set of vertices from the
estimated graph. We assume that the most informative subset of relations in the graph
constitutes a small spanning graph over the hypothesis space. Thirdly dropout has been
shown to prevent over-smoothing (Rong et al., 2020a).
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4.3.4 Modifications to the Traffic Transformer

In this section we present our modification to the Traffic Transformer proposed by Cai et al.
(2020). At the core of the Traffic Transformer is the transformer proposed by Veličković
et al. (2018). The transformer, as we have already seen in Section 2.4.2.1, consists of an
encoder and decoder. The input is structured as a sequence of vectors which is passed
simultaneously to the encoder as input. The decoder also receives vectors as input during
training and testing. The output of the decoder, the prediction, is also a vector. Somehow
the sequence of graph data supplied to the transformer needs to be embedded as vectors.
The Traffic Transformer uses single layer of directed diffusion proposed by (Li et al., 2018a,
see Section 2.5.4.2) to embed graph-structured traffic data into vectors. The directed
diffusion able to process the input information as directed flows over several diffusion
steps. But, as we noted in Section 2.5.4.2, directed diffusion uses an anisotropic kernel over
the in- and out-neighbourhoods, meaning it may less flexibly determine the contributions
of signals within neighbourhoods. We propose a modification of the Traffic Transformer
whereby the directed diffusion layers are replaced with what we term directed attention
convolution. We describe directed attention convolution in the following section.

4.3.4.1 Directed Attention Convolution

As we remarked in Section 2.4.2.1, transformers are non-recursive, which lends it an ad-
vantage in training time, as it allows the model to receive whole sequences simultaneously.
This is accomplished by the implementation of an attention mechanism, which simplifies
the recurrence in RNNs by replacing the stepwise multiplications with dot-products across
the timesteps. Here we describe principally the attention mechanism, as it is the relevant
part of our discussion. Further details on the model, such as the masking of inaccessible
timesteps and further details of the architecture can be read in the original paper (Vaswani
et al., 2017), to which Cai et al. (2020) make few alterations.

The transformer output in the Traffic tTansformer (Cai et al., 2020) is modified from
what is present in the original transformer (Vaswani et al., 2017). In the original transformer
the decoder output for each timestep is probabilistic. In the Traffic Transformer it is scalar.
Moreover, the output of the decoder is expanded to the size of the graph, since the number
of output channels is lower than the number of vertices at each timestep; this allows
the model to make predictions for each vertex.

We propose a modification of the usual graph attention (Veličković et al., 2018, see
Section 2.5.4.2) that factors input data into in- and out-streams of information, we call the
directed attention convolution. The form of the directed attention convolution is inspired by
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directed diffusion. Whereas the original formulation makes no distinction between in-
and out-neighbours, we adopt two parallel attention mechanisms that learn coefficients
for the two distinct flows of information into a vertex.

The pre-normalised coefficientCxy is unique to the relationship between a focal vertex
x and neighbouring vertex y. This is a consequence of the concatenation operation of the
two projected vectorsh′

l,x andh′
l,y , which is intransitive. Essentially the first d dimensions

of a learn on the (projected) features of focal vertices, while the second d dimensions learn
on the (projected) features of their neighbours. This relationship does not represent an
orientation of the edge between the two, however. The attentional mechanism hence lacks
a means to represent directed flows of information on the graph—unless we say that the
coefficient Cxy represents either the in- or out-edges of the focal vertex x—but not both.

To represent the orientation of edges, we make a small adjustment to the attentional
mechanism: instead of a ∈ R2d, we expand the vector to a ∈ R3d, where the first d
elements a0 learn on in-neighbours’ features, the second d elements of a1 learn on the
focal vertices’ features, and the final d elements a2 learn on out-neighbours’ features.
The pre-normalisation attention coefficient matrix in Eq. 2.86 instead depends on several
computations. The matrix is formulated as

C l,xy =

LeakyReLU (cl,x(x)) x = y

LeakyReLU (cl,x(y⃗x) + cl,x(x⃗y)) x ̸= y
(4.15)

where

cl,x(x) = h
′
l−1,xa1 , (4.16)

cl,x(y⃗x) =


[
h′
l−1,y∥h′

l−1,x

]
a0:1 y⃗x ∈ E ,

0 otherwise ,
(4.17)

cl,x(x⃗y) =


[
h′
l−1,x∥h′

l−1,y

]
a1:2 x⃗y ∈ E ,

0 otherwise ,
(4.18)

where a0:1,a1:2 ∈ R2d are slices of attention vector a. This minimal extension preserves the
simplicity of the attentional mechanism while allowing in- and out-flows to be modelled
separately, as they are in the directed diffusion graph. The subsequent Eqs. 2.86 and 2.88
are unchanged. The directed graph attention uses a multi-head attention mechanism
for the reasons described in Section 2.5.4.2. The form of the multiple attention heads in
the convolution is identical to what is presented in Eq. 2.89.
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4.3.5 Attention-based Graph Estimation and Graph Convolution

The coefficients obtained in graph estimation are joined together with the local attention
coefficients in the convolution. The estimated structure computes a weight matrix for
every sample. The weights correspond to adjacencies in the graph, but they also constitute
a global weighting of the vertices with respect to one another over the whole dataset,
which we term global attention coefficients. This is informative for the graph convolution,
where a local weighting is also computed in the attention mechanisms, which we term local
attention coefficients. We combine the global and local coefficients in all models, including
the edge weights present in the original graph, by modifying that

hl,x = σ

 k∑
i=0

∑
y∈Γ(x)

W x,yαl,i,xyW lhl−1,y

 . (4.19)

where W xy is the global attention coefficient for the vertices x, y ∈ G.

4.4 Experiment

In this section we describe the experiments we carried out to evaluate the comparative
performance of the models, which we describe in the Section 4.4.1. In Section 4.4.2
we describe the control variables for the experiment. In Section 4.4.3 we describe the
datasets, METR-LA and PeMS-Bay, the structure of the input data, the structure of the
conventional graph used for the two datasets, and the metrics for performance, as well
as the loss function. Finally in Section 4.4.4 we enumerate the hypotheses in advance
of our analysis in the next section of this chapter.

4.4.1 The Models

We compare the performance of two approaches to graph estimation mixed with four
approaches to convolution. We also consider the four convolution approaches without
graph estimation. In total, therefore, we consider twelve models. There are two attention-
based convolution models: undirected attention, the GAT introduced by Veličković et al.
(2018), and the directed GAT, our variation on the GAT described in Section 4.3.4.1.

We also consider two diffusion models, using one-step diffusion and two-step diffusion.
The diffusion convolution was introduced by Li et al. (2018a) and the two-step diffusion
subsequently used in the Traffic Transformer (Cai et al., 2020) as in the original paper.
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Li et al. (2018a) demonstrated experimentally that the diffusion lends an interpretative
power to a traffic model.

Each model is fed either with the modified original graph described in Section 4.3.2
or with a graph estimated in one of two ways. We have described the principal way we
propose to estimate the traffic graph in Section 4.3.3. Solely for the sake of comparison and
verification, we use in the experiment a second, simplified version of the static–dynamic
fusion that does not separate the data into static and dynamic streams of information.
Instead there is only one stream of data, namely the static stream in Eq. 4.9, where at
training, when the scheduled sampling allows it, the target sequence is included in the
summation as in Eq. 4.11. By eliminating the distinction between long- and short-term
structures in the simplified approach to graph estimation, we can verify whether our
static–dynamic fusion approach is learning structural information that helps prediction.

In this chapter, when we refer to the “fully attention-based” models, we mean those
models that use either simple graph estimation or graph estimation by static–dynamic
fusion and the undirected or directed GAT.

4.4.2 The Control Variables

The models were trained on 4 NVIDIA V100 GPUs and 16 Intel Xeon Gold 6148 CPU cores
hosted by the Sunbird supercomputer at Swansea University. Each model was trained
for 100 epochs with a batch-size of 4 for the METR-LA dataset and 2 for the PeMS-Bay
dataset. The batch size must be kept low because the graph estimator demands a large
memory capacity owing to the large number of parameters. We used the Adam optimiser
with a learning rate λ = 1 × 10−4. For the scheduled sampling, we set r = 5 in Eq. 4.5
so that predicted sequences are supplied to the decoder half the time by the 5th epoch.
As the loss function we used the mean absolute error (MAE),

MAE(y, ŷ) =
1

nt

t−1∑
j=0

n−1∑
i=0

|y(i, j)− ŷ(i, j)|, (4.20)

and add a regularisation term of the estimated graph W :

||W || = 1

b

b−1∑
i=0

n−1∑
j=0

n∑
k=1

|W i,j,k|, (4.21)

where b is the batch size, yielding the loss function:

l(y, ŷ) = MAE(y, ŷ) + ||W ||. (4.22)
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4.4.3 The Datasets and Metrics

The models described in Section 4.4.1 are evaluated on their predictive performance
on METR-LA and PeMS-Bay datasets, which are commonly used in evaluating traffic
prediction models. In this subsection we describe these datasets briefly and two ways to
construct their graphs. The two datasets are collections of speed readings from vehicles
driving over loop detectors across two traffic networks. The readings of the loop detectors
have been summarised into sequences of five-minute averages of observed speeds of
vehicles that passed over the loop detectors.

The METR-LA dataset is a network of 207 loop detectors in Los Angeles County. It is a
subset of the larger set of 8,900 sensors introduced by Jagadish et al. (2014). The dataset
contains 23,974, 3,425 and 6,850 training, validation and testing sequences respectively.
The PeMS-Bay dataset consists of speed readings 325 loop detectors from the San Francisco
Bay Area (Li et al., 2018a). The dataset is split into 36,465, 5,209 and 10,419 training,
validation and testing sequences respectively. The input data to the encoder and decoder
is z-normalised, where the mean and standard deviation are computed from the training
set. The target sequences are not normalised; therefore the model is trained to map
normalised speeds to unnormalised speeds.

To construct any graph from real-world data we need to make two decisions: (1) Which
set of elements of the dataset constitute the vertices? (2) What are the criteria by which
we decide whether two elements of that set are related, i.e., how do we decide which
vertices to connect to one another? For traffic data, the vertices usually represent the
sensors, in this case the loop detectors in the METR-LA and PeMS-Bay datasets. The crux
of the construction is how vertices are connected, usually by reference to some material
relationship between the vertices; i.e. it is not random.

In Section 4.3.2, we described the topological graphs computed using a thresholded
Gaussian kernel over the road distance between the sensors to compute the edge weights
in the sensor graph. There are two issues with the graph constructed by Li et al. that mean
we must alter the graph. Firstly the graphs contain diagonal entries that are always 1,
effectively giving them all self-loops. We remove these entries, because there is already
a self-loop implicit in the definition of the diffusion and attention convolutions. In the
diffusion convolution, it is there by default as the zeroth diffusion step, the identity matrix,
and in the attention mechanisms a self-loop on each vertex is implicit in their definitions.
There are also some disconnected vertices in each graph. In the METR-LA graph, there
is 1 disconnected vertex, and 6 disconnected vertices in the PeMS-Bay graph. We delete
the disconnected vertices and use the resultant graph in the experiments. The reduced
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graphs therefore have 206 instead of 207 vertices for the METR-LA dataset and 319 instead
of 325 vertices for the PeMS-Bay dataset.

The models are assessed on the basis of three metrics, lower values of all representing
a better prediction. The first metric is the MAE (Eq. 4.20), which measures the average
absolute deviation of the predicted value from the target value. The second metric, the
root mean squared error (RMSE),

RMSE(y, ŷ) =
1

nt

t∑
j=1

n−1∑
i=0

(y(i, j)− ŷ(i, j))2 , (4.23)

measures the quality of the predictions, namely how far from the target value the predicted
values lie. A large RMSE relative to the MAE will indicate that the model is making
outlandish predictions. By extension, if two models are measured to have a similar MAE,
by comparing the RMSE we can measure the relative stability of the prediction errors.
The third metric, the mean average percentage error (MAPE),

MAPE(y, ŷ) =
1

nt

t∑
j=1

n−1∑
i=0

y(i, j)− ŷ(i, j)
y(i, j)

, (4.24)

measures the relative error of the predicted values with respect to the target value. For
example, in the traffic dataset, an error of 5 m.p.h. is a more significant error when the
correct speed is 10 m.p.h. than when it is 20 m.p.h.

We follow the example of Cai et al. (2020) by excluding datapoints in the measurement
where the true value y(i, j) is zero for two reasons: (1) no prediction is necessary at these
points; and (2) a zero speed would lead to a zero-division error in Eq. 4.24.

4.4.4 Hypotheses

In the analysis of our results we test the following hypotheses:

Hypothesis 1 The directed diffusion layer attains lower prediction errors than the GAT
and the directed GAT when the problem is structured using the modified original
graph.

Hypothesis 2 2-step directed diffusion will attain a lower prediction error than the 1-step
directed diffusion when the problem is structured using the modified original graph.
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We believe that the directed diffusion will produce more accurate predictions compared
to the attention methods. We also expect that 2-step diffusion will produce more accurate
predictions than 1-step diffusion because it can model more elaborate interactions.

Hypothesis 3 The GAT and directed GAT will make better predictions when the graph is
estimated compared to the original graph.

We believe that graph estimation will produce a more informative graph if it is learned
on the learning objective than if it is fixed.

Hypothesis 4 The fusion of the static and dynamic graphs will yield a estimated graph
that reduces the prediction error compared to a graph that is estimated on a single,
undifferentiated stream of information.

We believe that the static and dynamic graphs will encode different kinds of information
as we described above because the dynamic changes observed in the short-term data
will inform the structure and thus the traffic prediction.

Hypothesis 5 The GAT and directed GAT will attain lower prediction errors than the
directed diffusion model when the graph for each is estimated.

Hypothesis 6 The directed GAT will attain a lower prediction error than the GAT when
the graph is estimated.

Since a fully attention-based model uses both global and local attention, the capacity of
the model is greater than the graph-estimating traffic model using directed diffusion.
The directed diffusion model cannot flexibly alter the contributions of vertices within
diffusion steps like the attention approaches can. We also expect that the directed GAT
will attain a lower prediction error than the GAT since the directed GAT assigns in- and
out-edges separate coefficients, whereas the GAT does not.

Hypothesis 7 The prediction error over time will increase at a lower rate when the graph
is estimated as opposed to when it is fixed.

Predictions made that lie further away in time from the period covered by the dataset are
less accurately predicted. This problem worsens with distance in time. Because we allow
the graph estimation to produce a graph according to the input data, the graph estimation
is able to produce a graph that is more relevant to structure of the data it presently sees.
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Table 4.1: The prediction errors of each model on the PeMS-Bay dataset at 15,
30 and 60 minutes. The best results appear in bold; the second-best results are
underlined. This table of results has been adapted from Kenning and Xie (2023).

Models on PeMS-Bay MAE MAPE RMSE
Estimation 15’ 30’ 60’ 15’ 30’ 60’ 15’ 30’ 60’

None

Attention 2.787 2.841 2.885 6.575 6.686 6.773 4.810 4.915 5.018
Directed attention 2.652 2.681 2.704 6.450 6.505 6.533 4.656 4.719 4.782

1-step diffusion 2.730 2.791 2.837 6.424 6.573 6.684 4.711 4.827 4.931
2-step diffusion 2.741 2.782 2.812 6.452 6.537 6.594 4.757 4.844 4.924

Simple

Attention 2.615 2.642 2.659 6.386 6.424 6.438 4.631 4.682 4.732

Directed attention 2.627 2.657 2.684 6.331 6.383 6.439 4.598 4.668 4.743
1-step diffusion 2.754 2.802 2.836 6.522 6.611 6.673 4.770 4.870 4.961
2-step diffusion 2.718 2.756 2.784 6.410 6.485 6.536 4.717 4.800 4.879

Static–
dynamic

Attention 2.634 2.660 2.680 6.368 6.406 6.430 4.640 4.693 4.751

Directed attention 2.659 2.680 2.710 6.476 6.479 6.510 4.647 4.699 4.777
1-step diffusion 2.759 2.798 2.835 6.518 6.594 6.663 4.769 4.853 4.943
2-step diffusion 2.743 2.782 2.812 6.565 6.656 6.723 4.759 4.840 4.920

Table 4.2: The prediction errors of each model on the METR-LA dataset at 15,
30 and 60 minutes. The best results appear in bold; the second-best results are
underlined. This table of results has been adapted from Kenning and Xie (2023).

Models on METR-LA MAE MAPE RMSE
Estimation 15’ 30’ 60’ 15’ 30’ 60’ 15’ 30’ 60’

None

Attention 4.894 5.089 5.463 13.457 13.877 14.603 7.515 7.798 8.285
Directed attention 4.880 4.717 4.695 13.926 13.541 13.476 7.755 7.678 7.748

1-step diffusion 4.657 4.686 4.927 13.521 13.486 13.852 7.415 7.495 7.812
2-step diffusion 5.008 5.160 5.415 13.318 13.541 13.937 7.653 7.893 8.253

Simple

Attention 4.670 4.719 5.007 12.748 12.756 13.214 7.326 7.460 7.842
Directed attention 5.521 5.403 5.520 14.766 14.351 14.488 8.356 8.366 8.604
1-step diffusion 4.230 4.353 4.732 11.656 11.880 12.577 6.766 6.989 7.473

2-step diffusion 4.529 4.632 4.924 13.629 13.781 14.229 7.363 7.440 7.760

Static–
dynamic

Attention 4.308 4.314 4.438 12.452 12.328 12.492 7.119 7.137 7.326
Directed attention 4.980 4.869 4.914 14.350 13.915 13.907 7.846 7.836 8.016
1-step diffusion 4.289 4.456 4.771 11.892 12.173 12.784 6.852 7.097 7.531
2-step diffusion 4.374 4.336 4.413 12.503 12.251 12.251 7.133 7.083 7.208

4.5 Results

For each dataset we present a table of results across three metrics, MAE, MAPE and
RMSE, measured on the predictions of each model. We assess the prediction errors against
the hypotheses we enumerated in Section 4.4.4.
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4.5.1 PeMS-Bay

In the full table of results on the PeMS-Bay dataset presented in Table 4.1, we observe
that, contrary to our expectations in Hypothesis 1, the directed attention layer attains the
lowest average errors when there is no graph estimation. Directed diffusion is however
fairly consistently the runner-up, more often two-step than one-step directed diffusion,
outperforming undirected convolution, meaning Hypothesis 1 can be partly accepted.

To test Hypothesis 3, we compute the error difference between no graph estimation
and the two kinds of graph estimation at sixty minutes on the three metrics within each
model. We visualise the differences as graphs in Fig. 4.2. It is clear to see that simple
graph estimation is a help, but the static–dynamic fusion of graph structures is apparently
a hindrance. It is a greater help to the GAT than the directed GAT.

To test Hypothesis 4, we again study the bar-graphs in Fig. 4.2. The static–dynamic
fusion clearly worsens the prediction error in comparison to no graph estimation. The
simple graph estimation on the contrary lowers the prediction error. The one-step
directed diffusion is the exception in both cases. The degradation and improvement of
performance is however negligible. The largest improvement in the bar-graphs is 0.335
in the MAPE for the attention model.

The two GAT variants attain lower prediction errors than the directed diffusion
variants when the graph is estimated, confirming Hypothesis 5. The confirmation
is not total, however. The prediction error of the undirected GAT is consistently the
worst-performing model when the graph is not estimated but the directed GAT is the
best. Interestingly, the undirected GAT largely outperforms the directed GAT on average
when the graph is estimated; consequently we cannot accept Hypothesis 6, especially
as the differences are so small.

4.5.2 METR-LA

In the full table of results on the METR-LA dataset is presented in Table 4.2 we observe
in contradiction to our expectations in Hypothesis 1 that the two-step directed diffusion
layer does not attain the lowest prediction errors. On only one metric does it obtain the
lowest error, namely at the 15-minute prediction horizon according to MAPE. Otherwise
it attains the highest or second-highest error. Indeed, a complete reversal appears to us, as
often the 1-step diffusion has the lower errors, meaning we have to reject Hypothesis 2.
The messiness of the results corresponds to the reputed difficulty of the dataset.

To test Hypothesis 3 by computing the error difference between no graph estimation
and the two kinds of graph estimation at sixty minutes on the three metrics within each
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model. We visualise the differences as graphs in Fig. 4.2. On all models but the 1-step
directed diffusion, the fusion of the static and dynamic graph estimations reduces the
prediction error. The simple graph estimation reduces the errors in all cases but the
directed attention layer. In all but two cases, then, graph estimation reduces prediction
error, confirming Hypothesis 3.

We turn again to Fig. 4.2 to draw our conclusions about Hypothesis 4. The static–
dynamic graph estimation leads to superior performance on average over simple graph
estimation only on directed diffusion. The performance of the 2-step directed diffusion
with static–dynamic graph estimation is roughly on par with the same model with simple
graph estimation. The performance of GAT with static–dynamic graph estimation is on par
or worse. The performance of the 1-step directed diffusion is a little worse than no graph
estimation; simple graph estimation is barely better. What we do see however is that in
three cases (1- and 2-step directed diffusion and attention) the MAPE is substantially lower
when a graph structure is learned. MAPE measures the relative dispersion of the prediction
from the target. Graph estimation appears to reduce the dispersion around the target.

Regarding Hypothesis 5, we see that it is partially confirmed in observing Fig. 4.2. The
undirected GAT undergoes a reduction in prediction error with both graph-estimation
schemes. The directed GAT’s prediction error only reduced with static-dynamic graph
estimation, however. We cannot confirm Hypothesis 6, however, since the directed
GAT performs worse than the undirected GAT across the board when some graph
estimation technique is used.

4.5.3 Post-hoc Analyses

In the post-hoc analyses we study (1) the errors over time and then (2) the structure of the
estimated graphs for each model and each graph estimation strategy.

4.5.3.1 Data Comparisons

First in the post hoc analyses, we will measure the prediction error as the observations over
time for the test set. We present the errors on the test set over time as three-hour rolling
averages of the test error on the PeMS-Bay (Fig. 4.3) and METR-LA (Fig. 4.4) datasets.
The purpose of the rolling average is to flatten out cyclical errors in the daily and weekly
cycles. In respect of Hypothesis 7, it is difficult to discern any trends in error on the
METR-LA set in Fig. 4.4, but we can see a tendency for the error to increase over time
in general, irrespective of model, on the PeMS-Bay dataset in Fig. 4.3. The same trend
is visible when we fit a linear regression on the three-hour rolling average and consider
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Table 4.3: For each model and strategy we fit a linear regression on the test prediction
errors on each dataset. The matrices below gives the slopes of each regression for
the PeMS-Bay and METR-LA datasets respectively. Positive values represent errors
that increased with time; negative values represent errors that decreased with time.

PeMS-Bay
Graph
estimation
strategy

Directed diffusion Attention Directed
Attention

1-step 2-step

None 4.8× 10−5 1.3× 10−5 −1.4× 10−5 2.0× 10−5

Simple 1.3× 10−5 7.2× 10−6 −7.3× 10−6 1.5× 10−5

Static–dynamic 3.6× 10−6 2.4× 10−5 −1.0× 10−5 2.5× 10−5

METR-LA
Graph
estimation
strategy

Directed diffusion Attention Directed
Attention

1-step 2-step

No −1.6× 10−4 −4.3× 10−4 −3.3× 10−4 2.3× 10−4

Simple −2.7× 10−4 −1.4× 10−4 −2.0× 10−4 5.5× 10−4

Static-dynamic −2.5× 10−4 3.1× 10−5 −5.4× 10−6 2.5× 10−4

the gradient. Table 4.3 shows an increase in the error over time on PeMS-Bay. We can
also see that occasionally the gradients are lower for the learned graphs. But there are
no discernable trends and so we have to reject Hypothesis 7. For the METR-LA dataset,
we cannot conclude anything with confidence, namely that graph learning is consistently
reducing that error. A proper analysis would require much longer stretches of data and
much broader windows of time in the rolling windows.

A very noticeable difference on the METR-LA dataset in Fig. 4.4 is the period between
the 1,000th and 3,000th windows, where the graph estimation using static–dynamic fusion
suppresses the high proportion of errors present in the other models, with the exception
of directed diffusion. Further analysis of the missing data in the test set, visualised in
Fig. 4.5, reveals that in this period there is a high concentration of missing data. The same
visualisation also explains the disturbance around the 3,750th window in Fig. 4.4 for the
directed attention models. It seems that static–dynamic attention is largely able to resist
the error to which simple graph estimation is very susceptible. The model structured by
the original graph, and so with no estimated graph, avoids the error altogether.

The suggestion that errors will increase over time, as we see in Fig. 4.3, is a sensible
suspicion. That we do see the error increasing suggests perhaps that the model would
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benefit from some sense of the global passage of time, some awareness of the distance
of unobserved samples from the last training point.

4.5.3.2 Structural Comparisons

In this section we compare the topological graphs that accompany the METR-LA and
PeMS-Bay datasets, which we term here the “original graphs”, and the two-step diffusion
graph with a set of estimated graphs from each model. We sampled 20 observations
uniformly randomly from the test set, computed their respective estimated graphs and
took their average structure. Each edge in the average structure is thus an average of the
the same edge in the 20 estimated graphs. In Figs. 4.6 and 4.7 we have visualised the
average estimated graphs. Henceforth we will refer to these graphs simply as “estimated
graphs” for simplicity’s sake.

We observe firstly that, in stark contrast to the originals graphs, the estimated graphs
are very dense. This is evident in a comparison of the visualisations and the minima,
maxima, means and medians of the edge weights presented in Tables 4.5 and 4.6. The
graphs estimated on the PeMS-Bay dataset are completely dense, where the minimum in
any graph was never zero; although, interestingly, the more difficult dataset METR-LA led
to graph estimations with some zero edge weights. It is difficult to understand why, if
the reason is not that the vertices are all helpful in the comparatively simple PeMS-Bay
network, where it is paradoxically more difficult for the algorithm to wholly rule out certain
vertex pairings. A consequence is that optimisations of later convolutions that leverage
sparsity are ineffective; computation with the estimated graphs is hence protracted. It
is clear that neither dropout—which at least speeds training up—nor L1 regularisation
of the graph’s edge weights sufficiently low to be excluded with the threshold. In other
words, the techniques we used failed to sparsify the graphs.

We can also see in Figs. 4.6 and 4.7 that the attention mechanism is modifying whole
columns and rows, visible as the conspicuous lines that criss-cross the graph visualisations.
It is clear that the attention coefficients of a given vertex strongly determine the edge
weights of its adjacent edges. We can also see consistent patterns in the vertices that
the graph estimation strategies are selecting as relevant. The greatest difference in
these patterns occur in the 1-step diffusion models, especially in the simple strategy of
graph estimation. Namely we see that the strength of the horizontal lines is greater
than that of the vertical lines.

The coefficients of the models show that there are roughly equal mixtures of the
static and dynamic graphs with slight preferences for one structure or another in some
attention heads; see Tables 4.7 and 4.8. There is no overwhelming preference for one
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Table 4.4: The time to train each model in hours:minutes:seconds. Training time
includes the training and validation steps, recording the results for Tensorflow, the
final save of the model’s weights and saving the raw outputs of the model to disk.

Models PeMS-Bay METR-LAEstimation

None

Attention 86:01:04 30:12:25
Directed attention 85:12:54 33:05:29
1-step diffusion 121:48:42 38:15:20
2-step diffusion 115:23:35 39:18:05

Simple

Attention 78:02:12 41:00:41
Directed attention 127:32:35 40:57:20
1-step diffusion 195:08:29 84:18:21
2-step diffusion 197:30:40 88:35:95

Static–dynamic

Attention 87:30:07 43:28:22
Directed attention 137:03:32 44:18:14
1-step diffusion 218:13:40 128:27:31
2-step diffusion 210:15:05 133:34:33

stream of information or another (static/long-term vs. dynamic/short-term) in either
the simple or fused graph estimation.

Curiously, specifically in the PeMS-Bay dataset, there are a few communities in the
bottom-left corner of the 2-step diffusion that are assigned quite low scores in the graph
estimation. The 2-step diffusion graph is interesting to consider because it is where the
convolution is expanding the neighbourhood to include vertices at a distance. The idea
behind that expansion of the neighbourhood was to capture long-distance effects in the
network. It suggests that at the very least the structure determined by geographical
distance does not furnish the algorithm informatively.

4.5.4 Runtimes

The runtimes for the models are presented in Table 4.4. Directed attention appears to
require minimal overhead in comparison to undirected attention. Meanwhile one- and
two-step diffusion consistently have a larger overhead in training than the attention-
based methods. This is unsurprising since the computation of the diffusion matrix is a
O((k − 1) · 2 · n3) for k diffusion steps. The computational burden is hence magnified
when the graph is estimated; as illustrated in Figs. 4.6 and 4.7; in this case, since each input
sample is associated with a graph, the diffusion matrix is computed as many times as
there are samples in the batch at each training step. Although interestingly the difference
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between 1- and 2-step diffusion is not as drastic as expected: in some cases, 2-step diffusion
is faster than 1-step diffusion to train.

The attention mechanism is comparatively simpler, having a much smaller overhead,
since the global attention coefficients are simply directly incorporated into the convolution.
Indeed, overall, the time to train the attention-based techniques when graph estimation
is added is tolerable in comparison to the differences between graph estimation and
none for directed diffusion. A second surprising result is that directed attention is on
two occasions quicker to train than attention, despite the added overhead of a broader
attention mechanism (compare no graph attention on PeMS-Bay and simple graph
convolution on METR-LA).

Overall it seems that the graphs estimated for the PeMS-BAy datasets lead to a greater
overhead overall. The undirected attention appears to be barely affected by the dataset, but
a significant training burden is imposed on the directed attention and directed diffusion
models when graph estimation is introduced on the PeMS-Bay dataset.

4.6 Discussion

Before we begin the discussion, we must note a few general facts. The METR-LA dataset is
regarded as more difficult than the PeMS-Bay (Li et al., 2018a). That METR-LA is more
difficult is clear from the elevated errors above PeMS-Bay in our results (Tables 4.1 and 4.2)
and the common periods of difficult in the predictions on METR-LA (Fig. 4.4). Secondly,
in respect of earlier papers, we have been unable to replicate the results. The design
of our models, with the exception of the graph estimation modules, closely follows the
traffic transformer presented by (Cai et al., 2020). We contacted the authors to ask for
comment on our results but we received no response.

On both datasets the models where the graph is estimated in some way generally
outperform the models using the default topological graph. The error on the diffusion
models is likewise ameliorated. In the few cases where graph estimation does not help,
the error worsens by no more than 1 mile an hour on MAE. It is clear therefore that by
means of graph estimation a model can discover structures that are otherwise present
neither in the original graph nor diffusion graph.

Whether attention improves prediction on average is not clearly confirmed one way
or another in our results according to the tables of results Tables 4.1 and 4.2. On the
PeMS-Bay dataset, directed attention performs best without graph estimation. With graph
estimation it stands largely second-best to undirected attention. On the METR-LA dataset,
however, directed attention figures as best or second-best only when there is no graph
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Table 4.5: The minima, maxima, means and medians of the weights of the original
graph, the 2-step diffusion graph and the estimated graphs on 20 uniformly randomly
sampled observations from the test set of the PeMS-Bay dataset. The statistics
on the estimated graphs is the minimum etc. across all graphs before the average
graph is computed. “A” is attention, “DA” is directed attention, “1d” is 1-step diffusion
and “2d” is 2-step diffusion.

Stats Original 2-step
diffusion

Simple
estimation

Static–
dynamic

A DA 1d 2d A DA 1d 2d

min. 0.00 0.00 0.71 0.67 0.66 0.61 0.53 0.58 0.68 0.68
max. 2.00 3.42 3.39 3.19 3.14 2.93 3.07 3.30 3.15 3.22
mean 0.03 0.06 2.93 2.78 2.72 2.53 2.61 2.84 2.73 2.78
median 0.00 0.00 3.00 2.84 2.79 2.59 2.69 2.93 2.80 2.85

Table 4.6: The minima, maxima, means and medians of the original graph, the
2-step diffusion graph and the estimated graphs on 20 uniformly randomly sampled
observations from the test set of the METR-LA dataset. The statistics on the esti-
mated graphs is the minimum etc. across all graphs before the average graph is
computed. “A” is attention, “DA” is directed attention, “1d” is 1-step diffusion and “2d”
is 2-step diffusion.

Stats Original 2-step
diffusion

Simple
estimation

Static–
dynamic

A DA 1d 2d A DA 1d 2d

min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max. 2.00 2.77 4.62 2.51 4.17 5.44 4.59 5.54 5.57 5.82
mean 0.03 0.06 3.22 1.61 3.00 3.79 3.25 4.09 4.05 4.22
median 0.00 0.00 3.09 1.69 3.01 3.67 3.45 4.31 4.30 4.27

estimation. When there is graph estimation, the 1-step diffusion is predominately better.
Directed attention never vies for first or second place when graph estimation is used.

A similarly mixed picture presents itself with respect to the average errors with the
different strategies to graph estimation. On the PeMS-Bay dataset, the best models using
simple graph estimation attain better predictions on average across the board than the best
models using static–dynamic fusion. Additionally the second-best models using simple
graph estimation outperform the second-best of those models using static–dynamic fusion.
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Figure 4.2: The difference between the error when there is no graph estimation
and simple graph learning (blue) and the static–dynamic graph learning (orange) at
sixty minutes for each metric on each dataset. Each plot is a comparison within a
single model. The y-axes of each graph have the same range to allow comparison
of differences between models.
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Figure 4.3: A linegraph plotting the rolling average in three-hour windows on the
test set of the PeMS-Bay dataset. In a few places graph estimation flattens spikes in
the error.
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Figure 4.4: A linegraph plotting the rolling average in three-hour windows on the
test set of the METR-LA dataset. Note that between the 1,000th and 3,000th hours
the error consistently rises except in the directed attention model.
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Figure 4.5: The proportion of sensors with missing data was computed at each
timestep and a three-hour rolling average was taken over the predictions on test
sequence on the METR-LA dataset. This figure has been adapted from Kenning
and Xie (2023).
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Figure 4.6: The figure visualises the original graph of the PeMS-Bay dataset and
the learned graphs of each estimation approach. The first row are visualisations
of the topological graphs—on the left the original graph and on the right the two-
step diffusion graph. The remaining rows are divided into two columns. Each row
corresponds to a model. The visualisations on the left come from the simple graph
estimation, and the columns on the right come from static–dynamic fusion.
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Figure 4.7: The figure visualises the original graph of the METR-LA dataset and
the learned graphs of each estimation approach. The first row are visualisations
of the topological graphs—on the left the original graph and on the right the two-
step diffusion graph. The remaining rows are divided into two columns. Each row
corresponds to a model. The visualisations on the left come from the simple graph
estimation, and the columns on the right come from static–dynamic fusion.
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Table 4.7: The average (µ) and standard deviation (σ) of the set of mixture coeffi-
cients β of each model and graph estimation strategy on the METR-LA dataset. A
value more than 0.5 indicates that the static graph is weighted more heavily. A value
less than 0.5 indicates that the dynamic graph is weighted more heavily.

Model, strategy µ σ

Attention, simple 0.502 0.055
Directed attention, simple 0.499 0.057
1-step diffusion, simple 0.503 0.057
2-step diffusion, simple 0.488 0.055
Attention, fused 0.498 0.009
Directed attention, fused 0.500 0.010
1-step diffusion, fused 0.502 0.013
2-step diffusion, fused 0.504 0.007

Table 4.8: The average (µ) and standard deviation (σ) of the set of mixture coeffi-
cients β of each model and graph estimation strategy on the PeMS-Bay dataset. A
value more than 0.5 indicates that the static graph is weighted more heavily. A value
less than 0.5 indicates that the dynamic graph is weighted more heavily.

Model, strategy µ σ

Attention, simple 0.503 0.049
Directed attention, simple 0.496 0.049
1-step diffusion, simple 0.497 0.051
2-step diffusion, simple 0.489 0.048
Attention, fused 0.494 0.013
Directed attention, fused 0.506 0.015
1-step diffusion, fused 0.499 0.013
2-step diffusion, fused 0.497 0.016

The graph estimation strategies distinguish themselves best on the METR-LA dataset.
It is not clear initially from the average prediction errors alone that the graph strategies are
much better than the others: a more complicated picture emerges from that perspective.
While the best models using simple graph estimation are better than the best ones using
static–dynamic fusion in the short-term, the second-best models using simple graph
estimation are worse than the second-best ones using static–dynamic fusion. In the
long-term (i.e. 60 minutes) the static–dynamic graph estimation is better. We can see
some similarities in the performance improvements compared to no graph estimation by
studying Fig. 4.2. Directed attention and 2-step diffusion experience similar profiles of
improvement and worsening on the three metrics for simple and static–dynamic graph
learning respectively. Undirected attention and 1-step diffusion experience similar profiles
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of improvement on the three key metrics with simple graph learning. Static–dynamic
graph learning improves undirected and directed attention and 2-step diffusion in similar
ways, although 2-step diffusion is improved to a greater degree. 1-step diffusion does not
undergo any significant improvements or worsening in error with graph estimation on
both datasets, with the exception of simple graph estimation on the METR-LA dataset,
where the greatest difference is in the MAPE.

The greatest and most significant differences manifest themselves in the three-week
rolling average of the MAE, as we remarked in Section 4.5.3.1. Further analysis in Fig. 4.5
shows that at points of high concentrations of missing data, the static–dynamic fusion is
better able to correct itself than the other models. The static–dynamic fusion approach is
therefore generally more robust to missing data than no estimation and even the simple
graph estimation. This fact is bourne out in comparison with simple graph estimation,
which, in combination with directed attention, undergoes a significant surge in error
around the 3,750th window in Fig. 4.4. In studying Fig. 4.5, it is clear that static–dynamic
fusion is able to balance the two sources of information from the long- and short-term,
which is what renders it more robust to error. Moreover, even if the predictions are on
average as accurate or only less accurate, the models using the static–dynamic fusion for
graph estimation are more robust to missing data. The only exception is the directed
attention with no estimation at all, which appears to be better on the test set than directed
attention fed by a graph formed of static–dynamic fusion.

The graphs estimated in both approaches are both extremely dense. As we remarked
in Section 4.5.3.2, there are conspicuous lines that criss-cross the graph visualisations. It
suggests that vertices are globally determining the contributions in neighbourhoods. The
structure is thus significantly different from the original and diffusion graphs in that it
includes more global connections. We believe that the graph estimations are learning
redundant edges, which is the reason that predictions are so stable in comparison to
the other models (see Fig. 4.4). The static–dynamic architecture might be producing
redundant structures that are separately discovered in the long- and short-term sequences.
The dropout layer after the two structures are merged could account for the high-level
of redundancy in the structure, in which case it is producing a dense graph.

Our observations of the error over time, in light of the proportion of missing data
in the METR-LA dataset and the dense but highly distributed and redundant structure
in the graph, lead us to two conclusions: (1) the static–dynamic fusion is able to correct
for an over-reliance on new information by considering old information flexibly; and
(2) the high level of redundancy in the traffic graphs improves the robustness of the
model to missing data by drawing traffic information from several sources. The two
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conclusions would explain why the static–dynamic fusion approach to graph estimation
lowers sensitivity to missing data across the board.

4.7 Summary

The difference between the performances of the models on the PeMS-Bay and METR-LA
datasets is likely a matter of data complexity. As has been remarked in earlier work (Li et al.,
2018a), the METR-LA traffic network has more complicated traffic conditions than the PeMS-
Bay dataset. Certainly the graph estimation approaches are leaving the predictions more
robust to sudden changes, and combined with the directed graph attention it is yet stabler.

Certainly there is room for improvement. The differences in performance between the
four convolutional approaches are not significant on average. The advantage afforded by
the directed attention is principally visible in the stability of the error, which is apparently
better still than the static–dynamic fusion of information. The static–dynamic fusion
technique needs to be refined, though. The last third of the METR-LA test set is curious
(Fig. 4.4). It is not clear why the static–dynamic estimation causes such an error, whereas
elsewhere it is more stable than no graph estimation.

There are several aspects of the fusion approach that need to be addressed. (1) Density.

As we observed, the graphs are very dense and it leads to inefficient models. If the graph
is detecting redundant edges that help robustness, this is good, but too many redundant
edges is computationally suboptimal. Some means of pruning the graph more harshly
is necessary; the L1 norm and dropout are not alone sufficient—and dropout may even
be making it worse. A simple threshold is desirable but arbitrary, and would need to
be theoretically justified. We noticed that the median value on the original graph and
diffusion graph is zero. Perhaps a target of keep the median as close to zero as possible
would serve to counteract the tendency to very dense graphs. As we avoided the use of
softmax in the graph estimation’s attention mechanism, for reasons given in Section 4.3.3,
we had no means of normalising the weights of the graph, which constitutes another
point of improvement. (2) Efficiency. A sparser graph would lead to more efficient
calculations. A second speed-up would come from the way the graph is used. Instead
of using the attention coefficients to build a much larger graph, perhaps they could be
used directly in the convolutional layers.
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5.1 Introduction

Graph-based deep learning approaches have been applied in a notably different way to
the prediction of molecular properties. It is common in the literature on graph deep
learning for molecular representations to consider both vertex and edge features (see
Sections 2.5.6 and 2.6.3). Edge features are incorporated into convolutions on molecular
graphs in various ways. They can be included in the convolution itself (Yang et al., 2019;
Gasteiger, Groß, and Günnemann, 2020; Gasteiger et al., 2020). Alternatively the edge
features can be fed to a separate pipeline based on edge adjacencies, which has a similar
form to linegraphs, as node-central and edge-central encoders (Kearnes et al., 2016; Ma
et al., 2022). The cross-dependent multi-view graph neural network proposed by Ma
et al. (2022), for example, considers the atom and bond features equally for constituting a
molecular representation. It consists of a node-central and edge-central autoencoder for
propagating the features of vertices and edges. The representations learned for each are
used in the other’s aggregation function in the next propagation step. Although implicitly
used, as far as we know, linegraphs have never been explicitly used in the literature.

The aforementioned methods principally concern the features on vertices and edges that
exist in the molecular graph. Other methods introduce mechanisms to learn higher-order
interactions on the graph. Maziarka et al. (2020) modified a transformer architecture (see
Section 2.4.2.1) to apply attention over the molecular graph’s attention matrix augmented
by an identically shaped matrix of interatomic distances—which in fact could be replaced
by any other measure of proximity or relation. The model is therefore able to attend over the
entire molecule. Additionally the model contains a dummy vertex that connects to every
vertex in the graph. Interestingly, the addition of edge features to the model worsened
results. The HMGNN (Shui and Karypis, 2020) compiles higher-order interactions in
the graphs by composing a global representation from several orders of partial structure
in a heterogeneous graph, so-called many-body interactions. Although representations
are passed between orders, the final output of each order is learned as a separate task,
so the whole model operates as a multi-task problem. Removing these connections
between orders worsens the performance.

The ever-present question is what interpretative advantage higher-order interactions
grant a model that their absence removes. Few answers are apparent in the literature.
We speculate that the global features are representing intramolecular interactions in the
molecule. Various forces act upon a molecule that are relevant to a graphs, forces that
act upon the particles in a molecule in ways beyond what is specified by chemical bonds.
For example, van der Waals forces occur within molecules between chemically unbonded
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atoms and the structure of large proteins is determined by intramolecular forces. The
simple model of chemically bonded atoms represented as a graph does not immediately
capture these intermolecular forces. Alternatively the learned global representations
might also represent outside forces or surfaces in the molecule that act as a repository for
information during specialisation (Xia et al., 2022; Xiong et al., 2020). Global features or
dummy vertices (Gilmer et al., 2017; Maziarka et al., 2020) and many-body interactions
(Shui and Karypis, 2020). Alternatively, as we propose here, one could however capture
these excluded forces (Xiong et al., 2020) by representing them as a complement graph.
Moreover one could infer and learn these interactions from molecular features using
some graph estimation approach. This thought motivates our use of complement graphs
to estimate molecular structure.

There is an additional advantage in estimating the graph complement rather than the
full graph. In full graph estimation, as in Section 4.3.3, the full weight matrix of the graph
was computed using an attention mechanism. The attention mechanism is of a fixed size,
of course, and does not grow with the size of the graph; but the number of computations
means that an attention coefficient is computed for every pair of vertices in the graph,
for which a gradient has to be computed, n2 in total. We had to use various mechanisms
during training to reduce this load, such as a weight threshold and a dropout layer. In
contrast, the estimation of graph complements entails that only a subset of the weights
need to be estimated, specifically n2 −m, where n is the graph order, i.e., the number
of vertices, and m is the graph size, i.e., the number of edges.

The directed graph is likewise a useful tool in graph learning. In DimeNet (Gasteiger,
Groß, and Günnemann, 2020; Gasteiger et al., 2020) a directed graph is used to model vertex-
wise interactions with neighbours, specifically the relative contributions of neighbours
to a focal vertex with respect to bonding angle and atomic distance. Yang et al. (2019)
proposed the use of a directed graph to prevent tottering by preventing message updates
from receiving the contributions of non-adjacent directed edges, a technique that they
call bond-level message-passing.

In this chapter we propose several advances on previous approaches. Firstly we
design a method to approximate intramolecular structures from molecular features to
complement the chemical structures represented in the molecular graph. We expect
that the estimated structure will reflect higher-order, longer-distance interactions in the
molecule. Consequently, since the propagation is broadened by the estimation of additional
structure, we expect that the optimal number of propagation steps will be lower with
graph estimation than without. At the core of the graph estimation approach is a new
graph formulation, the complement graph, which reduces the number of parameters to
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estimate in the graph estimation procedure. The graphs we use are directed. We therefore
use the a modified version of the directed attention-based graph convolution proposed
in Section 4.3.4.1. Convolution is performed on the predefined and estimated graphs
separately, which allows the model to factorise contributions over the vertex and edge
features into chemical bonds on the one hand and intramolecular forces on the other. The
model is thus equipped with the interpretive power to distinguish the two structures,
unlike Maziarka et al. (2020), in addition to distinguishing two pipelines for vertices and
edges, as in Kearnes et al. (2016) and Ma et al. (2022).

5.2 Proposed Approach

We propose a new approach to joint graph estimation on molecules that we term complement
learning. The basis of complement learning is the complement graph, which together with
the molecular graph is the basis for the propagation of vertex features. We also use the
complement of a linegraph to learn the propagation of edge features. The contributions
of this chapter are the following:

1. a new graph which we refer to as the complement graph;

2. a new way to learn edge features that is structured jointly by a linegraph and linegraph
complement;

3. a new graph estimation strategy that leverages the complement graph; and

4. a new model for learning graph complements end-to-end for molecule representation
learning.

5.3 Methodology

In this section we describe the methodology used to estimate graphs on molecules that are
applied in predicting molecular properties. In Section 5.3.1 we describe in theoretical terms
what the graph complement is. In Section 5.3.2 we describe how we estimate the graph
complement. Finally in Section 5.3.3 we describe the model in which we learn the graph
complements end-to-end and how they are used in learning molecular representations.

5.3.1 The Graph Complement

The graph complement G = (V,E) is constructed on a graph G = (V,E). G shares the
same vertex set V as G, but they differ in the edges. For an undirected graph G the
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edge set E is may be described as a subset of the set of unordered pairs of V denoted
V = {{x, y} | ∀x, y ∈ V } where {x, y} is an unordered pair. The graph complement’s
vertex set is therefore defined as E = V \E. In other words, the edges inG are those edges
that are not present in G. The directed graph complement is defined similarly. Overloading
notation, let V = {(x, y) | ∀x, y ∈ V } denote the set of ordered vertex pairs (x, y) over
V of a directed graph G.

The linegraph complement is again defined similarly. As we described in Section 2.5.2.5,
the linegraph L(G) is defined on an underlying graph G = (V,E) is defined L(G) =

(E(G), EL), where EL records the adjacencies between edges E in the underlying graph
(see Section 2.5.2.5). We define the linegraph complement as L(G) = (E(G), EL), such
that EL = EL \ EL, where EL is the set of unordered pairs of linegraph vertices. The
directed linegraph complement, like the directed graph complement, uses the set of ordered
rather than unordered pairs of linegraph vertices, and the rest of the definition follows
the same lines. To all graph complements, since they are all essentially graphs, the same
properties apply as are described Section 2.5.2.

5.3.2 Estimating the Graph Complements

We use the idea of the complement graph described in Section 5.3.1 to design our graph
estimation. The estimation model we use utilises an attention mechanism similar to
the one described in Section 4.3.3. We rely on the definitions of the directed graph and
linegraph complements and the description from this point assumes that directed graphs
are used across the board. In total there are four graphs in the GCNN: a graph G, a
linegraph L(G) and their respective complements G and L(G). The graph is the fixed
structure of the molecule. A molecule is conventionally represented as a graph G by
taking the atoms as vertices and the chemical bonds as edges. The linegraph is constructed
from the graph in a deterministic manner (Aigner, 1967). The linegraph represents the
second-order structure of the graph, specifically the bonding structure of a given molecule.
The graph and linegraph complements are learned end-to-end in the graph estimator.
Strictly speaking, the complements estimated by graph estimation approach are spanning
graphs (see Section 2.5.2.7) of their complements; it is possible that only a subset of the
edges of the complement are present in the estimated graphs. For simplicity’s sake we
refer to the estimated spanning graphs as complements.

The graph complement estimation is separate for the graph complement and linegraph
complement, but the formulation is the same either way. In our model we estimate the
two graph with identical processes in separate blocks with different learned parameters.
Therefore, although we describe the model for the graph and its complement, the same

150



5.3. Methodology

process applies to the linegraph and its complement. A crucial difference, however, is
that the linegraph complement estimator is fed edge features for vertex features. The
estimation block is supplied with a set of vertex features f(V ) ∈ Rn×c and a graph G

with a weight matrix W ∈ Rn×n. The vertex features are then linearly projected into
the dimensionality of the estimator de:

f ′(V ) = f(V )W , (5.1)

where W ∈ Rc×de is the projection matrix.

The projected vertex features are then used to compute the attention coefficients for
each pair of vertices. For vertices x, y ∈ G, the attention coefficient is computed by
concatenating their features and applying an attention mechanism:

Cxy = (f ′(x) ∥ f ′(y))a (5.2)

where a ∈ R2de is the attention mechanism. The operation yields a full attention matrix
C ∈ Rn×n, which stores an attention coefficient for each adjacency in the full graph
complement. In practice, the full matrix need not be estimated. As we mentioned in the
introduction in Section 5.1, only the edges of the graph complement need to be estimated.
In this theoretical explanation, however, we can simply use a maskM ∈ Rn×n, defined as

M =

1 Axy = 0

0 otherwise.
(5.3)

where Axy is the entry in the adjacency matrix A of the input graph G for the vertices
x, y ∈ G. The map is then used to mask the entries corresponding to positions in the
attention matrix and the result is passed through a leaky ReLU layer with α = 0.2:

C ′ = LeakyReLU (C ⊙M) , (5.4)

where C ′ is the masked attention matrix and ⊙ is a binary operation representing the
Hadamard product of C andM . Unlike Eqs. 4.9 and 4.11 in Section 4.3.3, in this model
we replace the ReLU layer applied to the attention coefficients with a leaky ReLU layer
with α = 0.2. In experiments we found that the estimated graph very quickly dies
as all values become zero. As a consequence the estimated weights are not bound
between [0,∞) rather (−∞,∞), although there is an implicit bias towards positive values.
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Additionally we introduce no regularisation term as in Section 4.3.3 for the same reason
that we do not use ReLU.

The estimation process described above is computed over h attention heads. It
therefore yields h estimates of the graph complement. As in Section 4.3.3, we average
the matrices over these heads to yield a single attention matrix, which is the estimated
weight matrix of the graph complement.

At this point we could apply several pruning mechanisms as we did in Section 4.3.3,
but in reality it is not necessary. The orders of the graph and graph complement are
actually equal, i.e., both graphs have the same number of vertices by definition, and the
datasets we use in the experiment in Section 5.4 are not large enough to warrant it. We
therefore do not apply any dropout or threshold to the output. We also do not add a
regularisation to the loss function of the sum of weights, nor do we constrain the values of
the projection matrix and attention function to be in the interval [0, 1] as in Section 4.3.3.

Complement estimation is reliant entirely on the vertex features to estimate the graph
complement. It is therefore affected by the choice of features for the vertices, or in the
case of the linegraph complement, the choice of edge features. Potentially this mechanism
could be extended to include edge features to estimate the graph complement, or vertex
features to estimate the linegraph complement. We leave a development of such an
approach to future work.

5.3.3 Model Structure

The full model architecture is illustrated in Fig. 5.1 and the pipeline is described algorith-
mically in Algorithm 1. The model consists of an estimator module, consisting of two
blocks for the two estimated graph complements, and a molecule representation learner,
the message-passing phase. The output of the molecule representation learner is a set
of embeddings on each vertex; the average of those representations is taken as the input
to the readout layer, which computes the prediction on an observation.

The model is supplied with a set of vertex features f(V ) ∈ Rn×c, a set of edge features
f(E) ∈ Rm×c, a graph G as an adjacency matrix A ∈ Rn×n and a linegraph L(G) as an
adjacency matrixA ∈ Rm×m. For ease of reading, we do not refer to the graphs as their
adjacency matrix here unless the mathematics demands it. On these inputs, the model
predicts a target y ∈ Rd where d is the number of targets. In the first step, the vertex
f(V ) and edge features f(E) are linearly projected into a dm-dimensional feature space
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Algorithm 1 The pipeline of the molecular prediction using our model. Note that the
vertices and edges are flipped in order when they are propagated over the linegraph
L(G). This is because the edges of the graph G are mapped to the vertices in L(G);
correspondingly the edge features structured on the vertices of G are structured on the
vertices of L(G). Likewise the vertex features structured on the vertices ofG are structured
on the edge of L(G).
k, maximum number of iterations
s, flag indicating whether graph estimation is enabled ℏ
G← structure of the molecule
L(G)← generate the linegraph from G
f(V )← projected vertex features ▷ Eq. 5.5
f(E)← projected edge features ▷ Eq. 5.6
G← estimated from G and f(V )
L(G)← estimated from L(G) and f(E)
i← 0
while i < k do

f ′(V )← propagate f(V ) and f(E) over G
f ′(E)← propagate f(E) and f(V ) over L(G)
if s is true then

f ′′(V )← propagate f ′(V ) over G
f ′′(E)← propagate f ′(E) over L(G)

else

f ′′(V )← f ′(V )
f ′′(E)← f ′(E)

end if

f(V )← f ′′(V )
f(E)← f ′′(E)
i← i+ 1

end while

f(V )←merge embeddings f(V ), f(E) according to direction ▷ Eq. 5.12
|(z)← compute molecular properties from f(V )
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Figure 5.1: The full model architecture for complement estimation and molecular
property prediction. The model consists of an estimator module (the grey boxes),
from which the graph and linegraph complements are estimated and fed to the
propagation layers (the green boxes), the output of which is passed to a layer that
fuses the vertex and edge representations. The fused features are passed to a
dense layer, which computes the prediction for the task. In the models without graph
complement estimation, there is no second row of grey boxes for the complement
estimation and therefore no second vertex and edge propagation, the second row of
green boxes.

by projection matrices WV ∈ Rc×d,WE ∈ Rc×d:

f ′(V ) = f(V )WV (5.5)

f ′(E) = f(E)WE (5.6)

where dm is the size of the model’s hidden layers.
The next step is the complement estimation, which is performed as described in

Section 5.3.2. There are two estimator blocks with independent parameters to predict
the complements. Together we call the two estimator blocks a module. To predict the
graph complement G, one estimator block is fed the embedded vertex features f ′(V ) and
the graph G. To predict the linegraph complement L(G), the other estimator block is fed
with the embedded edge features f ′(E) and the linegraph G. The two complements are
represented as weight matrices, reflecting a continuous relaxation of the graph estimation
problem described in Section 2.5.7. Like the two input graphs, for ease of reading we
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refer to the complements simply as their objects G,L(G) unless the mathematics demands
a reference to their weight matrices.

The next step is propagation, the message-passing phase, which follows a procedure
that is similar to methods we have discussed above (Kearnes et al., 2016; Ma et al., 2022).
The propagation of the vertex and edge signals across the graph and linegraph has two
stages using two consecutive directed attention-based graph convolution operations in two
streams. The first operation modifies the form of the directed attention graph convolution
in that the the vertex pairs’ signals are joined in the attention mechanism by a third set of
features: the edge feature of the edge that joins the two vertices. As such the vector of
coefficients a ∈ R3d is broadened to a ∈ R5d, where a3 and a4 are the vectors of attention
coefficients for the edge features on in- and out-edges respectively. Supposing that the
hl−1,xy represents the previous layer’s edge features, where h0,xy = f(xy), xy ∈ E, in
practice it means that Eqs. 4.16 to 4.18 are modified in the following way:

cl,x(x) = (3 · a1)h′
l−1,x, (5.7)

cl,x(y⃗x) =


[
h′
l−1,y∥h′

l−1,x

]
a0:1 + hl−1,xya3 y⃗x ,∈ E ,

0 otherwise
(5.8)

cl,x(x⃗y) =


[
h′
l−1,x∥h′

l−1,y

]
a1:2 + hl−1,xya4 x⃗y ∈ E ,

0 otherwise .
(5.9)

An additional modification is present here beyond the edge features. In Eq. 5.7 the attention
on the focal vertex is tripled. Our reasoning is that the sum of three different sources of
partial attention in Eqs. 5.8 and 5.9 will always be greater than the contribution of the
vertex feature. The tripling of the focal vertex’s partial attention counteracts this effect.

The second of the two convolution operations has the same form as the directed
graph convolution we presented in Section 4.3.4.1. It receives the output of the first
convolution, but no edge features. Indeed, there are no edge features to speak of: the edge
features reflect the characteristics of the chemical bonds, and there are no characteristics
to speak of between atoms that are not bonded. It is conceivable that some set of features
could be measured for the second purpose; we leave such an extension of the present
method to future work.

In both cases of convolution, with or without edge features, the graph convolution
is modified to include the global attention coefficients from the respective graphs, as in
Section 4.3.5. It must be noted here, too, that the weights of the graph and linegraph’s
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edges are always 1, whereas the weights of the graph and linegraph complements
are real numbers.

After each propagation step, there is a skip connection where the features before the
propagation are added to the new features to mitigate against graph smoothing. The
output of the second pair of convolutions yields vertex and edge features, which are used as
input to the first convolution operations of the next propagation step. After all propagation
steps have completed, the message-passing phase yields vertex and edge embeddings.
We fuse the vertex and edge embeddings by aggregating the edge embeddings around
incident vertices. For each vertex, the embeddings of its adjacent edges are aggregated
and averaged according to incidence:

hΓout,x =
1

d(x)

∑
y∈Γout(x)

hl−1,xy , (5.10)

hΓin,x =
1

d(x)

∑
y∈Γin(x)

hl−1,yx , (5.11)

where hΓout,x ∈ Rd is the average embedding of the out-edges incident to x and hΓin,x ∈ Rd

is the average embedding of the in-edges incident to x. We denote the full set of vertex-wise
aggregations hΓ. Then the focal vertex’s embedding and the averaged in- and out-edge
embeddings are concatenated and passed through a dense layer consisting of a weight
matrix W ∈ R3d×d, a bias vector b ∈ Rd and an activation layer σ:

h′ = σ ([hl−1 ∥hΓout ∥hΓin ]W + b) . (5.12)

Finally for each molecule the vertex representations h′ are averaged yielding a single
d-dimensional representation for the whole molecule. The final representation is passed
through an unactivated dense layer that yields the appropriate number of logits for the task.

5.4 Experiment

The experiments described here were conducted in July 2023. The code was programmed
in Python version 3.9.12 and the models implemented in Tensorflow version 2.11.1. Each
model was trained on 1 NVIDIA V100 GPU and 1 Intel Xeon Gold 6148 CPU core
hosted by the Sunbird supercomputer at Swansea University. Owing to the nature of
the implementation, namely the use of ragged tensors, Tensorflow had to be run in
eager execution mode, which means that training and inference took significantly longer
than it otherwise would.
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5.4.1 Evaluated Models

We use variations on the same basic model to evaluate the efficacy of the proposed
approach to graph estimation and its effect on feature propagation. We evaluated the
model with and without the complement estimation modules. Disabling the complement
module also meant disabling the convolutional layers structure by the graph and linegraph
complements. In such a case the output of the first pair of convolutional layers was fed
straight into the convolutional layers of the next propagation step. We also evaluated the
model, with and without complement estimation, with different numbers of propagation
steps ranging from one to five propagation steps. In total ten models were evaluated.

5.4.2 Datasets

We evaluated our models against two common benchmark datasets: the blood–brain-
barrier penetration (BBBP) dataset and the estimated solubility (ESOL) dataset. The datasets
were loaded using the DeepChem library version version 2.7.1 (Ramsundar et al., 2019),
which implements Python loaders for the MoleculeNet benchmark datasets (Wu et al., 2018).

The BBBP dataset has 2,039 compounds represented as SMILES strings, from which the
graph structure, vertex features and edge features were computed using the DeepChem
library. Each compound is recorded as a binary label, where a positive label indicates
that the compound is able to penetrate the blood–brain barrier. The task of the model is
to learn from the structure of the compounds and its features whether the compound
is able to penetrate the blood–brain barrier or not. As recommended by MoleculeNet
(Wu et al., 2018), the dataset was split according to the scaffold splitting implemented
in the DeepChem library.

The ESOL dataset has 1,128 compounds represented as SMILES strings, from which the
graph structure, vertex features and edge features were computed using the DeepChem
library. Associated with each compound is a measure of its log solubility in mols per
litre. The task is to learn that solubility measure from the compound structure and
its features. As recommended by MoleculeNet (Wu et al., 2018), the dataset was split
randomly as implemented in the DeepChem library.

The SMILES strings of the compounds in both datasets were processed to obtain a
graph, a set of vertex features and a set of edge features using the directed message-passing
neural network featuriser provided by the DeepChem library. After featurising the
compounds, they were filtered to remove any samples where the number of vertex features
did not match the number of atoms in the molecule. In the end, of the 2,037 compounds
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in the BBBP dataset, 2,031 were used and 6 discarded, and of the 1,128 compounds in
the ESOL dataset, 1,127 were used and 1 discarded.

5.4.3 Control Variables

For each dataset we used a batch size of 64; the training set from which the batches were
drawn was shuffled after every epoch. The model used the AdamW optimiser with a
learning rate η = 1× 10−2 annealed using cosine decay over the first k steps to 1× 10−4.
We trained the both models for 50 epochs. For the ESOL dataset we set k = 625 and for
the BBBP dataset we set k = 1125. The directed graph attention layers has 64 channels
across 8 attention heads, as do the attention mechanisms in the complement estimator.
Likewise the hidden layers of the model have 64 channels. All activation layers use the
ELU activation (Clevert, Unterthiner, and Hochreiter, 2016) where α = 1.0.

The loss function for both datasets was the RMSE. The models trained on the BBBP
dataset are evaluated on the area under the curve (AUC) and the model on the ESOL
dataset are evaluated on RMSE.

5.4.4 Hypotheses and Questions

In this section we enumerate the hypotheses for the experiment, which namely correspond
to our expectations of the results. These are the main points that we will be investigating
in our analyses below.

Hypothesis 1 As the number of propagation steps increases, the RMSE/AUC will improve
with or without complement estimation.

Hypothesis 2 The models using complement estimation will make more accurate predic-
tions than the models without complement estimation.

The purpose of our investigation is to answer the following questions:

Question 1 Does graph estimation lower the number of propagation steps necessary to
compute molecular properties?

Question 2 What effect does increasing the propagation steps have on the structure of the
estimated graphs?

In answer to Question 1, if it is true, then we should observe the models’ performance
peaking sooner with fewer convolutions when graph estimation is used compared to
where it is not. We do not expect that the issue of graph over-smoothing will not occur
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Table 5.1: The test results on the BBBP dataset given as area under the curve
(AUC). A higher value is better.

Complement estimation No. propagation steps
1 2 3 4 5

No 0.703 68 0.704 31 0.699 39 0.685 47 0.699 63
Yes 0.722 71 0.708 93 0.720 54 0.703 87 0.702 09

Table 5.2: The test results on the ESOL dataset measure as root mean squared
error (RMSE). A lower value is better.

Complement estimation No. propagation steps
1 2 3 4 5

No 0.593 14 0.548 51 0.534 30 0.557 99 0.550 91
Yes 0.516 37 0.534 83 0.570 16 0.535 27 0.551 15

(see Section 2.5.5). We do expect that the performance will improve more quickly with
fewer propagations, however, since the vertex and edge information is propagated more
widely sooner than merely using the molecular graph. Whether the structures estimated
in our approach reflect useful structures in learning is an extension of the question.

Question 2 relates to the structure of the complement graphs learned in the estimation.
We wish to study whether there is a relationship between the structure of the graph and
linegraph complements and the prediction errors of the models. As opposed to the molec-
ular graph and linegraph, which have binary adjacency matrices, the graph and linegraph
complements are represented by real-valued weight matrices. The values of the weight
matrices are learned end-to-end in the model and are adjusted by gradient descent accord-
ing to the performance on the given task. An investigation with respect to this question
establishes the relationship between the prediction and the graph complements’ structures.

Note that we are not aiming for state-of-the-art results in this analysis; rather we
are using the datasets to elucidate the effect of complement estimation on regression
and classification performance.

5.5 Results

For each dataset we present a table of results describing the performance of the models
over increasing numbers of propagation steps. Firstly we examine the results on each
dataset separately by considering the hypotheses we enumerated above, before drawing
broader conclusions about the graph estimation procedure in a later subsection.
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Figure 5.2: A histogram of molecule size, i.e. the number of atoms in each molecule,
in the BBBP dataset.

Blood–brain-barrier penetration (BBBP) The results of the models with and without
graph estimation over 1 to 5 propagation steps are presented in Table 5.1. The best result
on BBBP without complement estimation was attained at 1 propagation step. The best
result on BBBP with complement estimation was attained at 2 propagation steps. We could
not confirm Hypothesis 1 since the results of neither model describes an upwards trend in
AUC as the number of propagation steps increases. We can however confirm Hypothesis 2

partially. At every propagation step the model with complement estimation attains a higher
AUC than the model without graph estimation. Moreover the model with complement
estimation, namely at 1 propagation step, attains the highest AUC score across the board.

Estimated solubility (ESOL) The results of the models with and without graph estimation
over 1 to 5 propagation steps are presented in Table 5.2. The best result on ESOL without
complement estimation was attained at 3 propagation steps. The best result on ESOL
with complement estimation was attained at 1 propagation steps. We could not confirm
Hypothesis 1, since there is no clear downward trend in the RMSE for models both with
and without complement estimation as the number of propagation steps increases. We can
however partially confirm Hypothesis 2: The error with complement estimation is lower
at 1, 2 and 4 propagation steps than the model without graph estimation, whereas the error
of the model with graph estimation is higher than the model without at 3 propagation
steps and almost on par at 5 propagation steps. Overall the lowest error is attained by
a model using complement estimation, namely at 1 propagation step.
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Figure 5.3: The mean absolute error of the prediction was aggregated into 9 bins
in the BBBP test set and plotted statistics of the prediction errors of each bin as a
boxplot. The plots in the left column visualises the predictions from models without
complement estimation; the right column visualises the predictions from models
using complement estimation. Each row represents a number of propagation steps,
going from the top, 1 propagation step, to the bottom, 5 propagation steps.
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Figure 5.4: A histogram of molecule size, i.e. the number of atoms in each molecule,
in the ESOL dataset.

5.5.1 Data Analysis

In answer to Question 1, we now consider some characteristics of the dataset. For Figs. 5.2
and 5.4 we plotted histograms of the molecule sizes in the test sets of the BBBP and ESOL
datasets respectively. For Figs. 5.3 and 5.5 we aggregated the errors in different sized bins
and visualised statistics on the prediction errors at each bin as boxplots.

BBBP. We can see that between the models with and without complement estimation
there is not a great deal of difference in the performance of the models with respect to
molecule size, as shown in Fig. 5.3. The majority of the molecules are between 10 and 30
atoms large. There are not many discernable differences between the models with respect
to the atoms of those sizes. The predictions on these larger molecules are on average worse
than the predictions yielded by the model with graph estimation on the same molecules.
Compared at each propagation in general we can see that as the number of propagation
steps increases, the predictions on the larger molecules become more precise, but also more
wrong, although this is probably because there are so few that size; though the models with
complement estimation are slightly more correct at every propagation step. We can also
see that the model with complement estimation at 1 propagation step has fewer outliers
for molecules 24 to 35 atoms large in comparison to the models without complement
estimation. The same model with complement estimation has a higher interquartile range
on molecules between 36 and 59 molecules large in comparison to the model without
complement estimation at 1 propagation step. Ultimately that accounts for comparatively
few molecules. Comparing the best model with complement estimation (1 propagation
step) with the best model without complement estimation (4 propagation steps), we can

162



5.5. Results

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

0.0

0.5

1.0

1.5

2.0
Ro

ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

No estimation, 1 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

With estimation, 1 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

0.0

0.5

1.0

1.5

2.0

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

No estimation, 2 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

With estimation, 2 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

0.0

0.5

1.0

1.5

2.0

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

No estimation, 3 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

With estimation, 3 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

0.0

0.5

1.0

1.5

2.0

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

No estimation, 4 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

With estimation, 4 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

0.0

0.5

1.0

1.5

2.0

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

No estimation, 5 props

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
No. atoms in molecule

Ro
ot
 m

ea
n 
sq

ua
re
d 
er
ro
r

With estimation, 5 props

Figure 5.5: The root mean squared error of the prediction was aggregated into 9
bins in the BBBP test set and plotted statistics of the prediction errors of each bin as
a boxplot. The plots in the left column visualises the predictions from models without
complement estimation; the right column visualises the predictions from models
using complement estimation. Each row represents a number of propagation steps,
going from the top, 1 propagation step, to the bottom, 5 propagation steps.
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see that the major difference is that the model without complement estimation has a much
narrower range of prediction values on the very few, very large molecules.

ESOL. The differences between the distributions of predictions in Fig. 5.5 are minimal.
The majority of molecules are between 15 and 25 atoms large (Fig. 5.4); in these bins of the
boxplot, there differences are not easily discernable. Comparing the propagation step at
which a model with complement estimation worked best (1 propagation step) with the
best model without complement estimation (3 propagation steps), we can see that for the
small number of larger molecules between 25 and 34 atoms large that the interquartile
range of errors is smaller in the model with complement estimation than that without.
We believe that the graph complements are distributing information further across larger
graphs at earlier propagation steps owing to the global propagation structured by the
complement graph. Perhaps one sees worse prediction errors in these same regions later
on owing to graph over-smoothing induced by multiple convolutions (see Section 2.5.5).
This is further evidence in respect of Question 1 that the graph complements are lowering
the necessary number of propagations.

5.5.2 Structure Analysis

In this section, in order to answer Question 2, we consider the effect of structure on the
model performance on the two datasets separately before drawing general conclusions.
For both datasets, for each estimated graph and linegraph complements on each test set
sample and for each propagation step, we computed the proportion of non-zero entries,
the minima, maxima, mean and standard deviation and present average of those values
across all test samples in Tables 5.3 and 5.4 for BBBP and Tables 5.5 and 5.6 for ESOL.

We can see that on both datasets the estimated complements are highly dense in
comparison to the original graph in the left-most column. The graph and linegraph
complements have much larger maximum values—which unsurprising given that the
original graphs have binary weight matrices. On both datasets the weights of the
complement graphs are largely positive; the graph and linegraph complements on the
ESOL dataset wholly positive and almost totally positive respectively. The maximum
and mean graph weights generally tend to decrease with the increase in propagation
steps, with the exception of the graph complement learned for the BBBP dataset. The
larger weights with increasing propagation steps does not produce a lower prediction
error on the BBBP dataset, however Table 5.1. The same effect is seen in the standard
deviation of the graph weights, which decrease for all estimated graph and linegraph
complement except the graph on BBBP. From these observations it appears that the graph
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Table 5.3: The average density of the estimated linegraph complements on the BBBP
test set, the average number of positive entries, the average minimum, maximum,
mean and standard deviation are reported in this table. The first column gives the
corresponding values of the original graph. The density is computed by dividing
the number of non-zero positions in the adjacency matrix by the total number of
positions. We can see in this table that combined the graph and graph complement
are 100% dense.

Statistic BBBP
graph

No. propagation steps
1 2 3 4 5

density 0.098 0.902 0.902 0.902 0.902 0.902
positive 0.098 0.740 0.648 0.902 0.599 0.652
min. 0.000 −0.211 −0.329 −0.011 −0.635 −0.455
max. 1.000 4.307 8.131 9.116 10.701 16.150
µ 0.098 1.071 1.377 3.559 1.695 3.599
σ 0.248 1.073 1.770 1.797 2.288 3.741

Table 5.4: The average density of the estimated linegraph complements on the BBBP
test set, the average number of positive entries, the average minimum, maximum,
mean and standard deviation are reported in this table. The first column gives the
corresponding values of the original linegraph. The density is computed by dividing
the number of non-zero positions in the adjacency matrix by the total number of
positions. We can see in this table that combined the linegraph and linegraph
complement are 100% dense.

Statistic BBBP
linegraph

No. propagation steps
1 2 3 4 5

density 0.003 0.949 0.949 0.949 0.949 0.949
positive 0.003 0.865 0.865 0.949 0.899 0.516
min. 0.000 −0.157 −0.154 0.000 −0.060 −0.190
max. 1.000 9.336 8.945 7.260 4.853 4.918
µ 0.051 3.226 2.791 3.654 1.684 0.449
σ 0.182 2.040 1.861 1.498 1.149 0.905

complement learned for the BBBP is vulnerable to learning very large weights. Given the
large graph weights, the contributions from neighbours on the graph complement are
consequently weighted highly. A subsequent question is to what extent the learning on
the BBBP dataset was hindered by these very large weights in the graph complement; the
average graph weight remains proportionally smaller and indeed decreases. On the face
of it, performance does not appear to have been hit; at every propagation step the models
with complement estimation still outperform the models without complement estimation.
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Table 5.5: The average density of the estimated linegraph complements on the ESOL
test set, the average number of positive entries, the average minimum, maximum,
mean and standard deviation are reported in this table. The first column gives the
corresponding values of the original graph. The density is computed by dividing
the number of non-zero positions in the adjacency matrix by the total number of
positions. We can see in this table that combined the graph and graph complement
are 100% dense.

Statistic ESOL
graph

No. propagation steps
1 2 3 4 5

density 0.136 0.864 0.864 0.864 0.864 0.864
positive 0.098 0.864 0.864 0.864 0.864 0.864
min. 0.000 0.000 0.000 0.000 0.000 0.000
max. 1.000 4.284 2.158 3.622 1.917 2.732
µ 0.136 2.355 1.466 1.657 0.897 1.494
σ 0.305 1.056 0.586 0.878 0.471 0.717

Table 5.6: The average density of the estimated linegraph complements on the ESOL
test set, the average number of positive entries, the average minimum, maximum,
mean and standard deviation are reported in this table. The first column gives the
corresponding values of the original linegraph. The density is computed by dividing
the number of non-zero positions in the adjacency matrix by the total number of
positions. We can see in this table that combined the linegraph and linegraph
complement are 100% dense.

Statistic ESOL
linegraph

No. propagation steps
1 2 3 4 5

density 0.008 0.930 0.930 0.930 0.930 0.930
positive 0.008 0.928 0.930 0.887 0.930 0.930
min. 0.000 −0.002 0.000 −0.038 0.000 0.000
max. 1.000 1.326 0.226 2.288 0.424 0.077
µ 0.070 0.828 0.134 1.361 0.267 0.052
σ 0.225 0.467 0.078 0.689 0.135 0.020

We can see that there is some interplay between the structure of the estimated graphs
and the spread of graph weights in the estimated complements. For example, on the
ESOL dataset, the worst result is attained at 3 and 5 propagation steps. At both points, the
maximum, mean and standard deviation of the graph weights are high for both the graph
and linegraph complements. On the BBBP dataset, for the worst result at 5 propagation
steps, the maximum, average and standard deviation of graph complement are at their
highest; the statistics on the linegraph complement at 5 propagation steps are however
not atypical. This suggests that the prediction errors are being unduly influenced by the
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graph complement, or at least that learning is able to be led astray by the algorithm’s focus
on the graph complement to the detriment of the linegraph complement.

In answer to Question 2 we can only draw mixed conclusions. In most cases, the
additional propagation steps lower the magnitude of the graph weights. We suspect that
the model is undergoing the process of graph over-smoothing: as the features become less
distinct, it becomes more difficult to discern the intramolecular structures in learning the
graph and linegraph complements. It is difficult to apply the same explanation to the graph
complements learned on the BBBP dataset, however. Perhaps we are witnessing an obverse
case here where uninformative data across the graph leads the model to overemphasise
single sources of information. That would explain why there is such a large maximum
graph weight in the graph complements estimated for BBBP but a proportionally much
smaller average graph weight. In either case, the estimated graphs become less informative
and the performance of the models worsens; in both cases we suspect that the cause is
increasingly indistinct data that gives rise to different outcomes. Indeed a similar effect
appears to affect the results at increasing propagation steps on the models without graph
estimation, where the prediction errors do not improve with more propagation steps.

The large graph weights indicate that the weights of the graphs need to be controlled
somehow. In this experiment we removed all regularisation and loosened the constraint
that the graph weights should be negative. That the graph weights are negative does not
appear to be an issue, but certainly large graph weights appear to be causing problems.
The average and standard deviation of the graph weights provides insight into the the
relationship between the graph weights and the prediction errors. Additionally, we are
learning two graphs simultaneously, and it appears that learning the graph and linegraph
complements simultaneously can lead learning astray as in the case of the BBBP dataset.
Additional controls that balance the learning objectives on the two graphs are necessary. For
example, one could somehow dually constrain the magnitudes of the complements so that
they never grow in excess of one another. This might be realised as a regularisation term.

5.6 Discussion

The best result on both datasets was attained on both datasets by a model using complement
estimation, but in both cases it was a model that uses a single propagation step that
attains the best result. This is interesting for two reasons. Firstly it suggests that the graph
and linegraph complements are essentially mapping vertex and edge features globally
to one another after the first propagation step with the normal graph and linegraph. It
is inaccurate to say that the best performance was attained after one propagation step
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on the model with complement estimation. After all, a single propagation step in the
model without complement estimation is really one propagation across the graph, whereas
there is an additional step in the models with complement estimation that propagates
signals across the estimated graph and linegraph complements. Indeed it is reasonable to
compare the result of one propagation step on the models with complement estimation
to the result of two propagation steps on the model without estimation. Yet notice
that the second propagation step of the models with complement estimation do not
thereby acquire a similar performance to the models with complement estimation using
a single “propagation step”. The analysis can be continued further by comparing the
result of two propagation steps on the models with complement estimation to the result
of four propagation steps on the model without estimation. Again, from this perspective
the performance is still better on the models with graph estimation. This is evidence
that the model is estimating complement graphs with useful structural information for
interpreting molecular properties.

Secondly the models with complement estimation are attaining better predictions
at lower propagation steps, which gives us an interesting answer to Question 2. As
we have said, on both datasets the models with complement estimation attain the best
results at 1 propagation step. While the best results without complement estimation
are attained at epochs 1 and 2 on the BBBP dataset, the best result on the ESOL dataset
without complement estimation is attained at 4 propagation steps. This result suggests
that the global propagation of vertex and edge features across the estimated graph and
linegraph complements respectively is partially removing the need to propagate vertex
and edge signals across the graph. If the motivation for multiple propagation steps is
to expand the receptive field on the graph (see Section 2.5.4), the global propagation
removes the need to do so over multiple steps since the signals are theoretically propagated
over the whole graph. Additionally the directed graph attention allows the model to
select the contribution of local and global vertices more flexibly, which further broadens
the interpretative capacity of the model. This global propagation of signals may not
be desirable in all problem domains, but it appears to be helpful on small graphs like
molecules. We speculate that it is most appropriate domains where graph-wise tasks are
performed, such as here, where the model is ultimately learning a single representation
for the molecule via a readout phase (see Section 2.5.4).

We can see from the analysis in Section 5.5.1 that the models using complement
estimation tend to work better on large molecules, therefore larger graphs, than models
without complement estimation. We believe in both cases that this is owed to the use
of the global propagation structured by the graph and linegraph complements, which
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are able to propagate along supplementary structures represented by the graph and
linegraph complements. There are however issues of large graph weights disrupting
learning and the estimation and use of one graph complement dominating learning of
another. An additional problem arises in the use of multiple propagations. A possible
cause is graph over-smoothing (Section 2.5.5) which has two possible, related sources here.
Firstly the estimated complements may simply be too dense. It has been observed that
sparsifying the graph by sampling edges is one way to alleviate graph over-smoothing.
Secondly the graph diameter is very small, which, in comparison to other graphs, could
be reducing the number of propagation steps before which graph over-smoothing sets in
and disrupts, learning. Yet propagation appears to affect models both with and without
complement estimation, which suggests that there is a problem with structure of our
proposed architecture beyond the estimation of graph complements.

5.7 Summary

In this chapter we presented two novel graphs, which we termed the graph and linegraph
complements, to represent the intramolecular interactions of a molecule. We presented an
architecture to learn the structure of the graph complements, which we call complement
estimation. The approach allows the model to factorise the graph representation learning
into structure represented by chemical bonds and its complementary structure, both
on the structure of the vertices/atoms and the edges/bonds. The graph and linegraph
of a molecule are used to structure the propagation of vertex and edge features, after
which the graph and linegraph complements are used to propagate information across
the complementary structures. In our experiments we find that complement estimation
reduces prediction error. We conclude that the complementary structures learned in
complement estimation are learning intramolecular interactions that inform the molecular
representation and thereby improve performance on the given task.

This work is limited in a few ways, however. Firstly the analysis we conducted is
limited to validating the use of complement graphs. Further experiments could consider
the use of random graphs, for example, in order to evaluate whether the model is learning
structure that is optimised for the input data, or if any complementary structure will
improve the performance of the model; this latter point would be interesting to explore
in cases such as this chapter where a graph-based attention mechanism is used, which
can select for information in the end-to-end training. We have additionally not examined
the effect of different starting-points for graph estimation, an issue that we mentioned in
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Section 2.5.7.1. The use of multiple attention heads in generating the complement graphs
is a good starting point, since it is a combination of several different starting-points.

Secondly the use of linegraphs and their complements limits this approach to very
small graphs. The size of linegraphs is prohibitive in combination with small graphs. The
same issue occurred in Chapter 3, where we used a linegraph to structure a datacentre. The
linegraph is however an effective way to represent higher-order structures and has already
been used directly or indirectly in other papers, as we mentioned in Section 2.6.3. But
applying the technique herein to proteins would be very expensive, incurring a significant
overhead and memory cost. One way forward to use complement graphs might be the use
of heterogeneous graphs, for example, which is able to model higher-order interactions
of groups of atoms (Shui and Karypis, 2020).

Thirdly it is possible that the global and local attention mechanisms could be simplified.
For example, rather use the attention coefficients to directly compute the adjacency
matrix, they could be incorporated into later convolutions. An exploration of the more
effective use of attention coefficients, specifically the interaction between global and local
attention coefficients in this chapter and in Chapter 4, would be an interesting future
direction of practical research.

Fourthly, the estimated graph and linegraph complements are very sparse here. There
are two key issues, as were discussed in Section 5.5.2: (1) the graph complements as
estimated in the experiments presented in this chapter tend to have much larger weights
than the original graphs that their structure is derived from; and (2) the graphs are
completely dense. There are many ways to incorporate a regularisation term in the loss
that encourages the algorithm to learn smaller weights. We experimented with some
techniques in Chapter 4. Investigations of further techniques of regularisation or the
explicit model architecture that indirectly produces sparser graphs is a fertile ground for
research. In place of the attention vector, for example, some function might be applied that
implicitly enforces sparsity—some kernel such as a the Gaussian function, for example.

Extensions of this work could include looking at ways of constraining the vertex and
edge embeddings. For example, the set of bond embeddings for a given vertex pair could
be constrained to be close to one another. That way the embeddings can differ, but they are
encouraged to be identical. The model might therefore be inclined to pay more attention
to the edge attributes governing the type of each atom/bond in the graph. Alternatively
additional embeddings of higher order could be supplied to the model, as in the work
of Gasteiger, Groß, and Günnemann (2020) and Gasteiger et al. (2020), such as bonding
angles, which could be represented as a higher-order linegraph.
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It is difficult to know how applicable the techniques developed in this chapter can be
extended to other molecular datasets, too, since we only consider BBBP and ESOL. Notably
it is reportedly particularly hard to create pretrained networks with attention mechanisms
(Xia et al., 2022). Additionally, there is an open question in the extent of the applicability
of the learned graph complements to other molecular problems and other domains.

Lastly, the datasets here are in equilibrium. We have not considered the challenge
of learning molecules out of equilibrium and therefore have not considered how the
graph estimation approach herein could be adapted to out-of-equilibrium graphs (Schütt
et al., 2017). In such a case as this technique could not be applied, a statistical method
might be more suitable.
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6.1. Conclusions

6.1 Conclusions

The work presented in this thesis addresses three challenges in graph deep learning:
learning edge representations on graphs, convolution on directed graphs and the estimation
of graph structure from input data. In Chapter 3 we developed a method to learn on the
edge structure of a graph with the use of a directed linegraph. The construction of the
directed graph presented a definitional difficulty in light of the application, namely the
presence of inverse edges. This difficulty motivated the definition of an isotropic kernel for
directed graphs, where the inverse edge was factored out of construction as a separate term.
The experiments revealed that in application to datacentres, the inverse edge contributes
information to a convolution that is deleterious when mixed with neighbouring signals.

In Chapter 4 we addressed the challenge of estimating graph structure from cyclical
information. We used two combinations of the input to estimate two structures, the
long-term, static structure of the graph and the short-term, dynamic structure of the graph
from traffic data. The two graphs complement one another in estimating the structure
of the input at a given point in time in order to predict the subsequent development of
traffic. Moreover, the graphs that were estimated were directed. We defined an anisotropic
convolution operation on directed relations that factorises the input data into its two
streams with respect to each vertex in the convolution.

Lastly, in Chapter 5, we considered the challenge of learning molecular representations
to predict molecular properties. We proposed a new graph, the graph complement, to
learn the structure of a molecule beyond what is specified in the predefined graph. In turn
the graph complements, constructed on a directed graph and a directed linegraph, were
themselves directed, and allowed us to structure the propagation of information across the
graph by factorising the relations into chemical bonds and other intramolecular relations.

6.2 Contributions

The contributions of this thesis are the following:

A technique for structuring learning on graph edges. We present two methods for learn-
ing on the edge structure or second-order structure of graphs representing domains.
The first method uses the directed linegraph to define the second-order structure
of a datacentre. We consider in particular the special case of inverse edges that
arise from the construction of directed linegraphs on directed graphs and present
a method to learn on inverse edges. The second method uses a directed linegraph
for the propagation of edge representations, which are further propagated by the
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linegraph complement, a graph that, as far as we know, has not been presented in
the literature.

An isotropic method for convolution on directed graphs. We present an isotropic ker-
nel for directed graphs that factors neighbouring signals into two groups according
to their incidence to a focal vertex. It is a simple construction with only a few param-
eters per output channel. The method was evaluated on a datacentre simulation,
whereby we found that the inclusion of inverse edges as a separate term or as part of
the neighbourhood worsened the performance, thereby justifying our decision to
separate out inverse edges as a term altogether.

A technique for estimating graph structure from temporal, cyclical data. We present an
attention-based approach to graph estimation that uses two compositions of cyclical
data, which we call static–dynamic fusion, to make two complementary estimations of
the graph structure inhered in the input.

An anisotropic, attention-based convolution for directed graphs. We present an an an-
isotropic, attention-based convolution for directed graphs that separates neighbour-
hoods into their incidence to focal vertices.

A new graph to supplement a predefined structure. We present an attention-based ap-
proach to graph estimation that learns the higher-order interactions on a molecular
graph. The molecular graphs defines solely the chemical bonds; the complementary
structure, which we call a graph complement, can learn the structure of the intramolec-
ular relations in the molecule. The downstream learning is further factorised into
the different structures to allow the model to separately learn the two different
structures.

6.3 Future Work

Learning with edge features and learning on the edge structures themselves is an approach
primarily motivated by the given domain. More formal, principled considerations of
their inclusion has, to the best of knowledge, not yet come to the fore. The majority
of general definitions of deep learning approaches are restricted to vertex information
that is propagated across vertices, although there are clearly various ways in which to
use edge features, which can be incorporated into vertex-wise convolution or used to
index functions. It is an exciting area of research where a greater degree of formalisation,
even within application domains such as molecules, would yield some very interesting
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results in revealing the various possible routes of explanation in the theory. The results
of the various previous models and our own models have shown the value of edge
representations in successful model learning.

The learning of edge representations with respect to directed graphs, and directed
linegraphs as a complimentary structure, is in its infancy in particular. One future
development of linegraphs could be the use of a hierarchical set of linegraphs of increasing
order to learn multi-order structures on top of a graph, which would allow the inclusion of
additional, higher-order features in a convolution. Techniques to incorporate the learned
features of multiple orders into a single model are worth further exploration, however. A
significant obstacle to the use of linegraphs in general is the difficulty of the ever-growing
order and size of successive orders of linegraphs constructed on one another. Sparse
implementations have their place, but also their limit; it is not clear how drastically the
density of the graph would grow with increasing orders, nor the laws governing the
growth. Methods to limit the growth or prune edges would be an interesting future
direction for work. In particular, it would be interesting to see how the linegraph might be
applied to incorporating third-order features, such as bond angles, in learning.

The further development of graph estimation is a rich seam of research that is presently
in its infancy. Graph estimation is a natural extension to structure of the foundational
hypothesis that models learn their own representations. The methods presented in this
thesis, combined with works elsewhere, demonstrate the feasibility of graph estimation.
Implementations of graph estimation approaches however face various problems of
computational complexity, memory load and the highly complex nature of estimating
especially large graphs. The shear size of the hypothesis space of graphs is unfathomably
large. It is clear that graph estimation requires some kind of restriction in searching the
space of possible structures. What has recurred in our studies, for example, is the density
of the estimated graphs, which hamper any sparse implementations of the algorithms that
would speed up training. Though it is not clear how sparsity can be enforced in estimated
graph structures without losing the remarkable degree of redundancy that we discovered
in our estimated graphs. It is also unclear how the structure of the model affects the path
of graph estimation. The number of propagation steps in the message-passing phase of a
graph-based convolutional neural network will learn different representations, which is
turn effects the performance and therefore the structure of the graph. Future work would
therefore focus on its refinement, optimisation, the elaboration of differing strategies to
learn different kinds of structure in data while remaining sufficiently redundant and
sparse, and the effect of model architecture on the graph structures that are learned.
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Overall graph deep learning faces considerable theoretical and practical challenges.
These challenges are not insuperable and the results presented hitherto indicate a promising
direction for modelling. A key advantage of graphs is their unrestrictive spatial definition,
which permits the definition of a broadly applicable set of techniques.
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