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Graph Contrastive Learning for Tracking Dynamic
Communities in Temporal Networks

Yun Ai, Xianghua Xie and Xiaoke Ma∗

Abstract—Temporal networks are ubiquitous because com-
plex systems in nature and society are evolving, and tracking
dynamic communities is critical for revealing the mechanism of
systems. Moreover, current algorithms utilize temporal smooth-
ness framework to balance clustering accuracy at current time
and clustering drift at historical time, which are criticized for
failing to characterize the temporalty of networks and deter-
mine its importance. To overcome these problems, we propose
a novel algorithm by joining Non-negative matrix factorization
and Contrastive learning for Dynamic Community detection
(jNCDC). Specifically, jNCDC learns the features of vertices by
projecting successive snapshots into a shared subspace to learn
the low-dimensional representation of vertices with matrix
factorization. Subsequently, it constructs an evolution graph to
explicitly measure relations of vertices by representing vertices
at current time with features at historical time, paving a way
to characterize the dynamics of networks at the vertex-level.
Finally, graph contrastive learning utilizes the roles of vertices
to select positive and negative samples to further improve the
quality of features. These procedures are seamlessly integrated
into an overall objective function, and optimization rules are
deduced. To the best of our knowledge, jNCDC is the first graph
contrastive learning for dynamic community detection, that
provides an alternative for the current temporal smoothness
framework. Experimental results demonstrate that jNCDC is
superior to the state-of-the-art approaches in terms of accuracy.

Index Terms—Dynamic community, Temporal networks,
Non-negative matrix factorization, Self-representation, Graph
contrastive clustering

I. Introduction

NETWORKS effectively describe, model, and analyze
many complex systems from various disciplines, such

as social [1], [2], [3], ecological [4], and cancer networks
[5], [6], where each entity is denoted as a vertex, and an
interaction is represented by an edge. The ultimate goal
of network analysis is to extract potential and interesting
graph patterns, that facilitate the understanding of struc-
ture and functions of the underlying systems. For example,
the critical abundance thresholds in ecological networks
proves that species that are most likely to be extinctive
are determined by another species rather than morality
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rate, thereby providing solid principles for environmental
protection [4].

Clusters, also called modules and communities, are a
typical graph pattern (i.e., groups of vertices with the
same or similar features). Great evidence demonstrate
that numerous networks also present module structures
(i.e., clusters are ubiquitous, which correspond to dense
subgraphs). For example, persons of organizations with
the same or similar aspiration are more likely to establish
partnership than those with opposite ideas [7]. Clusters of
networks dramatically reduce the complexity of networks
because the structure and functions of whole systems
can be approximately inferred from clusters. For instance,
clusters in gene networks are critical pathways, that serve
as bio-markers for cancer therapy [5]. Therefore, the
detection of communities in networks is a prominent task
in network analysis.

Community detection corresponds to the classic graph
clustering problem, which attempts to identify groups of
vertices with strong connectivity [8], [9], [10], [11], [12],
[13], [14], [15], [16]. Based on the strategies of algorithms,
current community detection methods are divided into
two categories, namely, topological structure optimization
[17], [9], [18], [19], [20] and feature learning based ap-
proaches [12], [21]. The former first predefines topological
indexes, such as graph cut [17] and modularity [9], to
quantify the connectivity of clusters. Subsequently, these
indexes are optimized to determine communities. These
algorithms are criticized for their sensitivity to network
perturbation, whereas feature learning-based methods are
devoted to obtain the low-dimensional features of vertices.
Typical algorithms include matrix factorization and graph
representation learning [12], [21].

However, these algorithms are designed for static net-
works, suggesting that the topological structure is ir-
relative to time. Actually, complex systems in the real
world are dynamic, where the topology structure evolves
time [22], [23], [24]. For example, airlines systematically
schedule their flights according to the weather condition
that is highly related to time, thereby resulting in tem-
poral flight networks, which are essential for management
[22]. Gene regulation networks are also evolving as cancer
progresses from initial to deleterious stages. In detail,
signal transduction signals are dysfunctional at the initial
stages, whereas pathways (clusters of genes) fail to exe-
cute their functions at the late stages, resulting in gene
deletion and recruitment during cancer progression [5],
[6]. Temporal networks pave the way to track evolving
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graph patterns, particularly dynamic clusters, which are of
great importance for revealing the mechanisms of systems
because these patterns are much more accurate to depict
structure of networks than static ones [23], [24].

Intuitively, temporal networks consist of a sequence
of snapshots, where topology structure evolves, implying
graph patterns simultaneously by considering the struc-
ture within each snapshot and the dynamics of subsequent
snapshots. Therefore, tracking dynamic communities in
temporal networks is considerably more challenging than
detecting static communities, thereby presenting a signif-
icant obstacle in algorithm design [25]. Furthermore, the
most critical technique is the characterization and quan-
tification of dynamics of temporal networks, which are the
foundation for tracking evolving communities. Balancing
the connectivity of each snapshot (also called clustering
accuracy) and the dynamics (also called clustering drift)
of subsequent ones is also an urgent issue.

Thus, current algorithms address these two issues with
various strategies, which are the greatest difference of
methods [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38]. According to the principle for balanc-
ing clustering accuracy and drift, the existing dynamic
community detection methods can be divided roughly
into three categories, namely, coupling graph-, two-stage-
, evolutionary clustering-based methods. Coupling graph-
based methods [39] construct a single one by preserving
the dynamics of the original temporal networks and
performing clustering on the constructed graph. These
algorithms are criticized for losing important information
during preservation, resulting in low accuracy. In essence,
these algorithms replace dynamic networks with static
one, thereby ignoring the temporality of networks.

To allow for temporality of networks, two-stage-based
methods independently address clustering accuracy and
drift, where they first perform graph clustering for each
snapshot and then reach the final clusters with consensus
clustering [40], [41], [42]. Compared with coupling graph-
based methods, these algorithms not only avoid destroying
the structure of temporal networks but also facilitate the
identification of dynamic clusters because any conven-
tional graph clustering can be directly applied. However,
independence of clustering accuracy and drift separates
these procedures, where clusters of two subsequent snap-
shots are very unlikely to capture dynamics because con-
nectivity is priori to temporalty. Hence, these algorithms
have received criticism for their poor performance.

Intrinsically, the coupling graph- and two-stage-based
methods fail in terms of smooth clustering accuracy and
drift, whereas evolutionary clustering [26] overcomes this
limitation with temporal smoothing framework (TSF).
More specifically, TSF avoids separating clustering ac-
curacy and drift by combining these two items with a
weighted linear function that serves as the quantification
function of dynamic communities. Many algorithms are
developed under the TSF model [43], [30], [31], [44].
For example, DYNMOGA [30] sets clustering accuracy
and drift as two parallel objectives and performs multi-

objective optimization to identify dynamic communi-
ties. PisCES [43] utilizes matrix factorization to identify
dynamic communities, where all snapshots are jointly
integrated to capture the temporality of networks. In
comparison to non-smoothness algorithms, evolutionary
clustering greatly enhances the performance of methods
for dynamic community detection, implying that it is a
good balance between connectivity and dynamics.

A. Motivation and Contribution
However, many problems for dynamic community de-

tection are unsolved. First, evolutionary clustering utilizes
a linear combination of clustering accuracy and drift by
assuming that dynamics are always the same. Actually,
this assumption deviates from the reality because the dy-
namics of various time differ greatly. Thus, alternatives for
TSF are needed critically. Second, the available algorithms
characterize and measure the dynamics of clusters at the
network or sub-network level, ignoring the vertex-level
dynamics and failing to fully depict the temporality of
networks. Recently, contrastive learning [45], [46], [47],
[48] remarkably improves quality of features with self-
supervision priori by exploiting positive and negative
samples. The use of contrastive learning to measure
dynamics of temporal networks is not attempted, which
is one of the major motivation of this study.

To tackle these problems, a novel joint learning al-
gorithm called jNCDC for tracking dynamic community
in temporal networks is proposed. This algorithm in-
tegrates feature learning, evolution graph construction,
and graph contrastive learning (Fig. 2). jNCDC utilizes
non-negative matrix factorization (NMF) to learn the
features of vertices for successive snapshots within a
window. To avoid to balance clustering accuracy and drift,
jNCDC employs self-representation learning to construct
an evolution graph for each time, where vertices at current
time are represented by features at historical time. In
this case, the dynamics of networks are characterized at
the vertex-level, providing a more precise way to quantify
the temporality of networks. Graph contrastive learning
enhances the quality of features by selecting positive
and negative samples from the constructed evolution
graph, thereby improving the performance of algorithms
for the clustering of temporal networks. Experimental
results show that jNCDC outperforms state-of-the-art
algorithms, indicating that graph contrastive learning is
also promising for tracking dynamic communities.

In summary, the main contributions of this study can
be summarized as follows:

- A novel strategy that represents vertices at current
time by using features at the previous time to
characterize and quantify temporality of networks
is proposed. The evolution graph for each time is
constructed, paving a way to quantify the dynamics
of networks at the vertex-level.

- Graph contrastive learning for temporal networks
is proposed. It improves the quality of features by
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discriminating dynamic and static vertices. As far
as we know, it is the first attempt to measure
the dynamics of temporal networks with contrastive
learning, serving as a flexible framework for graph
contrastive learning.

- A joint learning algorithm called jNCDC is proposed.
This algorithm integrates feature learning, evolution
graph construction, and contrastive learning into an
optimization problem. The experimental results show
that it outperforms state-of-the-art baselines in terms
of accuracy.

This paper is structured as follows. Section 2 provides an
overview of the related literature, while Section 3 outlines
the preliminary concepts. Sections 4 and 5 present the
algorithmic procedure and its results, respectively. Lastly,
Section 6 concludes the study.

II. Related work
Temporal networks consist of multiple snapshots, where

dynamic community detection simultaneously addresses
clustering accuracy at the current time (denoted as CS)
and clustering drift at the historical time (denoted as CT ).
A large number of algorithms address these two issues
with various principles that are loosely grouped into two
main categories, namely, independence strategies [49], [50],
[40], [42], [40], [51], [52] and temporal smoothing-based
methods [26], [30], [32], [33], [34], [43], [53], [54], [55].

A. Progression of algorithms with independent strategies
These independence-based algorithms simply extend

static community detection approaches, which are divided
into two classes, namely, one-stage- and two-stage-based
methods. The former first transform temporal networks
into a single coupling graph by adding time labels on edges
and then performing graph clustering on the constructed
network with single-layer clustering approaches [56], [57],
[58], [59], [60]. HOP-NMF[59] adopts an iterative network
enhancement scheme to encode higher-order proximity
into the network, and then utilizes symmetric non-negative
matrix decomposition of the network to obtain the final
community structure. JGSED[60]joint graph construction,
spectral embedding and spectral rotation to learn the
binary clustering indicator matrix to get community
structure. Actually, these algorithms discard temporality
to fit the conventional graph clustering, thereby reducing
complexity by sacrificing the performance of methods
because coupling graph fails to preserve the temporality
of communities. As such, these methods are criticized for
their poor preformance in terms of detecting dynamic
communities.

To avoid destroying network structures, two-stage-based
methods first performs static community detection in-
dependently for each time and then address the evolu-
tion of communities at the subsequent snapshots. These
algorithms differ greatly in the principles of addressing
evolution. For example, DYNAMO [42] employs adaptive
and incremental learning to detect dynamic communities,

whereas tNodeEmbed [51] utilizes long short-term memory
(LSTM) to learn temporality from the static embed-
ding of vertices. ePMCL[34] detects dynamic communities
based on genetic algorithm adaptive search for optimal
parameter combinations. Even though these algorithms
overcome the limitation of coupling graph-based methods,
they fail to enhance the performance of detecting dynamic
communities because of the independence of clustering
accuracy and drift, where clusters are extracted for each
time by solely optimizing connectivity without considering
temporality, causing evolution of clusters at the continu-
ous time can to not be observed.

B. Progression of evolutionary clustering algorithms
To avoid the separation of CS and CT, temporal

smoothing-based methods balance these two issues (i.e.,
temporality is incorporated into clustering). To balance
CS and CT, evolutionary clustering [26] employs TSF to
detect dynamic communities at each time via a weighted
linear function as

Cost = θCS + (1− θ)CT (1)

where CS and CT are clustering accuracy and drift
respectively, and parameter θ ∈ [0, 1]. Notice that Eq.(1)is
the traditional graph clustering for static networks if θ=1.

According to the principles of balancing strategies,
current algorithms are further grouped into two cate-
gories, namely, global smoothing- [43], [53], [61] and local
smoothing-based approaches [26], [30], [31], [32], [33],
[34], [35], [36], [37], [38]. The difference between these
two classes lies in window size for historical snapshots
for temporality. Specifically, the global smoothing-based
methods employ all snapshots to capture clustering drift,
whereas the local ones only uses a small-size window of
historical snapshots. The typical global smoothing method
is PisCES [43], where all snapshots are jointly factor-
ized to measure temporality. It remarkably improves the
performance of detecting dynamic communities because
the global strategy provides a better way to model and
characterize clustering drift. However, these algorithms
are time-consuming because all snapshots are involved,
thereby making its application for large-scale networks.

To address time issue, the local smoothing-based meth-
ods attack cluster drift with a few of subsequent historical
snapshots rather than all ones. Evolutionary clustering
[26] proposes TSF to balance CS and CT through a
weighted linear function. The difference among them
lies in how to characterize and model the dynamics of
snapshots within a window. For example, DYNMOGA [30]
poses these two issues as two competitive objectives and
formulate the dynamic community detection problem as
a multi-objective optimization one. sE-NMF [36] proves
the equivalence of evolutionary clustering algorithms and
proposes semi-supervised evolutionary non-ngeative ma-
trix factorization for dynamic community detection. C-
Blondel [38] derives knowledge of the historical snapshots
for clustering drift, while jLDEC [33] learns graph rep-
resentation and detects dynamic community. ERCOT[62]



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

describes clustering drift by quantifying the importance of
historical data to the current clustering structure, while
GCIA[63] aggregates information from historical times-
tamp based on a gaming strategy. DMOPs[64] designs
a higher-order knowledge transfer strategy to capture
dynamic communities, while the constraint interval graph-
based approach[65] maintains the structural and temporal
information of the network by constructing a constraint
interval graph. VGRGMM[66] constructs gated recurrent
unit to capture dependencies between vertices in the
embedding space and combines it with variational autoen-
coder (VAE) to simultaneously learn dynamic network
embeddings and community affiliations. These algorithms
not only reduce running time but also achieve excellent
performance, demonstrating that local smoothness is also
promising for dynamic community detection. However,
local smoothing-based algorithms cannot make use the
global structure of temporal networks, thereby failing to
fully capture the dynamics of networks.

C. Limitations of evolutionary clustering
CS can be modeled in many different ways, such as

normalized graph cut [17] and modularity [9]. The most
critical technique is to characterize CT , and current
algorithms under TSF address it by exploiting difference
in terms of features or networks. However, several typical
limitations for TSF in Eq.(1) are summarized as

- First, parameter θ is difficult to determine. Current
algorithms fix the value of parameter θ in advance
for all time, assuming that dynamics of networks at
each time is equal, thereby deviating from reality of
temporal networks. Thus, parameter θ must reflect
the dynamics of temporal networks for each time.

- Second, CT is characterized at the global level, where
dynamics at the vertex-level are neglected. Actually,
the evolution of temporal networks usually occurs at
the vertex-level, therefore, failing to fully model and
capture the dynamics of networks.

- Finally, to the best of our knowledge, no previous
research has focused on utilizing the partial struc-
tural information of temporal networks to detect
communities. As in fact, evolution among subsequent
snapshots implies the existence of preserved structure
of networks, which can serve as semi-supervised
information to enhance the performance of algorithms
for clustering of temporal networks.

In this study, we design a novel method for detecting
dynamic community in temporal networks, to provide
an alternative for TSF. Furthermore, the self-supervised
strategy is developed to enhance the performance of algo-
rithms by exploiting partial information with contrastive
learning.

III. Preliminaries
A. Notations

For sake of convince, scalars, vectors, and matrices are
represented by lower-case, bold lower-case, and capital

1

2

5

4

3 1

2

5

4

3

partitioning 1

partitioning 2

(A) (B)

Fig. 1: Schematic example of dynamic communities: (A)
visualization of G[t−1], and (B) two partitioning in G[t]

with the dashed and solid lines, respectively.

letters, respectively. Graph with n vertices (i.e., V =
{v1, . . . , vn}), is denoted as G = (V,E) with edge set
E = {(vi, vj)|vi, vj ∈ V }. W = (wij) is the adjacent
matrix of G and element wij is the weight on edge
(vi, vj). The degree of vertex vi is defined as di =

∑
j wij ,

and D = diag(d1, . . . , dn). The Laplacian matrix of G is
defined as L = D − W . Let ∥W∥ =

√∑
ij w

2
ij and W

′

be the Frobenius norm and transpose of matrix W . Let
Wi.(wi.) and W.j(w.j) be the i-th row and j-th column,
respectively. Tr(W ) =

∑
i wii is trace of matrix W .

Temporal networks consist of τ snapshots, denoted as
G = {G[1], . . . , G[τ ]}, where G[t] = (V,E[t]) is the t-th
snapshot, and G[t] is derived from G[t−1]. The adjacent
matrix of G is W = {W [1], . . . ,W [τ ]}.

Clustering of G divides V into groups with strong con-
nectivity inside and weak connectivity outside of groups.
In other words, communities {Ci}ki=1 such that V =

∪
Ci,

and Ci

∩
Cj = ∅ for (i ̸= j), where Ci is the i-th

community and k is the number of communities. {Ci}ki=1

can be represented with an index matrix H ∈ Rn×k,
where hij=1 if vi ∈ Cj , 0 otherwise. Dynamic communities
at time t of G are denoted as {C [t]

i }k[t]

i=1, where C
[t]
i

simultaneously reflects topological structure of G[t] and
G[t−1]. More specifically, connectivity of C

[t]
i is strong in

G[t] and G[t−1], where clustering accuracy reflects G[t],
and clustering drift addresses temporality of G[t−1]. A
schematic dynamic example is shown in Fig. 1, where panel
A is the visualization of G[t] with 5 vertices, and B contains
two partitioning of G[t] with different lines. Specifically,
partitioning 1 corresponds two communities {1, 2} and
{3, 4, 5}, and partitioning 2 also has two communities
{1, 2, 3} and {4, 5}. These two partitioning are equal in
terms of clustering accuracy at G[t] because there is
only one edge across these two communities. However,
partitioning 1 is better than partitioning 2 because vertices
in community 2, 3, 4, 5 are disconnected in G[t−1], implying
that it fails to preserve the topology structure of historical
snapshot.

The main symbols are listed in Table I.

B. NMF and contrastive learning

Non-negative matrix factorization (NMF) [67] learns the
partial representation of the original data with two low-
rank matrices with non-negative constraint. Specifically,
it approximates matrix W by the product matrix B and
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TABLE I: Symbol description

Symbol Description

G Temporal network {G[1], . . . , G[τ ]}
W Adjacent matrix of G
L Laplacian matrix of G

G[t] = (V,E[t]) Snapshot at time t

M [t] PMI matrix of G[t]

{C [t]
i }k

[t]

i=1 Dynamic communities at time t

B[t] Basis matrix of G[t]

F [t] Coefficient matrix of G[t]

N[t][s] Set of static vertices of G[t]

N[t][d] Set of dynamic vertices of G[t]

N[t]
i Positive samples of vi at time t

wi. The i-th row of matrix W
w.j The j-th column of matrix W

k[t] Number of communities at time t
τ Number of time steps

F as

W ≈ BF, s.t. B ≥ 0, F ≥ 0, (2)

where B and F are the basis and feature matrix respec-
tively. Eq.(2) is solved by minimizing the reconstruction
error, i.e.,

O = ∥W −BF∥2. (3)

The ultimate goal of contrastive learning [45], [46],
[47] is to enhance the quality of features with the par-
tial information. Specifically, it deliberately selects both
positive and negative samples, optimizing measurements
to discriminate negative samples in the feature space
[68], [69], [70]. In addition, graph contrastive learning
[48] narrows distance between similar vertices (positive
samples) and increases that dissimilar ones (negative
samples), i.e.,

J =
∑
i=1

∑
j∈Ni

− log
exp(sij)∑
p ̸=i exp(sip)

, (4)

where S ∈ Rn×n is the similarity matrix for vertices in G,
and Ni represents neighbors of vertex vi.

IV. Algorithm

We first formulate the objective function, then derive
the optimization of the proposed algorithm. Finally, we
perform algorithm analysis in this section.

A. Objective function
As shown in Fig. 2, jNCDC consists of four major

components (i.e., feature learning, evolution graph con-
struction, graph contrastive learning, and clustering).
Therefore, the objective function of jNCDC is composed
three costs, corresponding to the first three components.

1) Feature learning: On the feature learning issue, NMF
[67] is widely adopted to factorize matrix W [t] of G[t] into

two non-negative matrices B[t] and F [t] by minimizing
approximation, i.e.,

O(G[t]) = ∥W [t] −B[t]F [t]∥2. (5)

However, Eq.(5) has two limitations. First, W [t] just de-
picts the 1-order topological structure of vertices without
exploiting high-order interactions of vertices. Second, it
ignores the temporality of snapshot at time t. Recently,
evidence proves that point mutual information (PMI)
matrix outlines the high-order structure, which offers
a superior method for characterizing the structures of
networks [71]. Given snapshot G[t], the element m

[t]
ij of

PMI matrix M [t] is defined as

m
[t]
ij = max{logw[t]

ij

∑
i

d
[t]
i − log(d

[t]
i d

[t]
j − κ), 0}, (6)

where κ is a hyper-parameter controlling sizes of negative
sampling (usually, κ=2 [72]). By replacing W [t] with M [t],
Eq.(5) is reformulated as

O(G[t]) = ∥M [t] −B[t]F [t]∥2. (7)

However, Eq.(7) ignores the temporality of snapshots
within the window around time t, thereby feature F [t] fails
to capture the dynamics of networks. This problem can
be effectively solved by factorizing matrices of subsequent
snapshots. In this case, Eq.(7) is re-written as

O({G[l]}t+1
l=t−1) =

t+1∑
l=t−1

∥M [l] −B[l]F [l]∥2. (8)

Our previous study [36] demonstrates that joint factoriza-
tion is more precise to model the dynamics of networks by
projecting snapshots G[l](l = t−1, t, t+1) into a subspace.
Here, we adopt the same strategy, and Eq.(8) is modified
as

O({G[l]}t+1
l=t−1) =

t+1∑
l=t−1

∥M [l] −B[t]F [l]∥2. (9)

Furthermore, we anticipate that the vertex feature in F [t]

will maintain the local topological structure of G[t]. In
other words, vertex vi and vj are well connected in G[t],
they are also close to each in the feature space (i.e.,
Euclidean distance of f[t]i. and f[t]j. is small), vice versa.
And, it can be formulated as trace optimization as [73]

O(F [t]) =
∑
i,j

w
[t]
ij ∥f[t]i. −f[t]j. ∥

2 = Tr((F [t])L[t](F [t])
′
). (10)

2) Evolution graph construction: To model and quan-
tify the dynamics of temporal networks, current evolu-
tionary clustering algorithms [36], [26] measure CT by
comparing difference features at various time as

∥(F [t])
′
F [t] − (F [t−1])

′
F [t−1]∥2. (11)

But, Eq.(11) fails to fully measure the dynamics of
temporal networks for two reasons. First, it quantifies the
dynamics at the global level, rather than at the vertex-
level. In other words, Eq.(11) is unable to differentiate
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Fig. 2: Overview of the proposed algorithm. It consists of feature learning, evolution graph construction, graph
contrastive learning and clustering, where the first procedure learns features of vertices at time t with joint NMF,
evolution graph construction procedure represents vertices at time t by using features at time t−1 with representation
learning, graph contrastive learning is performed on the static and dynamic vertices to improve the quality of features
and evolution graph. Finally, clustering analysis is performed on the evolution graph to obtain communities at time t.

between slight perturbation occurring at a large sub-
network versus intense evolution at a small group of
vertices, thus hindering downstream analysis. Second,
the interpretability of dynamics captured by Eq.(11) is
relatively weak.

To address the above problems, jNCDC measures the
dynamics of networks at the vertex-level by exploiting
relations among successive features. More specifically,
because G[t] is smoothly evolved from G[t−1], there is
a close relation between F [t] and F [t−1]. Thus, jNCDC
utilizes self-representation learning to construct an affinity
graph with F [t−1] and F [t] as with as

O(Z [t]) = ∥F [t] − F [t−1]Z [t]∥2. (12)

Z [t] is the affinity graph representing the relations of
vertices from F [t−1] and F [t], where z

[t]
ij denotes the weight

of vj in G[t−1] to represent vi in G[t]. Furthermore, z
[t]
ij

is considered the similarity between f[t−1]
.j and f[t].i . In this

case, the evolution of vertices can be reflected from Z [t].
Small z[t]ii implies that vi in G[t] cannot be directly obtain
from vi in G[t−1] (i.e., vi at time t is dynamic), otherwise
static.

What we want to point out is that Z [t] brings in two
advantages. First, the relations of vertices from succes-
sive features are explicitly quantified, which ensures the
characterization of network dynamics at the micro-level,
thereby providing a better way to model and depict the
temporality of networks. Furthermore, for every vertex in
G[t], Z [t] identifies the closely related vertices in G[t−1],
thereby enhancing the explanation of network dynamics.

3) Graph contrastive learning: Contrastive learning
improves the quality of features by exploiting positive and
negative samples [45], [46], [47], and we also want utilizes
it to capture dynamics of networks (i.e., Z [t]). There are

two critical techniques involved: selecting positive and
negative vertices, and improving the features with partial
information.

On the vertex selection concerning, our previous re-
search [55] illustrates that the role of vertices facilitates
feature learning in temporal networks. Analogously, ver-
tices for each time t are divided into two classes (i.e.,
dynamic and static one). In details, the dynamics of vertex
vi at time t is defined as the sum of difference of weights
on edges connecting to it, ∆

[t]
i =

∑
j |w

[t]
ij − w

[t−1]
ij |. Top

(bottom) µ% of vertices are selected as dynamic (static)
ones (according to Ref.[55], µ=5 is a good choice).

On the feature improvement concerning, jNCDC ex-
pects that static vertices preserve the features at successive
time (i.e, f[t−1]

.i and f[t].i are similar), which can be fulfilled
by maximizing z

[t]
ii with the loss function of contrastive

learning for static vertex vi as [46]

O(z
[t]
ii ) = − log

exp(z
[t]
ii )∑

p exp(z
[t]
ip )

. (13)

Furthermore, Z [t] also characterizes the relations among
vertices. For each static vertex vi, we can select δ closest
ones as positive samples (denoted as N[t]

i ) in terms of
values in z[t]i. . Similarly, the loss function is formulated as

O(vi) =
∑

j∈N[t]
i

− log
exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

. (14)

By combining Eq.(13) and Eq.(14), the loss function for
static vertices at time t (denoted as N[t][s]) is formulated
as

O(N[t][s]) =
∑

i∈N[t][s]

(O(z
[t]
ii ) +O(vi)). (15)
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Different from static vertices, for each vertex vi in
dynamic set N[t][d], it fails to be represented by f[t−1]

.i (i.e.,
z
[t]
ii is close to 0). Therefore, we select δ closest ones in G[t]

as positive samples, denoted as N[t]
i , and others as negative

samples. The loss function for N[t][d] is formulated as

O(N[t][d]) =
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp(z

[t]
ij )∑

p exp(z
[t]
ip )

. (16)

By combining Eq.(15) and (16), the loss of graph con-
trastive learning is written as

Ogc(G
[t]) = O(N[t][s]) +O(N[t][d]). (17)

Eq.(17) consequently improves the quality of features
by discriminating positive and negative vertices, which
narrows down the distance of similar vertices and increases
the distance of dissimilar vertices.

By combining Eqs.(9, 10, 12, 17), the objective function
of jNCDC is formulated as

O = O({G[l]}t+1
l=t−1) +O(F [t]) + αO(Z [t]) + βOgc(G

[t])

=

t+1∑
l=t−1

∥M [l] −B[t]F [l]∥2 + Tr(F [t]L[t](F [t])
′
)

+ α∥F [t] − F [t−1]Z [t]∥2

+ β(
∑

i∈N[t][s]

(− log
exp(z

[t]
ii )∑

p exp(z
[t]
ip )

+
∑

j∈N[t]
i

− log
exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

)

+
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp(z

[t]
ij )∑

p exp(z
[t]
ip )

)

s.t. B[t] ≥ 0, F [t] ≥ 0, Z [t] ≥ 0, B[t](B[t])
′
= I.

(18)

where α and β determines the importance of evolution
graph construction and contrastive learning.

There are at least three difference between the proposed
algorithm and current algorithms, which are summarized
as

- Current algorithms measure the dynamics of temporal
networks by comparing either features or topological
structure of vertices at successive time, whereas
jNCDC automatically learns evolution graph.

- Graph contrastive learning for clustering of temporal
networks is first proposed, where the partial informa-
tion of dynamic and static vertices is fully exploited to
characterize and measure the dynamics of networks.

- Available methods utilizes TSF to balance CS and
CT, while jNCDC avoids it with joint learning frame-
work.

B. Optimization
The objective function in Eq.(18) is non-convex because

of the graph contrastive learning item, which cannot be

directly optimized. Thus, an iterative approach is utilized
where one variable is optimized while keeping the others
fixed. This process continues until convergence or the
maximum number of iterations is reached.

1) Updating B[t]: By fixing other variables, Eq.(18) in
terms of B[t] is transformed as

O =

t+1∑
l=t−1

∥M [l] −B[t]F [l]∥2. (19)

Since Eq.(19) is convex, it has analytical solution. The
partial derivative of O in terms of B[t] is formulated as

∂O
∂B[t]

= 2

t+1∑
l=t−1

∥M [l] −B[t]F [l]∥. (20)

By setting ∂O
∂B[t] =0, Its update rule is formulated as

B[t] =

∑t+1
l=t−1 M

[l]∑t+1
l=t−1 F

[l]
. (21)

2) Updating F [t]: By fixing other variables and remov-
ing irrelevant terms to F [t], Eq.(18) is rewritten as

O =

t+1∑
l=t−1

∥M [l] −B[t]F [l]∥2 + Tr(F [t]L[t](F [t])
′
)

+ α∥F [t] − F [t−1]Z [t]∥2.

(22)

The Lagrangian function of Eq.(22) is formulated as

O =∥M [t] −B[t]F [t]∥2 + Tr(F [t]L[t](F [t])
′
)

+ α∥F [t] − F [t−1]Z [t]∥2 + Tr(ΨF [t]),
(23)

where Ψ is the Lagrange multiplier for non-negativity of
F [t].

The partial derivative of Eq.(23) in terms of F [t] is
deduced as

∂O
∂F [t]

= (B[t])
′
B[t]F [t] − (B[t])

′
M [t]

+F [t]L[t] + α(F [t] − F [t−1]Z [t]).
(24)

In accordance with the KKT conditions(Karush-Kuhn-
Tucher), by setting the partial derivative of Eq.(24) to
0, the rules of F [t] is obtained as

F [t] = F [t] ⊙ (B[t])
′
M [t] + αF [t−1]Z [t] + F [t]W [t]

(B[t])′B[t]F [t] + F [t]D[t] + αF [t]
. (25)

3) Updating Z [t]: Matrix Z [t] is involved in represen-
tation learning and contrastive learning, and Eq.(18) is
deduced as

O =α∥F [t] − F [t−1]Z [t]∥2 + β(
∑

i∈N[t][s]

(− log
exp(z

[t]
ii )∑

p exp(z
[t]
ip )

+
∑

j∈N[t]
i

− log
exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

)

+
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp(z

[t]
ij )∑

p exp(z
[t]
ip )

).
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(26)

According to the linear additive property of the derivative,
∂Z[t](O) consists of two terms, i.e.,

∇Z[t] = α∇rs + β∇gc (27)

where ∇rs and ∇gc are the partial derivatives for repre-
sentation learning and contrastive learning, respectively.
∇rs is formulated as

∇rs = −(F [t−1])
′
F [t] + (F [t−1])

′
F [t−1]Z [t]. (28)

However, ∇gc involves dynamic and static vertices,
which can be handled separately. For each static vertex
vi ∈ N[t][s], if vertex vj ∈ N[t]

i , the second item in Eq.(26)
is re-written as

L =− log
exp(z

[t]
ii )∑

p exp(z
[t]
ip )

+
∑

j∈N[t]
i

− log
exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

=− z
[t]
ii + log(

∑
p

exp(z
[t]
ip ) +

∑
j∈N[t]

i

(−z
[t]
ij + log(

∑
p ̸=i

exp(z
[t]
ip ))).

(29)

The partial derivative of z[t]ij is deduced as

∂O
∂z

[t]
ij

= −1 +
m exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

+
m exp(z

[t]
ij )∑

p exp(z
[t]
ip )

, (30)

where m is the number of positive vertices.
If vertex vj /∈ N[t]

i , the second item of Eq.(26) is re-
written as

O =− z
[t]
ii + log(

∑
p

exp(z
[t]
ip )) +

∑
j∈N[t]

i

(log(
∑
p ̸=i

exp(z
[t]
ip )))

=− z
[t]
ii + log(

∑
j∈N[t]

i

exp(z
[t]
ij ) +

∑
p/∈N[t]

i

exp(z
[t]
ip ))

+
∑

j∈N[t]
i

(log(
∑

j ̸=i,j∈N[t]
i

exp(z
[t]
ij ) +

∑
p ̸=i,p/∈N[t]

i

exp(z
[t]
ip ))).

(31)

The partial derivative of z[t]ij is formulated as

∂L
∂z

[t]
ij

=
m exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

+
m exp(z

[t]
ij )∑

p exp(z
[t]
ip )

. (32)

And, the update rule for z
[t]
ij is deduced as

−1 +
m exp(z

[t]
ij )∑

p ̸=i exp(z
[t]
ip )

+
m exp(z

[t]
ij )∑

p exp(z
[t]
ip )

, if j ∈ N[t]
i

m exp(z
[t]
ij )∑

p ̸=i exp(z
[t]
ip )

+
m exp(z

[t]
ij )∑

p exp(z
[t]
ip )

, otherwise.
(33)

Analogously, the update rule for dynamic vertex vi is
obtained as

−1 +
m exp(z

[t]
ij )∑

p exp(z
[t]
ip )

, if j ∈ N[t]
i ,

m exp(z
[t]
ij )∑

p exp(z
[t]
ip )

, otherwise.
(34)

TABLE II: Statistic of temporal networks.

Data |V | |E| τ

Artificial
Temporal
Networks

SYN-FIX 128 20, 480 10
SYN-VAR 256 59, 256 10
Birthdeath 10, 000 18, 970, 847 10
Expansion 10, 000 24, 574, 662 10

Hide 10, 000 24, 190, 738 10
Mergesplit 10, 000 23, 854, 220 10

Real-world
Temporal
Networks

Cellphone 400 10, 400 10
Email 1, 005 332, 334 10

Wikipedia 8, 400 162, 000 10
Dublin 24, 818 415, 900 4

The procedure of jNCDC is illustrated in Algorithm 1.

Algorithm 1 The jNCDC algorithm
Require:
G: Temporal networks
α, β: Parameter for regularization items;

Ensure:
{C [t]

i }k[t]

i=1: Dynamic communities;
1. Construct PMI matrix M [t] for each time t;
2. Update B[t] according to Eq.(21);
3. Update F [t] according to Eq.(25;
4. Update Z [t] according to Eq.(33) and Eq.(34);
5. Go to step 2 until convergence;
6. Performing spectral clustering on Z[t]+(Z[t])

′

2 .
7.return {C [t]

i }k[t]

i=1.

C. Algorithm analysis

On the space complexity, the space for adjacency matrix
of G is O(n2τ). The space for basis matrix B[t] and feature
matrix F [t] is O(ndτ), where d is the number of dimension.
The space for affinity matrix Z [t] is O(n2τ). PMI matrix
and Laplacian matrix take space O(n2τ). Thus, the total
space complexity for jNCDC is O(n2τ) because of d ≪ n,
demonstrating that the proposed method is efficient in
terms of space complexity. On the time complexity, matrix
factorization requires time O(n2dl), where l is the number
of iterations. The time for updating matrix Z [t] is O(n2l).
The time for spectral clustering is O(n3). Thus, the time
complexity of jNCDC is O(n3τ).

V. Experiments

Parameter effect, accuracy, and ablation analysis of
the proposed algorithm are investigated to fully validate
the performance of jNCDC on the clustering of temporal
networks.
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A. Settings
A total of 10 benchmark temporal networks, comprising

6 artificial and 4 real world datasets, are selected for
experiments. SYN-FIX/SYN-VAR originated from the
GN network [7] by incorporating dynamics, where the
number communities in SYN-FIX networks for each time
is fixed but varies for SYN-VAR. Greene dataset [74]
contains 4 evolution events (i.e., Birthdeath, Hide, Expan-
sion, and Mergesplit), where the dynamics of networks is
complicated.

In addition, 4 real-world temporal networks are in-
cluded. Cellphone1 consists of records from the 400
members of the fictitious Paraiso movement covering a
period of 10 days in June 2006, where each member is
treated as a node, the call records between members as
an edge, and every day corresponds to a snapshot. Email2
comprises emails among 1005 persons from an institution,
which contains 1,005 vertices, 332,334 edges, and 10 time.
Wikipedia3 contains 8,400 nodes, 162,000 edges, and 10
time, Dublin4 is a social network for communication
among individuals, which has 24,818 vertices, more than
400,000 edges, and 4 time. The statistics of networks are
summarized in Table II.

Normalized mutual information (NMI) [75] and ac-
curacy (ACC) are selected as measurements to quan-
tify the performance of algorithms. Eight MetaFac [27],
PisCES [43], sE-NMF [36], DYNMOGA [30], DPGM [76],
ECD [77], LSNMF [78], and jLMDC [79] are selected
as baselines, which cover typical evolutionary clustering.
MetaFac is selected because it is the first evolutionary
clustering-based method for dynamic community detec-
tion. PiCES and DPGM are chosen because they are
global smoothness-based algorithms with an excellent
performance. DYNMOGA and ECD are deliberately em-
ployed because they are popular TSF-based algorithms.
sE-NMF is also included because it also makes use of
matrix factorization to learn features of vertices. LSNMF
is selected is because it decomposes features of vertices
into common and specific parts, where the specific features
of vertices are promising for the dynamics of temporal
networks. jLMDC is selected because it characterizes the
dynamics of temporal networks by exploiting the roles
of vertices, which enhances the performance of tracking
dynamic communities in temporal networks.

B. Parameter analysis
The jNCDC algorithm has parameters (i.e., α, β,

d, and δ), where α and β are the parameters of the
evolutionary graph construction and graph contrastive
learning, respectively; d is the number of features; and δ is
used to select neighbors to construct the positive sample.
d is selected using the instability of matrix factorization
[80]. For parameter δ, we set as n/k.

1http://www.cs.umd.edu/hcil/VASTchallenge08/
2https://snap.stanford.edu/data/email-Eu-core-temporal.html
3http://networkrepository.com/edit-enwikibooks.php.
4http://networkrepository.com
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Fig. 3: Parameter effect of jNCDC on various networks:
(A) Birthdeath, (B) Expansion, (C) Cellphone, and (D)
Email.

jNCDC involves parameters α and β, which de-
termine the importance of evolution graph construc-
tion and contrastive learning. Two artificial (Birthdeath
and Expansion) and two real-world temporal net-
works (Cellphone and Email) are selected to investi-
gate parameter effect. In detail, we investigate the ef-
fects of parameter variations on the performance of
jNCDC, where α ∈ [10−3, 10−2, 10−1, 0.5, 1, 10] and β ∈
[10−3, 10−2, 1, 10, 102].

Performance of jNCDC for various networks with dif-
ferent parameter values is depicted in Fig. 3, where panel
A is for Birthdeath, B for Expansion, C for Cellphone,
and D for Email networks. From Figs. 3 A and B, it is
easy to assert that the NMI of the proposed algorithm is
quite stable as parameter α increases from 0.001 to 10 for
the artificial networks. Moreover, jNCDC is insensitive to
parameter β because NMI changes smoothly as β increases
from 0.001 to 10. jNCDC is stable because of two possible
reasons. First, jNCDC take advantage of contrastive
learning to enhance quality of features, thereby offerring
an improved approach to characterize and quantify the
temporality of networks. Second, the proposed algorithm
constructs an evolution graph to exploit the dynamics of
networks at the vertex-level, where the relations of vertices
at successive time are explicitly explored, shedding light
on the intrinsic structure of evolving communities.

Then, we further investigate parameter effect by re-
placing artificial networks with real-world ones, which
is shown in Figs. 3 C and D. From these panels, it is
easy to find that jNCDC is sensitive to parameter α
but insensitive to parameter β for real-world networks.
Specifically, jNCDC is quit stable when parameter α ≤
0.1. Moreover, the NMI of jNCDC decreases as parameter
α keeps increasing from 0.1 to 10. The reason is that the
objective function is primarily influenced by the evolution
graph when α is large. In this case, jNCDC fails to reach
a good balance between feature learning and temporality,
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thereby decreasing the quality of features. There is a valid
rationale to explain why jNCDC is stable for parameter
β.

Performing a thorough comparison between Fig. 3 A/B
and C/D demonstrates that jNCDC is more stable in
artificial networks than real-world ones. The reason is
that structure and patterns in artificial networks are much
easier to characterize than those in real ones because
evolution events in artificial networks are regular. In this
study, we set α=0.1 and β=1 for all experiments.

C. Performance on artificial temporal networks
1) SYN-FIX/SYN-VAR networks: For each type of

artificial networks, we generate 100 networks to remove
the randomness of evolution. All these algorithms are
performed on these networks and the average NMI to
measure performance of these algorithms (mean ± stan-
dard deviation). The performance of different algorithms
on the SYN-FIX and SYN-VAR is shown in Table III.

According to the result presented in Table III,
jNCDC demonstrates superior performance on SYN-FIX
and SYN-VAR networks. Specifically, jNCDC, PisCES,
MetaFac, LSNMF, and jLMDC exhibited the best perfor-
mance, followed by DYNMOGA and sE-NMF. In detail,
the NMI of jNCDC, PisCES, MetaFac, LSNMF, and
jLMDC is 1.000, whereas it is 0.999 for DYNMOGA, 0.975
for sE-NMF, and is 0.967 for ECD. DPGM algorithm
has the worst performance on SYN-FIX networks with
an average NMI of 0.921. Furthermore, on the SYN-VAR
networks, jNCDC achieves the best performance with NMI
0.998. jLMDC, ECD, LSNMF, PisCES, DYNMOGA, and
sE-NMF are inferior to the proposed algorithm, where
NMI of jLMDC is 0.994, of ECD is 0.993, of LSNMF
is 0.969, of PisCES is 0.961, of DYNMOGA is 0.961,
and NMI of sE-NMF is 0.945. Notice that DPGM and
MetaFace achieve the worst performance on SYN-VAR
networks.

DPGM achieves the worst performance because it is a
probabilistic model based on topological structure, which
is practical if and only if structure of dynamic communities
is easy to detect (i.e., there are much more edges within
communities than outside). In other words, it is very
sensitive to network perturbation. Notice that all these
algorithms achieve a good performance on the SYN-
FIX/SYN-VAR networks because the evolution events are
simple and regular, which are easy to characterize and
capture. However, jNCDC is superior to these baselines,
implying that it is more accurate to describe and model
the dynamics of networks than state-of-the-art methods.

The superiority of the proposed algorithm can be at-
tributed to several factors. First, jNCDC utilizes the high-
order topological structure of networks, rather than the
adjacent matrix, which provides a better way to capture
the dynamics of networks. Second, jNCDC measures the
dynamics of networks at the vertex-level, rather than
on the global level, by exploiting the representation
relations among vertices with features at the successive

time, which effectively avoids the accumulated effect of
subtle perturbation at the large-scale regions of networks.
Third, jNCDC introduces graph contrastive learning for
clustering of temporal networks, where partial information
of positive and negative vertices leads to improved feature
quality, thus enhancing algorithm performance.

2) Greene networks: SYN-FIX and SYN-VAR alone
cannot fully assess the performance of diverse algorithms
due to two primary factors. First, the evolution events
are regular and fixed for all time, indicating that these
dynamic communities are relatively easy to detect. Second,
the sizes of networks are limited (i.e., less than 300
vertices), thereby failing to testify the performance of
algorithms. To address this issue, Greene [74] is a typ-
ical benchmark for tracking dynamic community, which
include four evolution events with 10,000 vertices.

Table III illustrates the performance of various al-
gorithms on the Greene networks. The results indicate
that jNCDC achieves the best performance across all
four types of networks, suggesting it as a superior way
to model and depict network temporality. Specifically,
jNCDC, DYNOMGA, jLMDC, and LSNMF have similar
performance in the four evolutionary events. NMI of
jNCDC is 0.999 for Birthdeath, 0.999 for Expansion, 0.997
for Hide, and 0.998 for Mergesplit, respectively. The NMI
of jLMDC, DYNMOGA, and are close to that of jNCDC.
However, other algorithms, such as sE-NMF and PisCES,
are inferior to jNCDC. In detail, the NMI of sE-NMF
is 0.961 for Birthdeath, 0.975 for Expansion, 0.968 for
Hide, and 0.977 for Mergesplit. However, the NMI of
PisCES is inferior to sE-NMF, where NMI is 0.941 for
Birthdeath, 0.963 for Expansion, 0.955 for Hide and 0.968
for Mergesplit, respectively. DPGM is also the worst for
all four types of networks, indicating that probabilistic
model fails to characterize the distribution of dynamics in
networks because topology is incomprehensive.

PisCES is inferior to jNCDC because the global smooth-
ness strategy is effective if and only if the temporality of
networks is gentle. It also fails to precisely characterize
the dynamics of networks at a particular time, leading to
decreased algorithm performance for detecting dynamic
communities in networks with large τ . LSNMF achieves
excellent performance because it decomposes features
into common features and specific features and explicitly
measures the specificity of vertex features to characterize
the dynamics of vertices. The reason for the excellent
performance of jLMDC is that it uses the roles of vertices
to measure the dynamics of the network at the micro-
level to describe the evolution of the networks more
accurately. Furthermore, the global smoothing strategy is
time-consuming, implying that it is inapplicable to large-
scale temporal networks. DYNMOGA takes the multi-
objective optimization to balance CS and CT, where
Pareto solutions are difficult to solve.

Table III shows that jNCDC is promising in identifying
dynamic communities because it outperforms all these
baselines in terms of accuracy, indicating that graph
contrastive learning is effective for characterizing the dy-
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namics of communities. There are several reasons account-
ing for the superiority of the proposed algorithms. First,
jNCDC abandons the well-known temporal smoothness
framework [26], which avoids the balance of CS and CT.
Second, the learning of features and characterization of
temporality are smoothly merged into an overarching
objective function. Here, the features of vertices are
learned with the guidance of network temporality. As
such, features simultaneously reflect the connectivity of
communities at the current time and temporality from
the historical snapshot. Third, evolution graph is con-
structed with representation learning, where the relations
among vertices at successive time are explicitly quantified,
facilitating the identification of dynamic communities.
Finally, the positive and negative vertices serve as partial
information to promote the performance of jNCDC.

By replacing NMI with ACC, the performance of these
algorithms is consistent, as shown in Table IV, showing
these algorithms identify the truth dynamic communities.
These results further validate the potential of contrastive
learning in capturing and identifying dynamic communi-
ties within temporal networks.

D. Performance on real-world temporal networks
The previous experiments prove the superiority of

jNCDC with artificial networks, and then we select these
widely used real-world networks to verify the applicability
of the proposed algorithm. In detail, four real-world
temporal networks, namely, Cellphone, Email, Wikipedia,
and Dublin are selected, where the number of vertices
ranging from 400 to 25,000 as shown in Table II. For
real-world networks, we follow the strategy in Ref. [81] to
obtain the truth-ground communities.

NMI of various algorithms on real-world networks is
shown in Table III, where jNCDC is the best algorithm
for all these real networks. Specifically, the NMI of
jNCDC is 0.699, 0.645, 0.314, and 0.450 for Cellphone,
Email, Wikipedia and Dublin, respectively, whereas that
of jLMDC is 0.607, 0.581, 0.282, 0.412 and of MetaFac
is 0.597, 0.560, 0.263, 0.405. To our surprise, PisCES
performs poorly in real networks. The possible reason
is that evolution events in real networks are irregular,
which are difficult to be characterized and captured with
the global smoothing strategy. What we want to point
out is that NMI of PisCES dramatically decreases as the
number of vertices increases, showing the global smoothing
strategy is inapplicable for large-scale networks. Notably,
LSNMF performs well on small datasets (Cellphone and
Email), but its performance on large datasets (Dublin and
Wikipedia) is poor. The possible reason is that large-
scale temporal network changes are irregular, LSNMF
fails to fully utilize the temporality of the network and
cannot accurately depict the evolution of the community.
Furthermore, DYNMOGA and DPGM are inferior to
others because they are criticized for their failure to
balance clustering accuracy and drift.

Similar performance is shown in Table IV, showing that
jNCDC identifies truth communities. jNCDC achieves an
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Fig. 4: Ablation study of among jNCDC, jNCDC-no-GCL
and jNCDC-FL in terms of NMI.

excellent performance because of several reasons. First,
current algorithms quantify network dynamics based on
the assumption that they are constant over time, which
does not reflect the reality of temporal networks. jNCDC
overcomes this limitation with self-representation learning
to construct the evolution graph, where dynamics of snap-
shot at each time are precisely learned. Furthermore, the
learned evolution graph specifies the relations of vertices
between the previous and current time and improves the
interpretability of dynamics of networks. Second, graph
contrastive learning not only improves the quality of
features with partial supervision information but also
exploits the indirected relations among vertices in the
evolution graph to characterize the dynamics of networks
at different resolutions. Finally, jNCDC jointly learns
feature learning, graph contrastive learning, and evolution
graph construction, where features reflect the topological
structure and temporality of networks.

E. Ablation Study
Given that jNCDC joins feature learning, evolution

graph construction, and graph contrastive learning, an
ablation study must be conducted with an immediate
intention to verify the importance of these items. There-
fore, two variants of jNCDC are proposed. These variants
are jNCDC-FL, and jNCDC-no-GCL, where jNCDC-FL
removes evolution graph construction and graph con-
trastive learning, and jNCDC-no-GCL only deletes graph
contrastive learning.

The performance of the variants of jNCDC on various
networks is shown in Fig. 4, where jNCDC significantly
outperforms its variants for all 10 temporal networks. In
detail, the NMI of jNCDC is 1.000 for SYN-FIX, 0.998
for SYN-VAR, 0.999 for Birthdeath, 0.999 for Expansion,
0.997 for Hide, 0.998 for Mergesplit, 0.699 for Cellphone,
0.645 for Email, 0.314 for Wikipedia, and 0.450 for
Dublin. However, that of jNCDC-no-GCL is 0.905 for
SYN-FIX, 0.945 for SYN-VAR, 0.933 for Birthdeath, 0.902
for Expansion, 0.906 for Hide, 0.902 for Mergesplit, 0.663
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TABLE III: NMI of various algorithms on temporal networks, where bold values represent the best performance of
these algorithms, and - denotes no output (means±sd).

Datasets PisCES DPGM DYNMOGA MetaFac sE-NMF ECD LSNMF jLMDC jNCDC
SYN-FIX 1.000±0.000 0.921±0.007 0.999±0.001 1.000±0.000 0.975±0.010 0.967±0.028 1.000±0.000 1.000±0.000 1.000±0.000
SYN-VAR 0.961±0.002 0.920±0.005 0.961±0.006 0.895±0.014 0.945±0.020 0.993±0.006 0.969±0.000 0.994±0.005 0.998±0.000
Birthdeath 0.941±0.006 0.905±0.003 0.999±0.000 0.895±0.016 0.961±0.005 - 0.989±0.000 0.996±0.002 0.999±0.000
Expansion 0.963±0.003 0.929±0.004 0.981±0.000 0.976±0.008 0.975±0.004 - 0.998±0.000 0.997±0.002 0.999±0.000

Hide 0.955±0.001 0.928±0.007 0.991±0.000 0.975±0.003 0.968±0.003 - 0.991±0.000 0.996±0.003 0.997±0.000
Mergesplit 0.968±0.000 0.938±0.003 0.997±0.000 0.968±0.005 0.977±0.004 - 0.997±0.000 0.994±0.004 0.998±0.000
Cellphone 0.456±0.001 0.495±0.007 0.507±0.005 0.597±0.002 0.421±0.004 0.633±0.009 0.588± 0.000 0.607±0.005 0.699±0.002

Email 0.196±0.008 0.498±0.011 0.486±0.004 0.560±0.004 0.491±0.005 0.385±0.009 0.568±0.000 0.581±0.002 0.645±0.001
Wikipedia 0.259±0.002 0.206±0.003 0.241±0.001 0.263±0.008 0.258±0.001 - 0.212±0.000 0.282±0.008 0.314±0.000

Dublin 0.260±0.001 0.310±0.006 0.380±0.000 0.405±0.041 0.260±0.002 - 0.263±0.000 0.412±0.005 0.450±0.000

TABLE IV: ACC of various algorithms on temporal networks, where bold values represent the best performance of
these algorithms, and - denotes no output (means±sd).

Datasets PisCES DPGM DYNMOGA MetaFac sENMF ECD LSNMF jLMDC jNCDC
SYN-FIX 1.000±0.000 0.974±0.002 0.999±0.000 0.910±0.048 0.985±0.012 0.933±0.028 1.000±0.000 1.000±0.000 1.000±0.000
SYN-VAR 0.920±0.003 0.945±0.006 0.956±0.005 0.862±0.006 0.917±0.011 0.988±0.007 0.975±0.000 0.986±0.002 0.999±0.000
Birthdeath 0.803±0.005 0.786±0.010 0.888±0.009 0.895±0.016 0.872±0.008 - 0.977±0.000 0.974±0.001 0.999±0.000
Expansion 0.866±0.005 0.828±0.005 0.976±0.000 0.890±0.005 0.887±0.007 - 0.997±0.000 0.990±0.002 0.998±0.000

Hide 0.833±0.005 0.811±0.010 0.987±0.000 0.882±0.007 0.865±0.003 - 0.981±0.000 0.981±0.005 1.000±0.000
Mergesplit 0.882±0.005 0.824±0.007 0.999±0.000 0.850±0.008 0.891±0.005 - 0.982±0.000 0.973±0.004 0.994±0.001
Cellphone 0.195±0.008 0.254±0.006 0.287±0.005 0.290±0.001 0.217±0.002 0.366±0.006 0.342±0.000 0.385±0.012 0.449±0.003

Email 0.361±0.002 0.485±0.006 0.449±0.004 0.472±0.003 0.537±0.005 0.156±0.004 0.483±0.000 0.491±0.006 0.587±0.002
Wikipedia 0.147±0.017 0.063±0.006 0.157±0.008 0.156±0.024 0.146±0.007 - 0.149±0.000 0.128±0.006 0.174±0.004

Dublin 0.156±0.003 0.090±0.003 0.268±0.001 0.264±0.004 0.240±0.001 - 0.251±0.000 0.261±0.008 0.296±0.007

for Cellphone, 0.588 for Email, 0.229 for Wikipedia, and
0.415 for Dublin, which are 5%∼10% less than jNCDC.
Moreover, the NMI of jNCDC-FL is 0.942 for SYN-
FIX, 0.945 for SYN-VAR, 0.708 for Birthdeath, 0.786 for
Expansion, 0.896 for Hide, 0.827 for Mergesplit, 0.644 for
Cellphone, 0.596 for Email, 0.199 for Wikipedia, and 0.319
for Dublin respectively.

These results demonstrate that evolution graph and
graph contrastive learning are important for the per-
formance of jNCDC because removing either of them
dramatically decreases performance. There several pos-
sible reasons explain why these items are critical. First,
evolution graph provides supplemental information for fea-
tures of vertices to characterize the dynamics of networks,
which cannot be fulfilled only with the low-dimensional
features of vertices and topological structure of temporal-
ity networks. Second, graph contrastive learning utilizes
the functions of vertices in temporal networks, where the
semantic information also provides additional information
to characterize the dynamics of networks, which is ignored
by current baselines.

VI. Conclusion
Temporal networks provide a more precise method

for modeling the evolution of complex systems than
static ones. However, it present a remarkable challenge in
identifying dynamic communities. Compared with static
communities, detecting dynamic community is highly
intricate in temporal networks because it requires to

balance clustering accuracy and clustering drift. Cur-
rent algorithms also make use of temporal smoothness
framework, which is criticized for the difficulty on the
quantification of temporality, as well as determination of
its importance. In this study, we propose the first graph
contrastive learning to address these two issues, where the
dynamics of networks are characterized at the vertex-level
by learning an evolution graph, and partial information
is also incorporated with graph contrastive learning. The
results from our experiments reveal that our algorithm is
highly effective and outperforms existing state-of-the-art
methods.

In future research, we aim to address the following
issues, which are summarized as

- jNCDC only exploits the roles of vertices in temporal
networks by classifying them into static and dynamic
ones, failing to comprehensively explore semantic
of temporal networks. How to further investigate
the roles of graph patterns in temporal networks
for graph contrastive learning is promising for the
characterization of dynamics of networks.

- Even though jNCDC is the first attempt to apply
graph contrastive learning to clustering of temporal
networks, it is executed on the constructed evolution
graph, which is consistent with the traditional strat-
egy at some content. Exploring methods is needed
for directly applying contrastive learning on original
temporal networks, specifically in the selection of
positive and negative samples.
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- jNCDC takes matrix factorization to extract low-
dimensional representation of vertices in temporal
networks, which runs the risk of ignoring the intri-
cate structure. How to exploit more sophisticated
representation of vertices to characterize dynamic
communities is also interesting.
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