LOCAL REPRESENTATION LEARNING WITH CONVOLUTIONAL AUTOENCODER

Michael P. Kenning, Xianghua Xie, Michael Edwards, Jingjing Deng

Swansea University, Swansea, UK

ABSTRACT

Very recent advances in deep learning methods have seen
such representation learning approaches expand to domains
which exhibit irregular spatial topologies. The approach
of deep learning on graphs has seen increasing study, with
generalization of localized filtering providing deep learn-
ing benefits in numerous fields where spatial relationships
do not reside on a Cartesian grid. In this paper we present a
graph-based convolutional autoencoder, and assess the contri-
bution of its several components towards encoding quality. A
graph-based convolutional operator is used to learn localized
filtering operations for graph-wise encoding. An evaluation
of the proposed method is provided on a version of MNIST
that exists in an irregular topology that violates the array-like
input required for conventional convolutional autoencoder
methods.

1. INTRODUCTION

Representation learning approaches with deep neural net-
works have had a revolutionary impact on addressing numer-
ous recognition problems. By learning appropriate feature
representations, the need for domain expert insight and hand-
crafted feature-extractors is greatly reduced [1]. Traditional
Convolutional Neural Networks (CNNs) [2] learn localized
feature descriptors which reside on a regular grid, leading to
large performance gains in image and volume domain prob-
lems. However, a large number of application domains reside
on irregular spaces which violate the array input domain
assumption of the regular convolutional operation. For ex-
ample, the convolution operator is well defined in the regular
topology of the Cartesian grid, providing a kernel imple-
mentation which can be applied and optimized within CNN
architectures and a suitable learning scheme. The kernel has
a compact support, enabling it to learn local features from
the input which can be translated across the input domain. In
irregular domains the assumption of a grid-based input is in-
appropriate; thus the definition and translation of a localized
filter is non-trivial [3].

The development of deep learning in the irregular do-
mains has tried to explore this under-represented field, in at-
tempts to identify mechanisms for learning spatially localized
features from irregularly spaced input features. A number of
structures exist to represent data which resides in an irregular

domain [4]. The use of graphs represents the spatial structure
of the problem domain as a set of vertices and edges. Each
localization in the input domain is represented as a vertex in
the graph structure, with weighted edges describing the rela-
tion between such vertices. Signal processing on graphs has
developed into a field of research in which common signal
processing techniques are generalized to an irregular domain,
including filtering, downsampling and spectral transforms
[5]. The study of graph signal processing approaches to rep-
resentation learning on graph structures has lead to two main
areas of research: graph-wise and vertex-wise approaches.
Graph-wise methods treat a given observation of the whole
graph as a single observation. Such approaches are compa-
rable to image classification problems, in which an image is
treated as a signal residing on the graph of a two-dimensional
grid. Alternatively, vertex-wise techniques treat signals ob-
served at a given vertex on the graph individually and can be
compared to dense prediction problems such as segmentation
in image processing.

Autoencoders [6] that were originally designed for un-
supervised latent representation learning have been likewise
translocated from the regular to the irregular domain. Graph-
Based Autoencoders (Graph-AEs) are proposed to learn ab-
stract feature embedding for irregularly spaced domain ap-
plications for better generalization performance. Guo et al.
[7] proposed a Graph-AE which combines a Graph-Based
Convolutional Neural Network (Graph-CNN) and an Au-
toencoder (AE) to learn discriminative feature representation
from noise-degraded measurements of electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) scans taken
from a network of sensors across the scalp. The extracted fea-
tures are further generalized by a subsequent AE, whereas the
Graph-CNN and AE are two consecutive and separated com-
ponents. Similarly, Litany et al. [8] adopted the same graph-
based learning schema for a three-dimensional body-meshes
completion task, where a Variational Autoencoder (VAE) was
used to learn a generative model on latent feature space for
synthesizing structure at missing locations on a mesh. Wang
et al. [9] proposed a Marginalized Graph-AE for spectral
graph-clustering on a generalized latent feature space given
by the output of the last layer of a Graph-AE.

Limited work has been conducted on Graph-Based Con-

volutional Autoencoders (Graph-CAEs), which utilize local
features extracted using graph convolution operators to recon-

struct graph signals and further learn generalized local latent
feature representation. While the aforementioned examples
show great promise to generalize graph features globally, in
this paper, we present insight into the design of a Graph-CAE,
which learns latent representation on localized eigen-graph in
the spectral domain using graph-based convolution, and more
importantly learning generalized features locally using a Con-
volutional Autoencoder (CAE).

2. METHODOLOGY

2.1. Overview

In this section we discuss the components of the proposed
Graph-CAE, namely the convolution units and pooling lay-
ers. Convolution in irregular domains poses a challenge to re-
searches, since there is no guarantee of the spatial regularity
that traditional methods assume. Pooling is also precluded by
the spatial-irregularity property of graphs. Instead, we utilize
graph signal processing approaches to generalize convolution
and pooling operations to the graph representation of the ir-
regular spatial domain problems.

2.2. Convolution on Graphs

An AE is a neural network that learns more compact repre-
sentations of its input. More formally, if x is a data point and
f(z) is an AE, then f(x) = r where r is a reconstruction of
the input z; that is, r ~ x. Ideally r should approximate x as
closely as possible. An AE consists of two parts: an encoder
g and a decoder f: f(x) = h(g(x)) = r. The function g
is able to encode more compact, generalized features, which
was the original purpose of the AEs. The function h recon-
structs the image from the encoding. AEs are more often used
for generative modeling [10, p.499], as with VAE [11]. The
convolution operator in the CAE enables the learning of gen-
eralised features locally.

CNNs operate on the assumption that input data are reg-
ularly structured. Two-dimensional images, for example, can
be represented as a matrix of pixel intensities. Kernels de-
tect features by exploiting the statistical properties of the grid,
namely stationarity and compositionality [4]. Kernels can
only operate on regular structures such as grids, and gen-
eralized graphs do not share this property. For similar rea-
sons, multi-scale dyadic clustering or pooling is non-trivial
[5]. Figure 1 illustrates this fact.

The challenge is how to define convolution and pooling in
the graph domain. Over the last half-decade these problems
have been subjected to greater attention [5]. In the direction
of convolution, the main intuition is that the graph embeds
knowledge of the spatial relationship between vertices. One
such graph-based approach is to transform the spatial graph-
signals into the frequency domain of the graph Laplacian.
Convolution theorem states that convolution in the spatial do-
main can be expressed as a multiplication in the frequency

domain [12]. Spectral filters, like kernels in the regular do-
main, have more compact support than the signal. A learned
filter approximates the behavior of convolution, accentuating
and attenuating signals in the frequency space.

Let G = (V, E) denote a connected and undirected graph
with n, € Nsg vertices V. = {vg,v1,...,0,,-1} and
pairs of vertices corresponding to edges £ = {(v;,v;) |
w((vs,v5)) > 0} where w : E — Ry. The vertex signal is
a function f. : V' — R where c¢ is the number of channels
on the graph. The edge weights are described by an n,, x n,
weight matrix W, where W; ; = w((v;, v;)). The Laplacian
matrix is £ := D—W, where D is an n,, X n,, diagonal matrix
where the ¢th entry is a sum of the edge weights incident to
the ith vertex; stated formally: D, ; = Z;:Oll j #WL -

Eigenvalue decomposition on £ yields U T AU, since £ is
square and symmetric. U is an n,, X n,, matrix of orthonormal,
column eigenvectors. Transposition and multiplication with
the n, x n. graph signal f.(V') transforms the graph-signals
to the frequency domain. Forward Fourier transformation is
defined as

¢(fe(V) =UT fo(V) = fo(V), (1
while reverse Fourier transformation is defined as

67 (L (V) =UUT fo(V). ©)
Thus ¢~ 1(¢(f.(V))) the identity function.
Graph convolution is a linear combination of a graph sig-
nal with a smooth filter & € R"™»*"i%" where n; and n,
are respectively the number of input and output filters. The
filter is obtained by axis-aligned interpolation of the set of ng
trainable parameters § € R™w*™i X"]t yields a new map-
ping f,. : V — R". Convolution is formally defined as

Uz

fo (V)=UY_UTfi.(V)ok, 3)
=0

where 1 < i < n;, 0 < 0 < ny, £ is the nth channel of

the graph-signals of vertices V, and k7, _is the filter kernel for
the oth channel of fna. The kernel % an interpolation /C of ng
tracked weights 6: k = KCf. Observe that, analogous to con-
volution, the filter’s support is compact: |f] < |k|. The more
compact the support, the smoother the filter. This decision
also reduces the number of weights in the system while also
exploiting statistical stationality. In our case, we use bicubic
interpolation, but other methods are equally applicable, such
as spline interpolation.

2.3. Pooling

Due to the Hadamard product (3) and the assumption of a
fixed graph inhered in the Laplacian matrix, graph convolu-
tion does not pool or downsample the data. Pooling is use-
ful for reducing computational burden, but more importantly

feature generalization. In Graph-CNNs, pooling is imple-
mented as a separate layer, with a graph-coarsening scheme.
Graph coarsening introduces a hierarchical understanding of
the graph, where each coarsening produces a higher level of
understanding of the spatial relations of clusters of nodes.

Coarsening G = (V, E) to G = (V, E) reduces |V| and
|E| by a cut metric, a measure of the modularity of the clus-
ters. This is an NP-hard problem with literature exploring
the problem [13]. For this paper, we considered three coars-
ening strategies: Kron reduction, Graclus multilevel cluster-
ing and Algebraic Multigrid (AMG) clustering. Kron reduc-
tion has been used by Edwards and Xie in a Graph-CNN for
human-action recognition [14]. The strategy assumes a bipar-
tite graph, however, which does not apply to all graph inputs.
Graclus coarsening was used by Defferrard et al. [15] and
accommodates partitioned graphs well. Graclus is a greedy
coarsening-scheme, lending itself to efficient implementation
on a Graphics Processing Unit (GPU) [16]. Although, unlike
AMG, Kron reduction and Graclus do not provide a solution
for uncoarsening, which is absolutely necessary for an au-
toencoder. For this reason, we decided on AMG, which like
Graclus can be efficiently implemented on a GPU and has al-
ready been used successfully in a Graph-CNN [17]. Figure 2
demonstrates a two-level pooling using AMG with coarsen-
ing factor 5 = 0.05.

Fig. 1. The same image represented as a two-dimensional
image and an irregular graph. The translational property does
not exist for graphs, as there is no guarantee of spatial regu-
larity, precluding the application of CNNSs.

(a) Level 0 pooling.

(b) Level 1 pooling.

(c) Level 2 pooling.

Fig. 2. Our neural network implements two pooling layers
with a coarsening factor of 0.05. The level 0 pooling is our
subsampled graph, the input of the network. After level 1
pooling, the number of nodes in the graph is reduced from
700 to 176. After level 2 pooling, the number of nodes is
further reduced to 66.

The difference between our model and Guo et al.’s is the
connectedness of the autoencoder: ours uses convolutional
layers, whereas theirs uses stacked, fully-connected autoen-
coders. Additionally, we use AMG pooling to compact the
feature space (see Figure 3). Our encoder consists of a con-
volutional block, a pooling layer, another convolutional block
and another pooling layer. Our decoder is a mirror-image of
the encoder.

Input
AMG Pooling
Conv.
AMG
g
AMG
Conw.

Convolution Block
'AMG Unpooling
Convolution Block
Reconstruction

(a) Guo et al.’s model.

(b) Our model.

Fig. 3. A graphical comparison between Guo et al.’s model
and ours. The proposed model uses convolutional layers,
whereas Guo et al. use fully-connected layers.

3. EXPERIMENTAL RESULTS

Our Graph-CAE was implemented in TensorFlow 1.4.0 on an
NVIDIA GeForce 1080Ti. Unless otherwise modified for ex-
perimental purposes, we fixed our hyperparameters to the fol-
lowing: The neural network was optimized using the Adam
optimizer with a learning rate of 0.001 and a batch-size of
256 samples. For pooling, the coarsening factor was 0.05.
The dropout factor was 20%. We used 10 tracked weights,
10 output filters for each convolution layer in the first con-
volution block and 20 in the second, and one convolutional
unit per block. To measure the autoencoder’s performance,
we used the Charbonnier loss-function (4),

L(z,%) = Va2 — 32 + € 4)

where € is a small, insignificant value intended to prevent a
vanishing gradient, which in our case was set to 0.001.

For our experiments, we used the MNIST dataset, given
its adoption as a benchmark dataset. The testing and vali-
dation sets were 45,000 and 5,000 images large respectively.
Before training the neural network, the data was converted
to a grid and irregularized by removing a random subset of
nodes from the grid (see Figure 1). The graph was fixed across
all experiments.

Adding convolution units increases the capacity of the
neural network. The requisite capacity for good encoding
(Figure 4) was exceeded when we increased the number of
convolution units beyond 1 unit, leading to the model over-
fitting the training data. This low number is likely due to
the simplicity of the MNIST dataset; had the dataset been
CIFAR10 or CIFAR100, for instance, then we might see the
neural network optimize at a different value.

Increasing the number of tracked weights in the neural
network per convolution unit yielded diminishing returns

1 unit/block
2 units/block
3 units/block
4 units/block
5 units/block

0.08

Autoencoder Cost

0.06

0.04

Epoch

Fig. 4. The size of the convolution blocks, i.e., the number of
convolution units per block, has a dramatic effect on the en-
coding. Increasing the number of convolution units per block
increases the capacity of the neural network to such a point
that it poorly generalizes to unobserved data.

1072

—— 10 tracked weights
6.00 —— 20 tracked weights

30 tracked weights
—— 40 tracked weights

—— 50 tracked weights
—— 60 tracked weights

4.00

Autoencoder Cost

3.00

Epoch

Fig. 5. Increasing the number of tracked weights in the neural
network yields diminishing returns.

(Figure 5). Nonetheless, with 60 tracked weights the neural
network performed at its best. Interestingly, increasing the
number of weights did not have a very significant effect on
encoding quality. More tracked weights increase the capacity
of the network, but coarsens the filter. It is likely that we did
not increase the number of weights to such a level that would
impede generalization.

Varying the number of filters, too, had a lesser positive
effect on the encoding quality. Increasing the number of fil-
ters in the first convolution block yielded diminishing returns
(Figure 6), as there are a finite number of low level features
in the MNIST dataset, and increasing the number of filters
does not change this fact. Increasing the number of filters
at a higher level, i.e., after the first pooling, likewise yielded
diminishing returns (Figure 7), but the improvement in en-
coding quality is far greater than filter-size increases in the
first convolution block. This is likely a consequence of the
pooling, as more general features are learned here.

In terms of the effect on training time, the marginal in-
crease in time for each additional convolution unit was on av-
erage 257 seconds, a factor of 1.68. Every additional 10 filters

1072
—— 10-10 configuration
6.00 —— 20-10 configuration
30-10 configuration
——— 40-10 configuration
—— 50-10 configuration
5.00

Autoencoder Cost

4.00

3.00

20 40 60 80 100
Epoch

Fig. 6. We increased the number of filters in the convolu-
tion units of the first convolution block from 10 to 60. Like
increasing the number of tracked weights, this yields dimin-
ishing returns.

1072
—— 10-10 configuration
6.00 —— 10-20 configuration
10-30 configuration
—— 10-40 configuration
5.00 —— 10-50 configuration

Autoencoder Cost

Epoch

Fig. 7. We increased the number of filters in the convolu-
tion units of the first convolution block from 10 to 60. Like
increasing the number of tracked weights, this yields dimin-
ishing returns. However, the number of filters in the units of
the second block have a greater effect on the encoding quality
than the number of filters in the units of the first block.

in the units of the first convolution block increased the time
to train by 180 seconds on average, a factor of 1.34, and 204
seconds for each additional 10 filters to the units in the second
block, a factor of 1.47. Increasing the number of weights did
not affect the time to train significantly.

4. CONCLUSION

In this paper we examined convolutional autoencoding in ir-
regular domains, specifically graphs. After describing the
components of the neural network, we investigated the con-
tributions to encoding quality by various aspects of the ar-
chitecture. The number of convolutional layers in the neural
network had a particularly stark effect on the encoding qual-
ity, as too many lead to too high capacity causing overfitting
on the training set and poor generalization.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

5. REFERENCES

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton,
“Deep Learning,” Nature, vol. 521, no. 7553, pp. 436—
444, May 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998.

Joan Bruna, Wjciech Zaremba, Arthur Szlam, and Yann
LeCun, “Spectral Networks and Locally Connected
Networks on Graphs,” arXiv preprint arXiv:1312.6203,
2013.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst, “Geometric deep
learning: Going beyond euclidean data,” [EEE Signal
Processing Magazine, vol. 34, no. 4, pp. 1842, July
2017.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The Emerging Field of Signal Pro-
cessing on Graphs: Extending High-Dimensional Data
Analysis to Networks and Other Irregular Domains,”
IEEE Signal Processing Magazine, vol. 30, no. 3, pp.
83-98, May 2013.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, and Pierre-Antoine Manzagol,
“Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol.
11, no. Dec, pp. 3371-3408, 2010.

Yiluan Guo, Hossein Nejati, and Ngai-Man Cheung,
“Deep Neural Networks on Graph Signals for Brain
Imaging Analysis,” 2017.

Or Litany, Alex Bronstein, Michael Bronstein, and
Ameesh Makadia, “Deformable Shape Completion with
Graph Convolutional Autoencoders,” 2017.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu,
and Jing Jiang, “MGAE: Marginalized Graph Autoen-
coder for Graph Clustering,” in Proceedings of the
2017 ACM on Conference on Information and Knowl-
edge Management - CIKM '17. ACM Press.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville,
Deep Learning, MIT press, 2016.

Carl Doersch, “Tutorial on Variational Autoencoders,”
arXiv preprint arXiv:1606.05908, 2016.

Ronald Newbold Bracewell and Ronald N Bracewell,
The Fourier Transform and Its Applications, vol. 31999,
McGraw-Hill New York, 1986.

[13]

[14]

[15]

[16]

[17]

Cédric Chevalier and Ilya Safro, “Comparison of coars-
ening schemes for multilevel graph partitioning,” in
Learning and Intelligent Optimization, Thomas Stiitzle,
Ed., Berlin, Heidelberg, 2009, pp. 191-205, Springer
Berlin Heidelberg.

Michael Edwards and Xianghua Xie, “Graph-Based
CNN for Human Action Recognition from 3D Pose,”
Deep Learning in Irregular Domains Workshop, British
Machine Vision Conference, 2017.

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst, “Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering,” in Advances
in Neural Information Processing Systems, 2016, pp.
3844-3852.

Bas Fagginger Auer and Rob H Bisseling, “Graph
Coarsening and Clustering on the GPU,” Graph Par-
titioning and Graph Clustering, vol. 588, pp. 223, 2012.

Michael Edwards and Xianghua Xie, “Graph-Based
Convolutional Neural Network,” in Proceedings of the
British Machine Vision Conference, 2015.

