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ABSTRACT

We present a fully automatic segmentation method to extract
media-adventitia border in IVUS images. Segmentation in
IVUS has shown to be an intricate process due to relatively
low contrast and various forms of interferences and artifacts
caused by, for example, calcification and acoustic shadow.
Graph cut based methods often require careful manual ini-
tialization and produces in consistent tracing of the border.
We use a double interface automatic graph cut technique to
prevent the extraction of media-adventitia border from being
distracted by those image features. Novel cost functions are
derived from using a combination of complementary texture
features. Comparative studies on manual labeled data show
promising performance of the proposed method.

Index Terms— IVUS, media-adventitia border, graph
cut, optimal interface segmentation

1. INTRODUCTION
Intra-vascular Ultrasound (IVUS) imaging is a valuable com-
plementary modality to angiography in coronary disease di-
agnosis and treatment. It is the modality that has been widely
used for clinicians to assess the severity of a lesion, perform
plaque classification, and determine the location and size for
stenting. It is a catheter-based technology, which shows two-
dimensional cross-sectional images of the coronary structure.
A typical IVUS B-mode image consists of three regions: the
lumen, the vessel that includes the intima and media layers,
and the adventitia around the vessel wall. Among many other
techniques, formulating the IVUS segmentation as a cost
function minimization problem has been a popular approach.
In [1], dynamic programming is used to search a minimum
path in the cost function, which incorporates edge informa-
tion with a simplistic prior, based on echo pattern and border
thickness. Manual initialization is necessary. In [2], the bor-
der detection is carried out on the envelope data before the
scan conversion. The authors applied spatio-temporal filters
to highlight the lumen, based on the assumption that the blood
speckles have higher spatial and temporal variations than ar-
terial wall, followed by a graph-searching method similar to
[1]. However, image features introduced by acoustic shadow
or metallic stent would seriously undermine the assumption.

Catheter movement can also cause spatial and temporal fluc-
tuation, which leads to ambiguities. The s-t cut method [3] is
employed in [4] to segment 3D IVUS data. Vertical intensity
pattern along the borders, Rayleigh distribution and Chan-
Vese minimum variance criterion are used in designing the
cost functions. This intensity based features are susceptible
to image variations that commonly exist in IVUS, such as
calcification and shadow.

In this work, our focus is on automatically extracting
media-adventitia border, i.e. outer vessel wall, which can
be combined with lumen extraction from angiogram that
only provides inner vessel wall. To tackle the intensity in-
homogeneity and those interferences caused by undesired
images features, global shape priors, such as using active
appearance model [5], may be used. However, this approach
requires consistency between training data and testing im-
ages, which is not trivial to achieve. For example, patients
with more calcification or plaque can show large differences
in acoustic appearance. Also, the geometrical shape can vary
significantly from patient to patient, particularly for disease
cases. Here, we use a bottom-up data driven approach. How-
ever, in order to achieve reliable results automatically, we
apply double-interface graph cut segmentation. Those im-
pediments, such as stent or soft and fibrotic plaque, appear
inside media-adventitia border, and the acoustic signal decays
rapidly in the adventitia so that there is largely no strong fea-
tures beyond the media-adventitia border. This observation
inspired us to apply an additional interface searching in-
side the media-adventitia border which links those undesired
image features, including partial lumen border, and hence
preserves the border of interest. A combination of comple-
mentary texture features is used, instead of image intensity,
to form the basis of the boundary based cost functions.

2. PROPOSED METHOD
Briefly, the IVUS images are first transformed from Carte-
sian coordinates to polar coordinates. A node-weighed di-
rected graph is then constructed so that the border extraction
is considered as computing a minimum closed set. The search
for this minimum closed set is solved by computing a mini-
mum s-t cut in a derived arc-weighted directed graph. For
our double-interface segmentation, an additional set of arcs



is constructed, taking into account the topological interrela-
tion between the two interfaces. The associated cost functions
are based on image features extracted using first derivative of
Gaussian, Gabor filters and local phase transform. Finally,
the extracted media adventitia border is smoothed using ra-
dial basis function (RBF) interpolation.

2.1. Preprocessing
The preprocessing is to transform the IVUS images from
Cartesian coordinates to polar coordinates and to remove
catheter region from the transformed images. Represent-
ing the images in polar coordinates is important to facilitate
feature extraction in terms of radial and tangential character-
istics. It also facilitates the automated graph cut in searching
for minimum closed sets, where an open-ended height field
is preferred. Moreover, the post-processing can then be car-
ried out more efficiently since it becomes a one dimensional
interpolation instead of two-dimensional.

2.2. Graph construction
Conventional graph cut, such as [3], generally requires user
initialization, and more importantly only deals with one inter-
face, i.e. foreground and background separation. Alternative
methods, such as active contour and level set techniques, e.g.
[6], can track multiple interfaces. However, they often require
user initialization and do not guarantee a global minimum.
Furthermore, since one of our interfaces is attracted by image
features, such as calcification, which varies from image to im-
age, it does not have consistent shape characteristics. Hence,
deformable model with multiple interfaces, such as [7], may
not be suitable.

In [8], the authors proposed a novel graph construction
method, which transforms the surface segmentation in 3D
into computing a minimum closed set in a directed graph.
We adapt this method to a 2D segmentation, which can carry
out double-interface segmentation simultaneously in low or-
der polynomial time complexity and does not require user ini-
tialization. This approach also allows us to impose topolog-
ical constraint, i.e. the two interfaces in our case can not in-
tersect or overlap and the media-adventitia border is the outer
interface (or lower interface when the IVUS image is trans-
formed to polar coordinates).

For each desired interface, construct a graph G = 〈V,E〉,
where each node V (x, y) corresponds to a pixel in 2D image
I(x, y). The graph G consists of two arc types: intra-column
arcs and inter-column arcs. For intra-column, along each col-
umn, every node V (x, y) where y > 0 has a directed arc to
the node V (x, y − 1). In the case of inter-column, for each
node V (x, y) a directed arc is established to link with node
V (x+ 1,max(0, y −∆)), where ∆ controls the smoothness
of the interface. Similarly, node V (x + 1, y) is connected to
V (x,max(0, y−∆)). The last row of the graph is connected
to each other to maintain a closed graph.

After constructing the graph for each of the two interfaces,
taking into account interrelations between them is necessary

and this is achieved by setting up another set of arcs to con-
nect them. Geometrical and topological constraints can be
imposed by setting minimum δmin and maximum δmax sepa-
ration distances. The two interfaces thus will not intersect or
overlap. This set of arcs, Es, is defined as:

Es =


{V1(x, y), V2(x, y − δmax)|y ≥ δmax}

⋃
{V2(x, y), V1(x, y + δmin)|y < Y − δmin}

⋃
{V1(0, δmin), V2(0, 0)}

(1)
This graph construction requires the desired interfaces to be
open-ended height fields, which in our case means that this
will be carried out in polar coordinates.

2.3. Feature extraction
The media layer is usually very thin and generally dark in in-
tensity, and the adventitia layer tends to be brighter, see Fig. 1
as an example. However, acoustic shadow, calcification, and
other interfering image features are common. Hence, the fea-
ture extraction is concerned with enhancing the difference be-
tween media and adventitia and suppressing undesirable fea-
tures.

First order derivative of Gaussian - This set of filters is
designed to highlight the intensity difference between media
and adventitia. Four different orientations are used.

Band-pass log-Gabor - Log Gabor is used as a bandpass
filter in three scales to enhance the border and to reduce
speckles and other image artifacts. To minimize possible
overlap with the derivative of Gaussian filter in extracting
edge features, this process is carried out in coarser scales,
i.e. in the 3rd, 4th and 5th scales. Hence, these features
particularly show dominant edges.

Local phase symmetric and asymmetric features - Local
phase [9] employs spatio-temporal technique to enhance edge
and bar-like features and suppress speckles in ultrasound im-
ages. Features like edges exist in the Fourier components
at maxima in phase congruency [9], which can be located
at peaks in the local energy function obtained by convolv-
ing odd om(x, y) and even em(x, y) symmetric Log Gabor
filter to remove DC component and preserve phase in local-
ized frequency. Two types of features can be extracted from
phase congruency: feature asymmetry FA(x, y) and feature
symmetry FS(x, y). Feature asymmetry highlights step-like
image patterns, and is defined as:

FA(x, y) =
∑
m

b[|om(x, y)| − |em(x, y)|]− Tmc
Am(x, y) + ε

(2)

where m denotes filter orientation, ε is a small constant,
Tm is an orientation-dependent noise threshold, Am(x, y) =√
e2m(x, y) + o2m(x, y) and b.c denotes zeroing negative val-

ues. Feature symmetry favors bar-like image patterns, which
is useful in extracting the thin media layer. Its dark polarity
symmetry is used here [10]:

FS(x, y) =
∑
m

b[−|em(x, y)| − |om(x, y)|]− Tmc
Am(x, y) + ε

(3)



2.4. Cost function
Due to large variations in image features and the correla-
tion between edge information and media-adventitia border,
boundary based cost functions are used. The cost function
indicates the likelihood of each node in the graph to belong to
the minimum cost path that represents the desired interface.
Two separate cost functions are used to capture the media-
adventitia border and an auxiliary interface that is above
media-adventitia, since these two interfaces have different
characteristics in image feature and formation.

For the media-adventitia border, all the three types of fea-
tures described in Sect. 2.3 are used. It takes the following
form:
C1(x, y) = Cd(x, y)+α1CG(x, y)+α2(1−FS(x, y)) (4)

where Cd denotes the term for derivative of Gaussian fea-
tures, CG is for log-Gabor, and α1 and α2 are constants. The
derivatives of Gaussian responses from different orientations
are summed together to form Cd. Similarly, CG can be ob-
tained by cascading the filtering responses across scales. In
addition, more weight can be assigned to coarser scale fea-
tures so that it presence the connectivity of media-adventitia
border at the existence of acoustic shadow, e.g. CG = G(3) +
G(4) + 1.5G(5) as used here and G(i) denotes ith scale. Fea-
ture symmetry FS is useful in enhancing the thin layer of me-
dia. It is normalized beforehand, and since the middle of the
layer has larger values 1− FS is used in the cost function so
that the interface between media and adventitia is highlighted.
Note that each of the term in the cost function is normalized.

For the auxiliary interface that is above media-adventitia,
we use a combination of log- Gabor feature and feature asym-
metry:

C2(x, y) = CG(x, y) + α3(1− FA(x, y)) (5)

where α3 is a constant. Since the derivative of Gaussian filter
has relatively stronger response to local intensity variation,
it is not included in this cost function. The combination of
those two types of features leads the cost function to favor
linking globally dominant image features, which very often is
distractive for media-adventitia border segmentation.

2.5. Compute the minimum closed set
Each graph node is weighted by a value representing its rank
to be selected in the minimum closed set graph where the arc
costs between graph nodes are infinitive. The weight assign-
ment is carried out according to:

w(x, y) =

{
C(x, y) ify = 0,

C(x, y)− C(x, y − 1) otherwise.
(6)

where C denotes the cost function and w is the weight for
each node in the directed graph, which serves as the base
for dividing the nodes into nonnegative and negative sets.
The s-t cut method can then be used to find the minimum
closed set. The source s is connected to each negative node
and every nonnegative node is connected to the sink t, both
through a directed arc that carries the absolute value of the

cost node itself. The two optimal interfaces correspond to the
upper envelope of each minimum closed set graph. Solving
this s-t cut problem provides us two interfaces in the polar-
transformed IVUS images. The lower interface is the desired
media-adventitia border.

2.6. Post-processing
The smoothing parameter in graph construction prevents sud-
den drastic changes in the extracted interfaces. However, the
segmented media-adventitia may still contain local oscilla-
tions. Smoothing based post-processing can be adopted to
eliminate such oscillations. Here, RBF interpolation using
thin plate base function is used to effectively obtain the fi-
nal interface. Note, due to the images have been transformed
into polar coordinates, the RBF processing only needs to be
carried out in 1D.

3. EXPERIMENTAL RESULTS

A total of 95 IVUS images from 4 acquisitions of 2 patients
are used to evaluate the proposed method. These images con-
tain various forms of soft and fibrous plaque, calcification,
stent, and acoustic shadow. In most of the images, the blood
speckle is so prominent that the lumen border is very diffi-
cult to see. For all the tested images, ground-truth via manual
labeling is available for quantitative analysis. All the parame-
ters are fixed: the minimum and maximum distance between
two interfaces, δmin and δmax, are set to be 5 and 140 re-
spectively, and cost function weightings are set as α1 = 0.7,
α2 = 0.5, and α3 = 0.5.

The proposed method was compared against the s-t cut [3]
and single-interface segmentation with the cost function in 4.
The cost function for the media-adventitia was kept the same.
The s-t cut method requires manual initialization, and its re-
sult is highly initialization dependent. Fig. 1 (a)-(b) show a
typical result achieved using s-t cut. Even with reasonable
care in initialization, the result was not satisfactory. The
single-interface segmentation gave partial media-adventitia
border, as shown in row (c). However, its performance de-
graded when there were interfering image structures. The
proposed double-interface method achieved promising re-
sult even without any user interaction, see row (d). More
comparative results are given in Fig. 2, which shows typical
performance for each method. Table 1 provides the quan-
titative comparison between the single-interface approach
and the proposed method. The proposed method achieved
better accuracy and consistency. A qualitative comparison
between manual labelling of the media-adventitia border and
the proposed method is shown in Fig. 3.

4. CONCLUSION

We presented an automatic double-interface segmentation
method, whose cost functions combine local and global
image features and its geometric constrain is integrated in
graph construction. An auxiliary interface is simultaneously



Table 1. comparison between single-interface and double-
interface segmentation results. AD: area difference in per-
centage; AMD: absolute mean difference in pixel compared
to ground-truth.

Single interface Double-interface
AD AMD AD AMD

Mean 9.99 12.55 5.84 6.99
Std. 11.06 11.45 4.53 4.13
Min 1.60 1.76 1.47 1.75
Max 57.08 54.70 25.04 24.42

(a)

(b)

(c)

(d)
Fig. 1. (a): initialization for s-t cut, and its result shown in
(b); (c): result by single interface segmentation; (d): proposed
method.

searched to prevent undesirable image features from interfer-
ing the segmentation of media-adventitia border. Qualitative
and quantitative comparison showed superior performance of
the proposed method.
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