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Abstract

The standard geometric or geodesic active contour is a powerful segmentation method,
yet it is susceptible to weak edges and image noise. We propose a new region-aided,
geometric, colour active contour that integrates gradient flow forces with region con-
straints. These constraints are composed of image region vector flow forces obtained
through the diffusion of the region segmentation map. The extra region force gives
the snake a global view of the boundary information within the image which, along
with the local gradient flow, helps detect fuzzy boundaries and overcome noisy re-
gions. The partial differential equation (PDE) resulting from this integration of image
gradient flow and diffused region flow is implemented using the level set approach.

1 Introduction

The parametric active contour or ‘snake’, developed by Kass et al. [8], minimises a spline-
based deforming curve towards the pull of features such as edges and lines. The energy
is composed by terms that control its smoothness and attract it to the object boundary.
Region-based parametric snake frameworks have been reported, e.g. [3], however these
still suffer from the disadvantages of parametric contours for shape representation.

The geometric model of active contours, simultaneously proposed by Caselles et al.
[1] and Malladi et al. [10], avoids the need to reparameterize the curve and is based on the
theory of curve evolution in time according to intrinsic geometric measures of the image.
It is numerically implemented via level set algorithms [14]. This helps to automatically
handle changes in topology and hence, without resorting to dedicated contour tracking,
unknown numbers of multiple objects can be detected simultaneously. Furthermore, ge-
ometric snakes can have much larger capture areas than parametric snakes. Nevertheless,
they still suffer from two significant shortcomings. First, they allow leakage into neigh-
bouring image regions when confronted with weak edges, and second, they may rest at
local maximums in noisy images. We handle both these problems in this paper by in-
troducing a diffused region force into the standard geometric snake formulation. The
proposed method is referred to as the Region-aided Geometric Snake or RAGS to reflect
that it integrates gradient flow forces with diffused region forces. The diffused region
force is obtained from the region segmentation map vector flow and gives the snake a
global view of the object boundaries. The theory is independent of any particular region
segmentation technique. We implement the PDE resulting from the proposed method nu-
merically using level set theory [14] which enables topological changes to be dealt with



automatically. In the results section, we illustrate the weak edge improvements and eval-
uate the tolerance to noise. Moreover, using colour edge gradients (after [13]), the RAGS
snake will be shown to naturally extend to object detection in colour images.

There has been a number of works based on the geometric snake and level set frame-
work, e.g. [15, 12, 17]. For example, Siddiqi et al. [15] augmented the performance of
the standard geometric snake (that minimises a modified length functional), by combin-
ing it with a weighted area functional with an image dependent weighting factor. This
resulted in a modification of the constant term of the curve to help it move in the desired
direction more efficiently. However, this still did not provide a satisfactory solution to
the weak edge leakage problem [15]. Paragios and Deriche [12] presented their Geodesic
Active Region model in [12] which initially modeled the image using a Gaussian mixture
model to determine the number of regions and their statistics. Then, multiple curves were
used to consider each separate homogeneous region and its probabilistically determined
boundaries in a bimodal fashion within a geodesic segmentation framework. Their active
region model consisted of a region boundary term and a region term which acted as the
external pressure force and was implemented via the level set algorithm. In [17], Yezzi et
al. developed coupled curve evolution equations and combined them with image statistics
for images of a known number of region types (bimodal and trimodal), with every pixel
contributing to the statistics of the regions inside and outside an evolving curve.

2 Background

Planar geometric active contours evolve with a velocity vector in the direction normal
to the curve using a reaction-diffusion model from mathematical physics [1, 10]. The
velocity contains a constant (hyperbolic) motion term that leads to the formation of shocks
from which a representation of shapes can be derived, and a (parabolic) curvature term
that smooths the front, showing up significant features and shortening the curve. In [2]
and [11] the formulation of the geodesic active contour, hereafter also equally referred to
as the standard geometric or geodesic snake, was introduced.

For a 2D active contour C(x,7) the Euclidean curve shortening flow is C; = KN,
where ¢ denotes time, K is the Euclidean curvature, and _ is the inward unit normal
of the contour. Among its many useful properties, this formulation provides the fastest
way to reduce the Euclidean curve length in the direction of the gradient of the curve [9].
Given the input image I : [0,a] x [0,b] — RT in which the task of extracting an object
contour is considered, and the Euclidean length of curve C as L = § |C’'(g)|dqg, then the
Euclidean length of a curve C in Riemannian space is:

L= [ 4(VI(C(@)IC )lda ()

where g(.) represents a decreasing function such that g(x) — 0 as x — oo, and g(x) — 1
as x — 0. As shown in [2], the steady state is achieved by solving the following equation,
showing how each point in the active contour should move in order to decrease the length.
The Euler-Lagrange of (1) gives the right-hand side of (2):

G =g(IVIDKA — (Ve(VI)- )N @)

The first term in (2) is the curvature term multiplied by the weighting function g(.) which
could be an edge indication function that has larger values in homogeneous regions and



very small values on the edges. Since (2) is slow, Caselles et al. [2] added a constant
inflation term C; = .4 to speed up the convergence. Integrating it into the geometric
snake model lets the curvature flow remain regular:

G = g(IVI|) (s +¢). AN — (Vg(|VI|) - N )N 3)

where ¢ is a real constant making the contour shrink or expand to an object boundary at a
constant speed in the normal direction. The second term of (2) or (3) acts like a doublet
which attracts the snake to the feature of interest since the vectors of Vg point towards the
middle of the boundaries.

Despite their significant advantages, geometric snakes only use local information and
suffer from sensitivity to local minima. Hence, they are attracted to noisy pixels and also
fail to recognise weaker edges for lack of a better global view of the image. The constant
flow term can speed up convergence and push the snake into concavities easily when
gradient values at object boundaries are large. But when the object boundary is indistinct
or has gaps, it can also force the snake to pass through the boundary. The second term
in (3) attracts the contour closer to the object boundary and also pulls back the contour if
it leaks through, yet the force may just not be strong enough since it still depends on the
gradient values. It can not always prevent weak edge leakage. The left frame in Fig. 1
demonstrates this shortcoming of the standard geometric snake where due to the gradual
change of the intensity, the contour leaks through.
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Figure 1: Weak-edge leakage - left frame: geodesic snake steps through; right frame:
RAGS snake converges properly using its extra region force.

3 Region-aided Geometric Snake

To make the geometric snake much more tolerant towards weak edges and image noise,
we propose a novel approach to integrate the gradient flow force with a diffused region
force of the image resulting in our region-aided geometric/geodesic snake, RAGS. The
new region-derived force introduces global image features and is aimed at complement-
ing the gradient flow force’s local object boundary information. We show that this com-
bination of forces not only improves the performance of the geometric snake towards
weak edges, but also makes it more immune to noise. The resulting PDE then evolves an
initial contour towards final convergence under the influence of both internal forces and
boundary-regional image forces, and can be implemented via level sets.

The gradient flow force is obtained here as in other active contour formulations, e.g.
[16, 13, 2, 15, 9]. The new region force can be generated from any image segmentation
technique, e.g. [4, 5]. This means that while RAGS is independent of any particular
segmentation method, it is dependent on the quality of the regions produced. However,
we show a good degree of tolerance to (reasonable) segmentation quality, and that our
snake indeed acts as a refinement of the initial region segmentation. To examine this,



we will present results on region maps obtained from both the under-segmentation and
over-segmentation options of the software from Comaniciu and Meer [4].

3.1 Region force diffusion

The region force can be generated by a variety of segmentation techniques, greylevel
or colour. The segmentation splits the image into several regions. The gradient of this
segmentation map gives region constraints in the vicinity of the region boundaries R.
While the snake evolves in a homogeneous region, it does so mainly based on the gradient
flow force. If the snake tries to step from one region into another, it must concur with the
region force since it breaks the region criteria, which probably indicates a leakage. The
capture area of the pure region force is quite small. A gradient vector diffusion method
was proposed in [16] to extend the gradient map further away from the edges for a larger
capture field. We use this same concept to diffuse the region boundary gradient map
resulting in region forces with a larger capture area along the region boundaries. Hence,
the solution of the generalised region vector flow equation is the equilibrium state of

{ p(IVR|)V?u—q(|VR|)(u—VR,) =0

p(IVR|)V>v —q(|VR|)(v— VR,) =0 )

where V? is the Laplacian operator with dimensions « and v, and p(.) and ¢(.) are weight-
ing functions that control the amount of diffusion. These are selected so that p(.) gets
smaller as g(.) becomes larger with the desirable property of little smoothing in the prox-
imity of large gradients and the vector field will be nearly equal to the gradient of region
map. We use the following functions for diffusing the region gradient vectors:

{ p(IVR|) = e~ (VR/KD

q(|VR|) =1—p(|VR|) )

with K a constant, acting as a tradeoff between field smoothness and gradient conformity.

3.2 RAGS formulation

The RAGS formulation can be derived by considering the diffused region force as an extra
external force of the snake. The original internal and external forces of (3) are given by

{ Fou = g(|VI)) kAN

% 6
Fext:g(|VI|)CJV—Vg(|VI|) (6)

where g(.) is the stopping function as before. Now we add the diffused region force to
the external term: .

Fext:ag(|VI|)</V+BR*Vg(|VI|) @)
where R is the region force vector field obtained in (4), and o is a new constant incorpo-
rating and functioning similar to ¢. Constants & and f3 act as a tradeoff between gradient
and region forces. The snake evolves under all internal and external forces. As only the
forces in the normal direction deform the curve, the evolving curve can be represented as

Co = ((Fiu + Foat) - NN @®)
Finally, the region-aided geometric snake formulation becomes:

G = [g(IVI|)(x+ o) = Vg(|VI|) - A +BR- N|N )



3.3 Level set representation

In this section, we outline the level set implementation of RAGS. Level sets describe a
moving front and are the basis for the numerical algorithm for curve evolution according
to functions of curvature [14]. Let C be a level set of a function of ¢ : [0,a] x [0,b] — R,
i.e., C is embedded into the zero level set with ¢ an implicit, intrinsic, and parameter free
representation of curve C. Given a planar curve that evolves according to C; = F.¥ for
a given function IF, then the embedding function should deform according to ¢ = F|V¢|,
where [F is computed on the level sets. By embedding the evolution of C in that of ¢, topo-
logical changes of C are handled automatically and accuracy and stability are achieved
using the proper numerical algorithm. The internal curvature and external pressure terms
of the RAGS formulation in (9) can be easily transferred to a level set representation:
{ CG=xkN — ¢=k|Vo|
_, (10)
G =g(IVIl)eA — & =g(|VI|)c|V9|

The external forces in (9) are static vector fields derived from image data which do not

change as the active contour deforms. Static force fields are defined on the spatial posi-
tions rather than the active contour itself. Since ./ is the inward normal, the level set

representation of the inward unit normal is given by N =— %. Then we have,
— 1
F- AtV =———(F-V¢ an
wor V)

This leads to the level set representation of RAGS as:
¢ = g(|VI|)(k +a)|Vo|+Vg(|VI|)- Vo — BR- V¢ (12)

where g(.) is the stopping function as before. The expression for the curvature of the zero
level set assigned to the interface itself is given by

Vo ) Oud] — 20,000 + G 07

Vo) =T (2t e )

K:div(

4 RAGS Snake on Vector-valued Images

The theory of boundary detection by the geometric or geodesic snake can be applied
to any general ‘edge detector’ function [2], with a stopping function g tending to zero
when reaching edges. Let f be an edge detector. Then, the decreasing function g can be
any decreasing function of f such that g — 0 as f — oo. When dealing with graylevel
images, f and g (as used in this work) are f = |V(Gauss+1I)| and g = (1+ f)~!. For
vector-valued images, e.g. a colour image, we apply the approach by di Zenzo [6] to
provide a consistent extension of scalar gradients based on a solid theoretical foundation.
Such colour edges were also used by [13] and [7] for their geometric and parametric
snakes respectively. In a vector-valued image the vector edge is considered as the largest
difference between eigenvalues in the tensor metric. Let ©(uy,uz) : R? — R™ be a m-
band image fori = 1,2,...,m. For colour images, m = 3. The distance between two vector
points, P = (u?,u9) and Q = (u},ul), is given by A® = ©(P) —©(Q). When this distance



tends to the infinitesimal, the difference becomes the differential 46 = ¥7_, %dui with
its squared norm given by

2 & 00 00

de?* = —— ——dudu; 14

1:211];1 ou; auj uiauj (14)

Using standard Riemannian geometry notation, then let s;; = 3_2 - 37@3_, such that
2 2 T
du, S11 S12 du
de? = ijduidu; = 15
gt~ | [0 m]lan] o

For a unit vector v = (cos 0,sin @), then d©%(v) indicates the rate of change of the image
in the direction of v. The extrema of the quadratic form are obtained in the directions of
the eigenvectors of the metric tensor s;;, and the corresponding eigenvalues are:

s11+spt \/(Sn —522)2 +4s2,

As > (16)
with eigenvectors (cos 04, sin 6 ) where the angles are given by 04 = % arctan l?fﬁzz and
0_ = 0, + 7. The maximal and minimal rates of change are the eigenvalues (A,,4_),

with corresponding directions of change (6.,0_). The strength of an edge in a vector-
valued case is not given simply by the rate of maximal change A, but by the difference
between the extremums. Hence, a good approximation function for the vector edge mag-
nitude should be based on f = f(A;,A_). Therefore, we can extend RAGS to the region-
aided geometric colour snake by selecting an appropriate edge function f,,; with the edge
stopping function g.,; defined such that it tends to O as f.,; — oo as before:

Jeot = AwL —A_ and 8col = (17)

I+ fcal

Replacing g..;(.) for the edge stopping term g(.) in (9), we have the colour RAGS snake:
G = [gcol(|VI|)(K + OC) - Vgcol(|VI|) : j + ﬁR . j]j (18)

Finally, its level set representation is also given by replacing g.,,(.) for g(.) in (12):

(Dt :gcol(|VI|)(K+a)‘v¢| +Vgcol(|VI|)'V¢ _BRV¢ (19)

S Analysis and Results

The RAGS (colour) snake propagates under the influence of four forces: (i) the internal
curvature flow force, (ii) the pressure force generated by the constant gradient flow, (iii)
the gradient of the (colour) edge stopping force, and (iv) the diffused region vector force
derived from region constraints. These latter constraints can be generated starting with
any region segmentation method. Here, we apply the mean shift algorithm [4] as a general
greylevel/colour segmentation technique. This method provides standard pre-set options



for over-segmentation and under-segmentation. We will show results for both of these to
illustrate the wide applicability of RAGS.

As shown earlier in Fig. 1, the standard geometric snake steps through the weak edge
because the intensity changes so gradually that there is no clear boundary indication in
the edge map alone. Weak edges can be handled by RAGS (right frame of Fig. 1) through
the extra diffused region force which delivers useful global information about the object
boundary and helps prevent the snake from stepping through.

The harmonic shape in Fig. 2 was used to examine RAGS’s tolerance to noise. The
shape was generated using » = a + bcos(m0 + ¢), where a, b, and ¢ remained constant
and m = 6 was used to produce six ‘bumps’ [16]. Varying amounts of noise from 10% to
60% was added and the accuracy of fit (i.e. boundary description) after convergence was
measured using Maximum Radial Error (MRE), i.e. the maximum distance in the radial
direction between the true boundary and the snake. Fig 2 shows the original noisy images
in the top row and the region segmentations used for RAGS in the next row (without any
post-processing to close gaps etc.). The third and final rows show the converged snake for
the standard geometric and RAGS snakes respectively. The initial snake in each case was a
square at the edge of the image. A simple subjective examination clearly demonstrates the
superior segmentation quality of the proposed snake. At low rates of noise, both snakes
could find the boundary accurately enough. However, at increasing rates (> 20%), more

% noise 0 10 20 30 40 50 60
Stand. Geom. Error || 2.00 | 2.23 | 5.00 | 10.00 | 16.16 | 15.81 | 28.17
RAGS Error 2.00 | 2.00 | 403 | 341 | 522 | 538 | 5.83

Table 1: Maximum Radial Error comparison for the Harmonic shapes in Fig. 2.
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Figure 2: Shape recovery in noisy images - (row 1) original image with various levels
of added Gaussian noise [0%,10%....,60%], (row 2) the region maps later diffused for
RAGS; (row 3) standard geometric snake results; (row 4) RAGS results.



and more local maximums appear in the gradient flow force field, preventing the standard
geometric snake from converging to the true boundaries. The RAGS snake has a global
view of the noisy image and the underlying region force pushes it towards the boundary.
The quantitative MRE results are shown in Table 1.

Fig. 3 shows a good example of weak-edge leakage at the right side of the object
of interest in a greylevel image. While RAGS does extremely well here, the geometric
snake leaks through. Fig. 4 compares the standard geometric snake against the proposed
RAGS snake on a colour image of a mouth ulcer. A snake is initialised to detect an
inner region which has a small blurred section along its upper boundary. This is again
a hard case for the geometric snake because the weak edge is difficult to detect. It not
only has similar colour to the inner and outer areas, but also ‘dilutes’ gradually into the
background. Indeed, the standard snake steps through the edge. However, RAGS (last
two columns of Fig. 4) reaches its steady state and successfully converges to the inner
boundary irrespective of whether the under or over-segmentation of the method in [4] is
used to generate the initial region map, as shown.

Fig. 5 demonstrates the improvement over the standard geometric colour snake (from
[13]). Unlike the latter, RAGS manages to ignore the noisy region in the top right of the
image and converges tightly around the object, again due to the stronger diffused region
forces at the boundary. In Fig. 6, a close-up view of a retinal disk is shown. The boundary
of the optic disk is quite fuzzy and well blended with the background. The region force
helps the proposed snake stop at weak edges while the standard geometric snake leaks
through. Region segmentation results (under and over-segmentation) with corresponding
snakes are also shown. Fig. 7 again shows that RAGS converges on the object very well
despite the unsmooth, noisy image regions while the standard snake fails to deal with local
maxima of which there are many in the background. Hence, at typical pressure forces it
gets stuck in the background. Furthermore, RAGS manages to resolve between the cell
outer edge and its nucleus due to the strong nucleus edge information.

6 Conclusions

A novel method, the region-aided geometric snake or RAGS, was proposed. It integrates
the gradient flow forces with region constraints, composed by the image region vector
flow forces obtained through the diffusion of the region segmentation map. The the-
ory behind RAGS is stand-alone and hence the region force can be generated from any
reasonable segmentation technique. We also showed its simple extension to colour gradi-
ents. We demonstrated the performance of RAGS, against the standard geometric snake
on weak edges and noisy images, as well as on a number of other examples.

We have performed many experiments to verify the resilience of RAGS to weak edges
and noise. However, RAGS can suffer from the same shortcomings as the standard geo-
metric snake, or its colour-based relation in [13], in that it will not perform well in highly
textured regions where the abundance of edge information will prevent the main object
to be reached. It is also dependent on a reasonable segmentation stage, although this was
shown to be quite flexible using a popular method with standard built-in options [4].

Further images and results can be found online! where we have also extensively com-
pared the RAGS snake against another popular snake, the geometric GGVF snake [16].

Uhttp://www.cs.bris.ac.uk/home/xie/rags.htm]



Figure 3: Brain MRI - from left: initial, standard geometric, and RAGS snakes.

Figure 4: Weak-edge leakage - top row: starting contour, over-segmentation colour re-
gions, and under-segmentation colour regions, bottom row: geodesic snake which steps
through and RAGS snake for over and under-segmentation region maps respectively.

Figure 6: Weak-edge leakage - from left: starting contour, geodesic snake which steps
through to the stronger central region, over-segmentation colour regions, and associated
RAGS snake, under-segmentation colour regions, and associated RAGS snake.



Figure 7: Bacteria - from left: initial snake, standard geometric snake, RAGS snake which
resolves topographically onto the outer boundary and the nucleus.
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