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Abstract

We present an approach for user assisted seg-
mentation of objects of interest, as either a
closed object or an open curve. The proposed
method combines point based soft constraint on
object boundary and stroke based regional con-
straint. The user points act as attraction points
and are treated as soft constraints, rather than
hard constraints that the segmented boundary
has to pass through the user specified control
points. User can also use strokes to specify re-
gion of interest. The probabilities of region of
interest for each pixel are then calculated and
their discontinuity is used to indicate object
boundary. This combined approach is formu-
lated as an energy minimization problem on a
multilayered graph and is solved using a short-
est path search algorithm. We show that this
combined approach allows efficient and effective
interactive segmentation, which can be used in
open or closed curves to segment a variety of im-
ages in different ways, and the method is com-
pared against several other techniques, qualita-
tively.

1. Introduction

Effectively separating objects of interest from back-
ground in images is of vital importance to many appli-
cations. Automated techniques are appealing in terms
of efficiency. More often than not, prior knowledge
about object appearance and/or shape is necessary
to achieve meaningful results. However, it is not al-
ways practical or even possible to obtain comprehensive
prior information and sufficiently robust learning algo-
rithm to deal with large and sometimes unpredictable
variations in real world images. An alternative ap-
proach to automated segmentation is to allow and en-
courage user input and provide interactive segmenta-
tion results to suffice user demand. Often, one dilemma
is to balance user involvement and interaction flexibil-

ity, particularly given the ubiquitous imaging device
and ever increasing amount of images in modern age.
Effectively and efficiently capture user intension is vi-
tally important.

The user interaction is conventionally made by sim-
ple mouse click or drag operations on the region of
interest or on the object boundary. Intelligent paint
[16] is a simple interactive method that allows the user
to identify all the regions inside an object. The object
region is interactively expanded by simple click and
drag operation. Homogeneous area that has the same
intensity profile is selected. Intelligent Scissors [15],
and Live Wire [6] are among early methods to perform
on the fly segmentation by allowing the user to follow
the object boundary instead of region through a few
mouse click. These methods are based on well-known
shortest path algorithms, such as Dijkstra’s method, to
find the optimal shortest path between two user points.
Shortest path methods have an advantage of segment-
ing both open and close end objects. However, often
only edge-based features are used to find the shortest
path, and more importantly usually those user points
are treated as anchor points that the segmented path
has to go through.

With the help of powerful optimization techniques,
user interaction has been expanded to, for example,
adding object/background strokes, at the same time
simplify user involvement compared to painstakingly
tracing the object boundary [1, 17, 19, 20, 2, 6, 24].
For example, the user can simply draw multiple strokes
inside and outside the object then the segmentation
model can learn the distribution of pixel intensities for
both object and background. These techniques usually
is more suited for segmenting closed objects, but not
for open curve segmentation.

Graph cut algorithms are widely used to find opti-
mal solution in interactive segmentation. It is usually
for segmenting closed objects. Boykov and Jolly [1] in-
troduce a graph cut based method by defining unary
and pairwise costs of each pixels. The unary cost is in-
versely proportional with the probability of each pixel
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Figure 1. From left: Graph cut [1], Seeded Star Graph Cut [20], GrabCut [17], and proposed method. Red curve shows the
segmentation result, blue for the background strokes, green for background strokes and yellow for the star point and the
initial window of the Grabcut.

to be in the object or in the background while the pair-
wise cost is based on the intensity difference between
two neighboring pixels. Many methods have been in-
troduced to extended this method, such as Grab Cut
[17] and Lazy Snapping [11]. In the Grab Cut, the
authors proposed to use a Gaussian mixture model to
build a local color model to enhance the unary cost.
It reduces the user intervention by allowing the user
to define a rectangular window surrounding the ob-
ject. Lazy Snapping is also based on graph cut over
a pre-segmented image using a watershed algorithm.
K-means is used to cluster the foreground/background
colors and assign each pixel to the nearest cluster. The
method also has a boundary editing tool to refine the
result. However, these methods usually needs a mul-
tiple user intervention to correctly cut out the object,
due to the simplicity in cost function. Shortest path
is another optimization technique that has been used
in interactive segmentation, e.g. [15, 6, 24]. Those
methods emphasize on boundary based features; edge
based features are used to define the cost between pix-
els. The user interactively identify a starting point of
the path and iteratively add more seeds around the
outline of the object. On the other hand, Intelligent
paint method [16] allows the user to identify regions
inside the object instead of the boundary. The region
is interactively expanded by simple click and dragging
operations. Incorporating shape prior into graph based
segmentation has also shown improving the segmenta-
tion result, e.g. [7, 12, 22, 20]. Veksler [20] introduced
a star shape prior to graph cut, also through user in-
teraction. User is required to specify the center of ROI
as the star point, and hence all boundary points of
ROI lie on the radial spikes from the star point. Ad-
ditional points, specifying foreground and background,
are often necessary. A ballooning term is also used to

discourage bias towards small segment. However, the
method can only segment the convex shapes. Gulshan
et al. [9] have extended the method to multiple stars by
using Geodesic paths instead of Euclidean rays. Other
interactive segmentation methods such as a transduc-
tive framework of Laplacian graph regularizer [5] has
been also introduced.

In this work, we propose an approach to com-
bine these two different types of user interactions, i.e.
boundary based interaction (utilising the user inputted
control points) and region based stroke interaction, to
segment the image. The user control points, however,
are treated as soft constraint, instead of hard constraint
in most interactive segmentation methods. We show
that this soft user constraint allows effective combina-
tion of boundary and region based features. The user
points give the user control over the segmentation pro-
cess, allowing errors in segmentation to be easily pre-
vented and a more desirable result to be obtained Fig.
1.

The rest of the paper is organized as follows. Section
2 presents the proposed method, including user input,
superpixel segmentation, and multilayered graph seg-
mentation. Experimental results from segmenting nat-
ural images with groundtruth are presented in Section
3. Section 4 concludes the paper.

2. Proposed Method

The proposed method involves the user selecting a
series of user control points on the image. These rep-
resent the start and the end point for the segmenta-
tion, and the user selected points act as the attraction
points in the shortest path search which results in the
segmentation. These user selected points act in a fash-
ion similar to an elastic band, pulling the segmentation



Figure 2. Stages of the process. From left to right, initial image, super-pixel segmentation, binary representation of graph
nodes

towards them. In this way, it is possible for the user to
influence the segmentation process so as to select fea-
tures that they want. In order to enhance the image
segmentation, the user can also select areas for fore-
ground using strokes.

An energy functional is then formulated based on
the combination of the attraction force that is com-
puted using distance transform and the discontinuity
in foreground probability. By assuming the user points
are in a sequential order, we construct a multi-layer
graph with each layer encapsulating a single individual
user point. The segmentation problem is then trans-
formed into searching the shortest path in this layered
graph. This layered approach allows the segmentation
to be carried out in polynomial time, instead of an NP-
hard optimization problem, at the same time achieving
global minima.

The combination of these user selected points and
regions are used to calculate the energy function. We
use an approach where we create multiple identical lay-
ers, all made up of duplicates of the image, for each
user point added. The resulting segmentation is ob-
tained through searching a minimum path in this stack
of layers in a manner similar to a 3D object. In this
way we can ensure that the shortest path results in a
global minimum, thus avoiding local minima that can
be a problem with other techniques.

2.1. User Input

The proposed method allows two different types of
user input: attraction points to indicate the edge of the
desired object and strokes to indicate region of inter-
est. Fig. 2 provides an example of segmentation using
the proposed method. Conventionally, user input to
segmentation is focused on foreground and background
specification [1, 17, 19, 20]. For example, in [17], the
user interaction consists of dragging a rectangle around
the object of interest and in doing so the user specifies
a region of background that is modeled in separating
the foreground object. Several other methods require
user to specify points on the object boundaries instead
[2, 6, 24]. However, more often than not, these bound-
ary based user points are treated as anchor points and

the segmentation path has to go through them. This
kind of hard constraint is not always desirable. It does
not allow imprecise user input, and it can lead to diffi-
culties in combining region based and boundary based
approaches as discrepancy between different object de-
scriptions is generally expected. Notably, in [24] the
authors introduced soft constraint user point by em-
bedding the user constraint in distance functions. The
segmentation result is considered to be the shortest
path to loosely connect the user points. However, it
is known to be a NP-hard problem. Hence, it is as-
sumed that the user points are placed in a sequential
order and such a constraint reduced the computational
complexity to polynomial time. This user input con-
straint can be seen to be generally acceptable as it
is intuitive to follow the outline of an object, rather
than skipping around. In this work, we follow this ap-
proach to treat boundary based user points. However,
we also allow user to place region based strokes. These
strokes are used to model foreground probability, and
the discontinuity in foreground probability indicates
the presence of object boundary. We combine these
two types user input with image features in an energy
functional which is then optimized using graph parti-
tioning through finding the shortest path from the first
to last user points. Moreover, we apply a superpixel
segmentation in order to generate a much coarser, but
irregular, multilayer graph so that the computational
cost is drastically reduced. It also provides a regional
support at a low level for the shortest path search in
the graph.

2.2. Superpixel Segmentation

Efficient search for the shortest path, for instance,
using Dijkstra’s Algorithm on a multidimensional
graph is not a trivial task. Many researchers attempted
to speed up the Dijkstra’s Algorithm by e.g. using mul-
tilevel scaling [10] or restricting the search space [23]
by deciding whether or not the edge will be considered
during the searching process. In this paper, we speed
up the Dijkstra’s Algorithm by using the mean shift-
ing method to over-segment the image. This over seg-
mented image is then used to create the graph, by only



Figure 3. Layered Graph Construction. The stack of images in the middle and right show how the graph is constructed out
of a number of layers corresponding to the number of user points n + 1. The final result of the segmentation is shown on
the left. The diagrams on the right illustrate the internal layer edges (A) and the edges between neighboring layers (B).

considering the boundary of the superpixel regions as
a potential paths that can be used to find the shortest
path between two points, the whole process is thus far
more efficient. Additionally, this superpixel segmen-
tation provides low level regional information to the
graph search which relies significantly on edge infor-
mation.

Superpixel segmentation method is grouping a set
of homogeneses neighboring pixels together to reduce
the complexity of solving further image processing such
as segmentation [11, 16] and object localization [8].
Superpixel segmentation algorithms vary from graph
based [18, 14] to gradient descent methods [3, 21].

Mean shift algorithm [3] is a non-parametric gradi-
ent descent method that iteratively shifting the mean of
the region toward the local maxima of the density for a
given set of samples. Mean shifting method is suitable
for clustering any real data without any assumption of
the cluster shape. It has been widely used in many ap-
plications, such as clustering [3] and tracking [4]. Given
n data points (pixels) of xi in the d-dimensional space
Rd, the non-parametric probability function is defined
by kernel density estimator (KDE) as the following:

f(x) =
1

nhd

n∑
i=1

K(
x− xi

h
) (1)

where h is the bandwidth parameter and K is the radi-
ally symmetric kernel such as Gaussian kernel K(x) =

(2π)−d/2 exp(− 1
2 ∥x∥

2
). The local maxima of density

is located among the zeros of the gradient ∇f(x) = 0.
So the mean shift can be derived as the following:
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h

∥∥2)∑n
i=1 G(

∥∥x−xi

h

∥∥2) − x (2)

where G(x) = −K
′
(x) and mh,G(x)(x) is the difference

between the weighted mean, using kernel G, and x,

the center of the kernel. The mean shift vector points
toward the maximum increase of the density and it
converges at a nearby point where the density estimate
has zero gradient.

Figure 2 shows an example of the Mean Shift seg-
mentation. Mean shift is preserving the edge features
in the image. The black region, shown in the second
row of the figure, represents areas on or close to edges
in the superpixel segmentation, and are used to con-
struct the graph as it is discussed in the next section.

2.3. Layered Graph Construction

In order to impose soft constraint for user point,
we follow the approach proposed in [24] to construct a
layered graph so that given a set of attraction points
we fit a curve to follow the edges in the image and
pass through the vicinity of the given points. The user
points are assumed to be placed in a sequential order,
which is acceptable in our application. The computa-
tional complexity, however, is reduced to polynomial
time.

For each user point, Xi, i ∈ {1, 2, ..., k}, we create
a new layer of directed graph. This is a copy of the
image layer, with the same edge based weighting. In
that way we have a series of layers equal to the number
of user points n, plus an additional layer (in order for
the last user point’s weighting to be used), as shown
in Fig. 3. This results in a multi-layer directed graph,
G = (V,E), where V is the set of vertices, and E the
set of weighted edges. For each pixel p, there exits an
edge e to each of its neighboring pixels (up to 8) on the
same layer, providing that they are on the boundaries
of the super-pixels. Therefore, a pair of neighboring
pixels (p, q) ∈ V with a corresponding edge e = (vp, vq)
also have an edge to the corresponding point on the su-
perseding layer e = (vpi , vpi+1), where i represents the
current layer of the image. For each edge, we assign
a weight w to build a weighted graph (V,E). These



weights are calculated based on whether the edge is in-
ternal to a layer (wi) or trans-layer (wx). By creating
the graph in this way, an order is established with the
user points. Edges of zero weight are added from the
start node s to each pixel in the first layer, and from
the terminal node t to the last layer k + 1. If P is the
set of pixels in the image, and pi and qi are pixels in
layer i, we can define the set of nodes V as

V = {s, t} ∪ {p ∈ P ∧ 1 ≤ i ≤ k + 1} (3)

and thusly the set of edges as,

E =


(s, vp1)|p ∈ P ∪
(vpk+1

, t)|p ∈ P ∪
(vpi , vqi)|(p, q) ∈ N ∧ 1 ≤ i ≤ k + 1 ∪
(vpi , vpi+1)|p ∈ P ∧ 1 ≤ i ≤ k + 1.

(4)

The segmentation is thus to find the shortest path from
the start point s to the end point t, see Fig. 3.

The edges on the directed layered graph are catego-
rized as internal edges wi within individual layers and
interlayer edges wx. The weighting for these two types
edges is assigned differently.

The internal edges are assigned with two types of
weights, i.e. boundary based edge weights and re-
gion based edge weights. The boundary based edge
weights are calculated based on the magnitude of im-
age gradients, i.e. using an edge detection function
g = 1/(1 + ∇I) where I denotes the image or its
smoothed version using, for instance, Gaussian. Hence,
for any given edge between neighboring pixels (vp, vq)
we assign a weight (we) according to

we((vp, vq)) := 1/2||p− q||(g(p) + g(q)). (5)

The region based edge weights are computed from fore-
ground probabilities. The user strokes placed in the
foreground provide an estimation for foreground inten-
sity distribution, which is then used to evaluate each
pixel in the image. The discontinuity in this generated
probability map is then used to compute the region
based edge weight in the similar fashion to image in-
tensity, i.e.

wf ((vp, vq)) := 1/2||p− q||(gf (p) + gf (q)) (6)

where gf is the edge detection function based on proba-
bility values. The internal edge weight is thus the linear
combination of the boundary based weight and region
based weight: wi = we + wf . The attraction force
imposed by user points is materialized through the in-
terlayer edge weights wx. We apply distance transform
to the user points in each layer of the graph, and the

interlayer edge weight is assigned as wx = d(vpi , vpj )
where d denotes the distance transform function. This
distance weighting produces isolinear bands of weight
around the user point, with increasing weight to go
through to the next layer as the distance from the user
point increases.

2.4. Energy Minimization

The energy function for any curve C in our method
is a combination of three terms, i.e.

E(C, s1, ..., sk) =α

k∑
i=1

||C(si)−Xi||

+ β

L(C)∫
0

g(C(s))ds

+

L(C)∫
0

gf (C(s))ds,

s.t.si < sj ,∀i < j.

(7)

The first term is used to enforce the soft constraint by
the user points, and it penalizes the path further away
from the user points. The second term is the boundary
based data term that prefers the path passing through
strong edges, whileas the last term is the region based
data term which prefers path traveling through abrupt
changes in foreground probability. By using the lay-
ered graph construction, the minimization of the en-
ergy functional is achieved by finding the shortest path
from the start point s to the end point t. The Dijkstra’s
algorithm is used to calculate the shortest path in the
layered directed graph. Note, the interlayer edges are
unidirectional so that the path can not travel back to
previously visited layers.

The Dijkstra’s algorithm is working on a directed
graph G(V,E) to find the shortest path between two
defined nodes, the algorithm divided the nodes of the
graph to two sets; visited and unvisited nodes. Once
the node is marked as visited node, it will not be
checked again. The algorithm starts searching from the
starting node s, assigns an initial tentative distance of
zero to the staring node and infinity to all other nodes,
and then calculates the tentative distances for all neigh-
boring nodes, these tentative distance is defined as the
summation of the edge weight wi and the current dis-
tance of the beginning node of that edge. The edge
weight must be nonnegative value. The algorithm will
mark the node that has the minimum distance as a
visited node. The algorithm will repeat the process by
calculating the tentative distance for all neighboring
nodes for all visited nodes and only mark the node has



the minimum distance as a visited node until reach the
terminal node t. The running time of Dijkstra’s algo-
rithm is O(|E| + |V |log|V |) where E is the number of
edges and V is the number of nodes.

3. Experimental Results

To show the effectiveness of the proposed method,
we compare our method to others by using it to seg-
ment general images, e.g. natural scenes and wide life
animals. The proposed method was evaluated using
the Berkely Image Database [13]. This dataset con-
tains images of various types. The methods were used
to perform a selection/segmentation based on features
in the image that would be a realistic segmentation
to be carried out (for example, object selection, hor-
rizon selection etc.) The results from the proposed
method were then compared to other available meth-
ods, namely s− t graph cut [1], seeded star graph cut
[20], GrabCut [17], and [24]. A selection of open and
closed curves ( a feature of the proposed method that
other segmentation methods do no always have) were
used to demonstrate and compare the results.

The proposed method showed a very favorable
segmentation performance compared to the methods
we tested it against. The combination of a back-
ground/foreground separation, combined with the edge
based approach gave the method a very robust segmen-
tation, being able to segment an object of interest from
an image where other (single methodology based) tech-
niques found difficult to handle, for example if colors
were closely related to background, or if there were
many conflicting edges. The advantage in being able
to perform with open or closed curves is shown in some
of the images, for example dividing the image on the
horizon or segmenting figures that extend to the edge
of the image. Fig. 5 provide several comparative re-
sults in segmenting images of natural scenes or wide life
animals. Fig. 6 shows examples results of segmenting
human from complex background.

Fig. 4 demonstrates the advantages of the inclusion
of regional data into the algorithm, in comparison to
[24]. In some cases, where there are edges (other than
those required), without the regional selection, the seg-
mentation can lose accuracy. By selecting the region
specificity, in most cases these edges can be ignored
without the requirement for more user points, which
would increase the complexity of the graph.

4. Conclusion

We presented an interactive segmentation technique
which combines boundary based and region based ob-
ject representations. We used this method to segment

both natural images, and a specific application for seg-
mentation. We adopted layered graph representation
to simplify computation, and a super-pixel method to
improve segmentation speed and efficiency. The pro-
posed method was compared against a recent meth-
ods, and the standard graph cut techniques, showing
improved versatility and results. Where other methods
had difficulty with certain image types, the combined
approach was able to segment the desired information.
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Graph cut [1] Seeded Star Graph Cut [20] GrabCut [17] Proposed method

Figure 5. Segmenting images of wide lives and natural scenes. From left: Original Image, Graph cut [1], Seeded Star Graph
Cut [20], GrabCut [17], and proposed method. Red curve shows the segmentation result, blue for the background strokes,
green for foreground strokes, and yellow for star point and the initial window of the Grabcut.



Graph cut [1] Seeded Star Graph Cut [20] GrabCut [17] Proposed method

Figure 6. Segmenting human from complex scenes. From left: Original Image, Graph cut [1], Seeded Star Graph Cut [20],
GrabCut [17], and proposed method. Red curve shows the segmentation result, blue for the background strokes, green for
foreground strokes, and yellow for star point and the initial window of the Grabcut.
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