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ABSTRACT

Coronary artery segmentation plays a vital important role in
coronary disease diagnosis and treatment. In this paper, we
present a machine learning based interactive coronary artery
segmentation method for 3D computed tomography angiog-
raphy images. We first apply vessel diffusion to reduce noise
interference and enhance the tubular structures in the images.
A few user strokes are required to specify region of inter-
est and background. Various image features for detecting the
coronary arteries are then extracted in a multi-scale fashion,
and are fed into a random forests classifier, which assigns
each voxel with probability values of being coronary artery
and background. The final segmentation is carried through an
MRF based optimization using primal dual algorithm. A con-
nectivity component analysis is carried out as post processing
to remove isolated, small regions to produce the segmented
coronary arterial vessels. The proposed method requires lim-
ited user interference and achieves robust segmentation re-
sults.

Index Terms— Coronary artery, interactive segmen-
tation, random forests, Markov random field, primal dual
algorithm

1. INTRODUCTION

Accurate segmentation algorithm for extracting the vessel
structure is often considered essential for patient-specific
treatment of cardiovascular diseases. A number of vessel
extraction methods for different modalities have been devel-
oped in recent years, e.g. [1, 2, 3]. Li and Yezzi [2] proposed
a 4-D representation for 3-D vessel by combining both the
spatial coordinates and the thickness of the vessel. With two
user specified endpoints, the surface as well as the center line
of the vessel are extracted using the generalized 4-D global
minimal paths algorithm. Esneault et al. [4] proposed a
3-D geometrical moment-based detector to extract the center
line of the vessel, as well as its diameter and orientation.
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Then a graph cut algorithm was applied to regularize the
final segmentation with a local continuity constraint. In [5],
shape prior of 3D tubular tree structure is used to formulate
the regularization to refine the initial vessel segmentation or
detection. Zhu and Chung [6] proposed the TMT (Tubularity
Markov Tree) method to model and detects vessel structure,
with a graph cut algorithm applied to solve the energy min-
imization problem in order to obtain the final segmentation.
Deformable models, particularly those that are capable of
capturing complex geometries such as [7], may be applied
to vessel segmentation. Efficient model representation and
numerical methods are desirable and semi-implicit schemes
have been shown effective in segmenting complex objects,
e.g. [8, 9].

The segmentation of coronary artery is not a trivial prob-
lem. First, the coronary artery are attached to the myocardium
and surrounded by other tissues. Second, compared to the
aorta, the size of the coronary artery is much smaller, which
makes it difficult to segment and maintain its vessel connec-
tivity. Last but not least, there are several other blood vessel
nearby, such as pulmonary blood vessel in the lung, which has
very similar appearance and geometry. This makes an auto-
mated, global detection or classification a difficult task. In this
paper, we present an interactive coronary artery 3D segmen-
tation method for computed tomography angiography (CTA)
volumetric image. An initial vessel classification is given by a
random forest classifier which is trained on a few user strokes:
the foreground stroke labels the coronary artery and the back-
ground stroke indicates the other tissues. Based on the label
population in the leaf nodes of the randomized decision trees,
we formulate the final segmentation as an MRF based opti-
mization with local consistency constraints. The primal dual
algorithm with graph cut is used to solve the energy mini-
mization problem.

The rest of the paper is organized as following. Sec. 2
presents our proposed approach including vessel enhance-
ment, feature extraction, RF classification and MRF opti-
mization. The results are presented in Sec. 3, and Sec. 4
concludes the paper.



2. METHODOLOGY

2.1. Vessel Enhancing Diffusion

It is desirable to enhance the brightness of coronary vessel and
the sharpness of vessel edges in 3D before carrying out seg-
mentation, particularly for this type of thin tubular structures.
Frangi et al. [10] proposed a vesselness function by analyz-
ing the eigenvalues of the second order information (Hessian)
in a local neighborhood at multiple scales. The eigenvalues
decomposed from the Hessian matrix were used to locally
differentiate the tubular-like structure from other structures,
including blob-like structure, plate-like structure and back-
ground. Manniesing et al. [11] extended it to a continuous,
n-th order differentiable function for measuring the vessel-
ness. Based on the proposed vesselness function, the diffu-
sion tensor was constructed to enhance the image at vessel
region along minimal local curvature direction, while smooth-
ing the image isotropically at non-vessel region. In this work,
we follow this approach to enhance the coronary vessel struc-
tures in the CTA images. Later, the measurements derived
from this vesselness analysis are also used as part of the coro-
nary features.

2.2. Multi-Scale Coronary Feature Extraction

The features we use to highlight coronary vessels can be cate-
gorized as texture or appearance based and shape based. The
texture features are derived as intensity and image gradient
magnitude distribution in a local neighborhood across multi-
ple scales. These appearance features are useful in differen-
tiating myocardium, bone, and adventitia. Since they are ex-
tracted from multiple scales, the difference between other vas-
cular structures and coronary vessels can be highlighted. For
example, although aorta exhibits similar brightness to coro-
nary, it has different intensity distribution across scales be-
cause aorta is a much larger vessel. Pulmonary vessels has
similar geometry to coronary arteries but their neighborhood
appearances are different.

The second set of features are designed to highlight the
narrow, tubular-like structure of coronary vessels. We derive
multiscale local geometrical features, following those that
have been used in vessel enhancement. At scale S, the Hes-
sian matrix H at each voxel P is computed by convolving the
volumetric image with derivatives of Gaussian. The eigen-
values λ of Hessian matrix are then computed. In the case
of 3D, we define the ordering eigenvalues as H as λ1,λ2,λ3,
where |λ1| ≤ |λ2| ≤ |λ3|. At scale s, the eigenvalues of Hes-
sian indicate the strengths of intensity variation between the
inside and outside of the region (−s, s) along the direction of
the corresponding eigenvectors. The coronary vessels are as-
sumed at the region in which |λ1| ≈ 0, |λ1| ≪ |λ2|, λ2 ≈ λ3,
while the eigenvector corresponding to the eigenvalue λ1
indicates the vessel direction. We adopt the Manniesing’s
vesselness function V , which is defined as follows:
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The parameters α,β, γ are the weighting variables control-
ling the contributions of the measurements to the response of
vesselness function. The vesselness measurement are com-
puted at multiple scales and the maximum response V over
the scale-spaces is selected.

2.3. Voxel Classification using Random Forests

Random forests [12] is a supervised machine learning method
which aims to overcome the problems caused by poor gener-
alization ability of single decision tree. In our work, classi-
fying each voxel into coronary and non-coronary is required
so that the confidence value of the classification at each voxel
is used to construct the cost function for the MRF based opti-
mization.

Random forests grows a number of decision trees inde-
pendently using subsets of training data by randomly sam-
pling with replacement from the complete training set. For
each single decision tree, it grows recursively by finding the
best splitting function for each non-leaf node using the en-
tropy or Gini index to evaluate the information loss, until the
stopping criteria are satisfied. The non-leaf nodes consist of
the splitting functions, each testing sample could follow the
tests and reach the leaf node in the end. The leaf nodes, at
the bottom layer of the tree, store the training samples which
fell in in the training stage, and it votes the class with largest
proposition for the prediction. The random forests combines
the prediction of each single decision tree, the most voted
class given by the forests is considered as the final classifi-
cation for the test sample. From the implementation point of
view, the random forests is supremely adequate for parallel-
ing. By taking advantage of GPU computing technique, clas-
sifying each pixel of a 500 × 300 2D image can be achieved
in 140ms. [13]

In our work, 3D MPR (Multi-Planar Reconstruction) and
curved MPR are used to produce the longitudinal view of the
coronary artery, in which a few strokes are placed to indi-
cate the region of interest at the foreground. Also, the non-
coronary artery tissues, such as: aorta, ventricle, heart mus-
cle, pulmonary blood vessels and so on, are obtained through
additional user strokes as background, negative samples. We
sample the voxels following the strokes with equal spacing,
and the features of those voxels as described in Sec. 2.2 are
collected as training set. Then the whole volume is tested, the
classification result may be considered as an initial segmenta-
tion. However, the proposition of voting by these randomized
decision trees for each voxel can be considered as segmen-
tation cue. In the next section, we show how to use these
proposition values to carry out segmentation that can be more
coherent than RF classification.



2.4. Segmentation using MRF Optimization with Primal

Dual Algorithm

MRF has been widely applied in different computer vision ap-
plications to address the regularization problems. Especially,
the grid-like, pairwise MRF model in image segmentation
area has shown to be an effective approach, e.g. [14]. In gen-
eral, the MRF energy is formulated over the graph G(P , E)
as follows:

E(p) =
∑

i∈P

U(pi) +
∑

<i,j>∈E

O(pi, pj) (2)

whereP and E represent the node set and the two-tuples set of
undirected edge of G respectively. U(.) is the unary potentials
defined on the node P , and O(.) is the pairwise potentials
defined on the edge E . The first term of Eq. 2 is considered
as point-wise data term which provides the segmentation cue,
the second term is considered as pair-wise smoothness term
which constrains the consistency between neighbour nodes.
For example, the Potts pairwise potentials is defined on the
distance of two linked nodes xi, xj , as follows:

O(pi, pj) = wij · (1 − δ(pi − pj)) (3)

where wij ≥ 0 is the weighting coefficient of smoothing
penalty for the edge < i, j >, and the Kronecker delta δ is
defined as:

δ(p) =

{

1 x = 0
0 x = 1

(4)

Here, the segmentation is to assign each voxel/vertex with
a label lp (lp ∈ L; lp = 1 when p is coronary artery; lp = 0
when p is not). In Sec. 2.3, the binary classification result
of each vertex is given by the classifier as well as the voting
proposition klp which could be considered as the likelihood
or confidence of being categorized to the class. So, the regu-
larization can be formulated as solving the discrete MRF op-
timization problem by minimizing the following MRF energy
function:

min

⎛

⎝
∑

p∈P

U(p) +
∑

<p,q>∈E

O(p, q)

⎞

⎠ (5)

In binary classification case, we have klp=0 = 1 − klp=1, so
the point-wise potentials is defined as:

U(p) =

{

T (1− klp=1) if lp = 1
T (1− klp=0) if lp = 0

(6)

which implies, for example, the cost of assigning the class
label 0 to the vertex p is equal to T (1 − klp=1) = T (klp=0),
the non-linear transformation of the confidence of assigning it
with label 1. One of disadvantage of graph-cut based method
is the shrink bias which results in smaller contour, and be-
comes even worse in the corner region. The goal of the non-
linear transformation function T is to enlarge the difference
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Fig. 1. (a) Non-linear transformation function Tη=1,2,3 com-
pared to the linear function Y = X . (b) MRF with 6 neigh-
bourhood system, < p, q1,··· ,6 >.

between klp=0 and klp=1 when their values are getting sim-
ilar, which is very common for the vertexes around the ves-
sel surfaces. By applying the non-linear transformation, to a
large extent, the shrink bias caused by the pair-wise term will
be reduced. We propose the following non-linear transforma-
tion function T :

Tη(k) =

η
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where ◦ is the function composition operator (see Fig. 1). It
can be proved that Tη(1−k) = 1−Tη(k) when k ∈ [0, 1]. In
addition, we use grid-like MRF with 6-neighbourhoods sys-
tem in our experiment, and choose the Potts model as pair-
wise potentials (see Eq. 3, 4).

A number of approaches have been proposed in the lit-
erature to solve the energy minimization problem of discrete
pair-wise MRF, such as graph cuts based methods [15, 16],
and belief propagation algorithm [17]. Especially, the dual-
decomposition approach with linear programming method at-
tracts a great attention in the last decade [18]. Chekuri et
al. [19] have proved that the solution of metric labeling prob-
lem given by the form of minimizing the MRF energy (Eq. 5)
can be approximated using the following integer program-
ming formulation:

min

⎛
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cp(a)xp(a) +
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wpq

∑
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⎞
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which subjects to the following constrains:
∑

a∈L

xp(a) = 1 ∀p ∈ P (10)

∑

a∈L

xpg(a, b) = xq(b) ∀b ∈ L, < p, q >∈ E (11)

∑

b∈L

xpg(a, b) = xp(a) ∀a ∈ L, < p, q >∈ E (12)

where xp(.) = 0, 1, and xpq(., .) = 0, 1. The constrain
Eq. 10 ensures for each vertex p, a label is assigned to, and
the constrains Eq. 11 and 12 ensure the consistency of the
label between the neighbors. Komodakis et al. gave the solu-
tion of above optimization problem Eq. 9 via dual decomposi-
tion, and proposed a family of PD (Primal-Dual) algorithms.



(a) (b) (c)

Fig. 2. (a) iso-surface rendering of the CTA image; (b) RF based voxel classification result; (c): result of the proposed method.

In this work, the PD1 algorithm [20, 21] is adopted, which
solves the decomposed sub-problems via Graph-cut in each
iteration.

3. EXPERIMENTAL RESULTS

The method is evaluated on the clinical CTA volumes. The
volumes have different number of slices with 0.65mm inter-
slice spacing, each slice has 512 × 512 pixels with 0.38mm
intra-slice spacing. At first, we cropped out the region of
interest which contains the whole heart and a part of re-
gion in the lung, then followed by 10-iteration vessel en-
hancing diffusion filtering. The features for every vertex
in the sub-volume are computed in multi-scale spaces with
σ ∈ {0, 1, 2, 3, 4}, which results in a 85-components feature
vector. A random forests classifier with 200 decision trees
is interactively trained on the training set which provided by
sampling the vertexs from the user’s foreground and back-
ground strokes. The sub-volume is segmented by optimizing
the classification result given by the random forests using
grid-like Markov random field model with 6 neighbours
system and PD1 algorithm. Given the binary volume, the
segmented result is visualized as iso-surface using marching
cube algorithm. Once the user adds more strokes, we repeat
the classifier training, sub-volume classification, label opti-
mization and result rendering processes, until no more user’s
stroke is detected, and the final segmentation is achieved. A
connected component analysis was also carried out to remove
isolated, small regions.

Fig. 2 provides an example of the segmentation process
and result. In (a), we show the iso-surface rendering of the
vascular structures, including the ventricles. It is clear from
this that coronary vessels are only a small proportion of those
structures. To isolate them and to obtain a coherent structure
with good connectivity is not a trivial task. Fig. 2(b) shows
the classification result from RF classifier. Most of the non-
coronary structures are removed, but there are still plenty of
isolated thin, tubular structures. The final result of the pro-
posed method is shown in (c), where the coronary structures
are well segmented. Two further examples are provided in

(a) (b)

(c) (d)

Fig. 3. (a) (c) iso-surfaces rendering of the CTA images; (b)
(d) results of the proposed method.

Fig. 3. The examples provided here are typical results we
achieve using the proposed method. The user interactions are
minimal, i.e. only a few strokes on the foreground and back-
ground.

4. CONCLUSIONS

A 3D interactive segmentation method for coronary artery has
been presented in this paper. The vessel enhancing diffusion
filter is adopted to pre-process the volumetric image. Ran-
dom forest classifier is trained on the feature which designed
for discriminating the coronary artery from other tissues. The
segmentation is achieved by regularizing the classification re-
sult with the constrain ensuring the local label consistency.
Promising segmentation results are achieved with just a few
user strokes.
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