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Abstract

This paper proposes a generative method to ex-

tract 3D human pose using just a single image. Un-

like many existing approaches we assume that accu-

rate foreground background segmentation is not pos-

sible and do not use binary silhouettes. A stochastic

method is used to search the pose space and the poste-

rior distribution is maximized using Expectation Max-

imization (EM). It is assumed that some knowledge is

known a priori about the position, scale and orienta-

tion of the person present and we specifically develop

an approach to exploit this. The result is that we can

learn a more constrained prior without having to sacri-

fice its generality to a specific action type. A single prior

is learnt using all actions in the HumanEva dataset [9]

and we provide quantitative results for images selected

across all action categories and subjects, captured from

differing viewpoints.

1. Introduction

Recently, there has been much progress made in the

development of discriminative methods that are capa-

ble of not only accurately detecting people in cluttered

scenes at varying scales [3], but also of being able to

estimate orientation [7]. Whilst discriminative methods

have also been shown capable of estimating 3D pose

from features such as binary silhouettes [1] it is not clear

how well these approaches generalize to unseen actions

or scenes. It is in this context that generative methods

have been shown to be advantageous, since these are

not so heavily dependent on the training data used. It

seems that a marriage of discriminative and generative

methods could provide a good solution to 3D pose es-

timation from single images. Discriminative methods

could be used for location, scale and orientation estima-

tion of the root node (i.e. pelvis location) and genera-

tive methods for estimating pose of individual parts. In

this work we suppose that such a discriminative detector

does exist and explore what benefit this would bring, in

particular we present a generative method explicitly de-

signed to exploit this information. Specifically, we are

able to move away from “loose limbed” models [5, 10]

where limbs are not constrained to be connected at spe-

cific joints. Instead of defining our graphical model over

parts (or limbs) as is most commonplace [5, 10, 2] we

define a model over joints, which are typically of inter-

est.

Whilst prior knowledge of location, scale and orien-

tation considerably constrains the task of 3D pose es-

timation the remaining problem is by no means trivial.

This has been highlighted by recent attempts to extract

2D pose in cluttered images using only local appearance

and edge cues where despite relative accurate detection

of the torso (81%) detection of the lower limbs is far

more difficult (55%) [2].

One of the principal problems with estimating pose

is that the human body has many degrees of freedom

and as such the search space in which pose is located

is extremely large. The approach taken by many exist-

ing algorithms is to decompose the object into its prin-

cipal parts and assume Markovian properties between

connected parts. This problem can then be solved us-

ing methods such as Dynamic Programming [5] and

Belief Propagation [8] for 2D pose estimation and par-

ticle methods such as Non-Parametric Belief Propaga-

tion [10] and Variational MAP [6] for 3D pose estima-

tion. In the presented method a part based approach is

also taken and particle sets are also used to approximate

probability distributions. As the position and orienta-

tion of a single node in the graph is manually initialized

and therefore known with certainty, we propose a novel

method to search and grow the pose space. To maxi-

mize the posterior we use an iterative method based on

Expectation Maximization (EM). At each iteration of

the algorithm we maximize the current posterior by re-

estimating the prior distribution. As a result the prior

converges towards a maxima, which empirically ap-

pears to be global.

In this work a single prior is learnt to represent all
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actions contained in the HumanEva dataset [9] and the

presented algorithm is tested on images taken from all

action categories filmed from different viewpoints; we

do not as is commonly the case just constrain our model

to a single action filmed from a single viewpoint and do

not rely on binary silhouette extraction.

2. Model Representation

Typically the conditional probability distribution be-

tween two connected parts p(xi|xj , θij), where xi is

the child of xj and θij is a model parameter, is ap-

proximated as a distribution over their relative location

and orientation i.e. p(xij |θij) where xij = xj − xi

[10, 5]. However, instead we learn a conditional dis-

tribution over the orientation of a part measured in the

global frame of reference defined by the root node. This

will result in a much more representative prior that will

help to prevent problems such as self intersection be-

tween parts, which would clearly not be present in the

training set but can still occur using the approximation

described above. To achieve this given a set of train-

ing data for two connected joints Xi = {x1

i , ..,x
l
i} and

Xj = {x1

j , ..,x
l
j}, we concatenate the data such that

the training set becomes Xij = {x1

ij , ..,x
l
ij}, where

xij = (xi,xj). A Gaussian Mixture Model (GMM)

can then be learnt using this data and a separate model

is learnt for each pair of connected joints. Each GMM

represents the distribution p(xi,xj |θij) and below it is

described how to use this distribution to draw a sample

xi conditioned on a sample xj .

We first need to determine the number of compo-

nents to use in each GMM. As the position of the root

node is fixed it would be expected that the complexity

of the distribution at joints located at a further depth

from this root node would increase and more compo-

nents are required. To represent this we employ the

following scheme: Joints connected directly to the root

node are given three components and at every subse-

quent increase in depth a further two components are

added. Under our model the maximum number of com-

ponents is assigned to the wrists with 9 components.

Samples are drawn moving outwards from the root

node and for efficiency all GMM’s learnt have only

diagonal covariance matrices. Given a sample for

the jth node xj , we can create a sample condi-

tioned on this by first calculating the marginal like-

lihood of observing this value p(xj |mk
ij) for the kth

componant in the GMM. The connection parameters

mk
ij = {µk

ij ,Σ
k
ij , λ

k
ij} define the mean, covariance

and weighting of the component, respectively. Given

that all covariance matrices are diagonal, i.e. Σk
ij =

diag(Λk
ii,Λ

k
jj), the marginal likelihood can be calcu-

lated as p(xj |mk
ij) = λk

ijN (xj ;µ
k
j ,Λ

k
jj). Once this has

been calculated for all components the resultant distri-

bution is normalized to give the conditional distribution

p(mk
ij |xj). A GMM component can then be sampled

from this distribution k∗ ∼ p(mk
ij |xj), from which a

sample for xi can be drawn from the selected compo-

nent xi ∼ N (µk∗

i ,Λk∗

ii ).
To effectively search the pose space we exponen-

tially grow the number of particles as we get further

from the root. For each particle xj we draw N child

samples
[

x
l
i

]N

l=1
so that we search a larger space with

more samples for less constrained limbs. As very few

particles are needed to describe the prior for nodes near

to the root this exponential growth is not problematic,

we set N = 8, which will result in 4096 samples being

generated for each of the wrists.

3. Pose Estimation

Typically an articulated object can be written as a

graph where the set of n hidden nodes vi ∈ V repre-

sent the set of parts used to represent the object and

{vi, vj} ∈ E represent the edges that connect the nodes

of the graph together. Given a set of proposal values for

each node X = {xi, .., xn} and a set of observations

for each node Z = {zi, .., zn} the posterior can then be

calculated as

p(X |Z, θ) =
∏

{i,j}∈E

p(xi|xj , θij)
∏

i∈V

p(zi|xi) (1)

where p(xi|xj , θij) represents the prior and p(zi|xi)
represents the observational likelihood.

The problem in defining a model over joints as ap-

posed to parts is that there does not exist one-to-one

correspondences between joints and observations; we

can not directly observe a joint only the parts to which

it is connected. To accommodate this we define a set of

m observable parts pi ∈ P , where m 6= n. We further

define vj ∈ pi as being the set of joints defining the ith

part and conversely pj ∈ vi as being the set of parts

of which the ith joint is a member. The set of observa-

tions made for the parts are defined by Z = {zi, .., zm}.

The observational likelihood for the ith part can now be

written as p(zi|{xj∈pi
}) and it becomes clear that this

distribution is dependent on a number of joint positions.

This is an intuitive result, for example the appearance

of the forearm must be dependent on the location of

both the wrist and elbow. To estimate p(zi|xj) from

p(zi|{xj , xk∈pi|j}) the nodes xk∈pi|j can be treated as

nuisance parameters and marginalized over. In practice

this is cumbersome to calculate and instead the follow-

ing approximations are used: If the xk∈pi|j are child

nodes to xj we use the expectation of the set of particles

drawn from xj . If they are parent nodes we use the sam-

ple of xk∈pi|j from which xj was drawn. For the torso

we use the expectation of the shoulder and hips since
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these joints are not directly connected and do not share

child/parent relationships. This method then allows an

approximation of the term p(zi|xj) to be calculated.

We further need to account for that a joint may be

a member of several parts, for example the elbow de-

fines both the upper arm and forearm. To accommodate

this the likelihood terms p(zi|xj) are combined for all

parts to which that joint is a member pi ∈ vj assuming

the appearance likelihood for each part is conditionally

independent. This can be calculated as

p(zi∈vj |xj) =
∏

i∈vj

p(zi|xj). (2)

This again represents an intuitive result that to estimate

the position of a joint you must observe all parts to

which it is connected.

Maximizing the posterior is achieved using EM

where a new prior is estimated at each iteration given

the posterior calculated using the old prior, a new set of

particles is then generated from the prior and the pos-

terior re-estimated. Given a set of particles for the jth

joint
[

x
k
j

]N

k=1
each is assigned a weight proportional to

p(zi∈vj |x
k
j ), which are then used to update the prior.

At each iteration simulated annealing is used to ensure

the distribution converges so that wk
j = p(zi∈vj |x

k
j )

β ,

where β is calculated at each iteration so approximately

half of the particles would be discarded if resampling

were performed [4].

4. Limb Likelihoods

A part is represented by a rectangular patch and de-

fined by the joints that it is composed from. We use two

image cues, edges and color. Edge cues are exploited

using a set of M overlapping HOG features [3] placed

along the edges of the part. Each feature is represented

as a single normalized histogram of the local image gra-

dients at that location and they are combined such that

p(zi|{xj∈pi
})edge = 1

M

∑M
m=1

H(θ⊥), where H(θ⊥)
returns the value in the histogram bin that is perpendic-

ular to the edge of the part, θ⊥.

Color is exploited by placing a bounding box at

the location of the root node and then learning a fore-

ground model using the pixel values within the box

and a model for the background using pixels outside

the box. The models are learnt using a GMM. This

creates a very crude and noisy foreground probability

map (see Figure 2 (a) (i-ii)). Given the location of a

part its foreground likelihood is calculated as the aver-

age value of the probability map in the region encom-

passed by that part. This average can be efficiently ap-

proximated by creating an Integral Image (II) for the

foreground probability map. The II representation al-

lows the integral over a rectangular region to be cal-

culated requiring just 4 memory accesses provided the

edges of the rectangle are aligned with that of the im-

age (i.e. is axis aligned). Since the rectangular patches

used to represent the model’s parts may be orientated

at any angle, the following approximation can be used:

Firstly, the integral is calculated over the minimum axis

aligned bounding box that encompasses the orientated

part, denoted Fbb. Between the mid-point along the

two longest edges of the part and the two nearest cor-

ners of the bounding box, two smaller boxes are de-

fined over which the average probability µbg for the re-

gion they encompass can be calculated; this estimates

the average probability for the background region of

the bounding box. Given the area of the bounding

box Abb and the area of the orientated part Apart the

average probability for the part can be approximated

as p(zi|{xj∈pi
})col =

Fbb−µbgAbb

Apart
+ µbg . This re-

quires just 12 memory accesses of the integral prob-

ability map and is illustrated in Figure 1. The indi-

vidual likelihoods for each cue are then combined as

p(zi|{xj∈pi
}) = p(zi|{xj∈pi

})edgep(zi|{xj∈pi
})col.

Figure 1. Approximating the average probability for

an arbitrarily orientated patch, see text for details.

5. Experiments

The prior was learnt using 3D motion capture data

from all subjects and actions contained in the Hu-

manEva dataset. 200 images were then randomly se-

lected across all subjects, actions and camera views (us-

ing color cameras only) as a testing set. In each image

the root node, which corresponded to the pelvis, was

initialized using the ground truth data and the scale set

as the difference between the feet and the head. The

algorithm was then iterated ten times, under the cur-

rent Matlab implementation each iteration requires just

7 seconds of processing. The focal length is assumed

to be unknown and an orthographic projection is used.

The errors are presented as the average difference be-

tween the extracted pose and ground truth, both 3D and

2D errors are presented in Table 1. Results are shown

using different cues and as can be seen both the 2D and

3D errors improve when color cues are used in conjunc-

tion with edge cues. It is difficult to compare our 3D

reconstruction errors directly with those of others since

we use different assumptions, for example our method

uses only a single image. In comparison to discrimi-

native methods trained using only a single action type

[7] (38.0 mm) our method performs poorly. However,

learning just a single action effectively constrains the
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Figure 2. (i) Original image. (ii) Foreground probability map. (iii)-(vi) (a) Samples for left ankle (red) and right ankle

(green); (b) Samples for left wrist (red) and right wrist (green) drawn from prior for iteration 1, 4, 6 and 10 respectively. The

expected pose for each iteration is also shown. (vii) 2D expected pose as shown in (vi). (viii) & (ix) Final 3D reconstruction

viewed from different orientations. Samples drawn from the final prior are also shown.

Table 1. Pose estimation errors for 2D and 3D pose

estimation. 2D errors have units of pixels and 3D er-

rors mm. E - using edge cues, C - using color cues.

2D E 2D E + C 3D E 3D E + C

Neck 15.0 13.0 128.6 114.7

Hips 2.1 2.1 12.1 12.2

Head 21.8 17.9 212.8 195.7

Shoulders 15.5 13.2 127.5 117.8

Elbows 23.3 20.4 188.3 173.2

Wrist 47.3 44.3 331.4 311.5

Knees 10.7 10.1 117.5 115.3

Feet 18.4 16.4 202.4 197.8

mean 19.4 17.4 164.3 154.7

pose space to a single dimension (i.e. gait phase) with

strong correlations between parts. In comparison to a

monocular tracking method without an action specific

prior [9] (654 mm) we perform considerably better.

However, it should be noted that whilst in [9] the full

pose is manually initialized in the first frame, in the pre-

sented method the root position is effectively initialized

in all frames. The results we present as perhaps is ex-

pected, fall somewhere in the middle of the two and are

provided as a baseline for future work.

Figure 2 (iii)-(vi) shows the expectant pose for each

iteration and as shown they converge towards the cor-

rect solution. In Figure 2 (b)(v), it clearly shows that

the GMM is more than capable of representing multi-

modal hypotheses as seen in the sample distribution for

the left arm.

6. Conclusions

We presented a method that is capable of estimat-

ing pose from a single color image requiring mini-

mal initialization. This has been achieved by creating

strong conditional models between joints so that the

prior is more representative of the initial training data.

A method of sampling from the prior has been presented

and an EM approach was used to maximize the poste-

rior. We also have shown that HOG features are suit-

able to represent edge cues in generative approaches

and that color cues are beneficial even given uncertainty

in the class of the training data used to learn initial fore-

ground/background models. In future work we will em-

ploy a better camera model and attempt to automatically

estimate orientation, scale and the subject’s location.
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