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ABSTRACT

Facial fiducial point localization is a crucial step for most
facial analysis applications, e.g., face recognition, expression
recognition and facial aging simulation. Although state-of-
art methods have the ability to provide good salient point lo-
cation on frontal faces, finding a global solution under large
variations caused by off-plane rotations and exaggerated ex-
pression changes is still a challenge. In this paper, we present
a system with a two-level shape model to facilitate accurate
facial fiducial point localization. In the first level, two local
component models interact with each other in order to offer
novel shape constraints. At the same time, the clamped local
shape model provides constrained non-linear shape initializa-
tion for better convergence performance of the shape model as
a whole. The experimental results confirm that the proposed
method is capable of dealing with the face alignment under
large shape variations.

Index Terms— Facial fiducial point localization, Active
shape models, Discriminate texture models.

1. INTRODUCTION

Facial fiducial point localization, an important facial analysis
step, has been investigated extensively since the active shape
model was first proposed in [1]. Statistical shape models pro-
vide a suitable generic framework for the task because the size
of the search space can be reduced significantly by removing
the redundancy in the point sets. On the one hand, real-time
implementations become possible by optimizing the lower di-
mensional shape model. On the other hand, the feature points
can be located more robustly by adding shape constraints to
avoid outliers.

Many methods, such as Active Appearance Models
(AAM) [2, 3], Constrained Local Models (CLM) [4, 5],
hierachical models [6, 7] and linked statistical shape model
(LSSM) [8] have achieved reasonable performance when the
environment is controlled. The Active Appearance Model [2]
is a typical method searching for facial salient points by build-
ing combined shape and appearance models and predicting
point locations by fitting the models to the input image. In re-
cent years, local texture models have become more attractive

3513

due to their better performance when non-linear texture rela-
tionships exist between facial components. Constrained Local
Models [4] and cascade of combined shape models (c-CSM)
[7] are methods using Bayesian frameworks to integrate local
texture models with global shape model constraints. LSSM
[8] links shape variations across multiple modalities to facili-
tate concurrent segmenation of MRI and CT images. Another
popular approach is to improve the performance by using
discriminate models instead of generic models as it has been
demonstrated that discriminate models are more powerful for
evaluating the fitness of parameters on images [9, 10, 11].
For example, SVM classifiers are used in [5] to give more
distinctive scores compared to generic models.

However, the convergence performance of these methods
relies heavily on the point initialization because the optimiza-
tion process can easily terminate in a local minimum in the
global shape model. In order to achieve real-time implemen-
tation of active shape models, gradient descent based meth-
ods [2, 12, 5] and simplex optimization [4] are the most pop-
ular for finding optimal solutions. Even though the texture
fitness function is well defined in the above models, the op-
timization schemes are easily trapped into local minima be-
cause non-linear variations caused by large off-plane rotations
and exaggerating expression changes (shown in Figure 1) in-
troduce many additional minima into the search space. Al-
though sampled-based optimization methods, such as parti-
cle filtering, have been successfully employed in the shape
model framework to avoid the local minima problem [13], it
is still difficult to implement in a real-time system due to the
increasing computational complexity of the cost calculation.
Thereby, facial fiducial point localization under large shape
variations is still a challenging problem.

Non-linear correlation between different face components
is the main reason for the problem since movements of the
regions are controlled by different groups of facial muscles.
Inspired by this observation, we present a system integrating
local component shape models with a global shape model.
Due to the independent movements of mouth region and eye
region, the local component shape models decouple the lin-
ear correlations between upper and lower face regions as well
as provide spatial shape constraints based on the overlapping
fiducial facial points covered by both models (which we call
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Fig. 1. Examples of face images with large variations

clamped local shape models). Furthermore, the initialization
using these models enables the search in the global shape
model space to escape the local minima and thus achieve a
better convergence. Providing better convergence and ensur-
ing computational efficiency is the main objective of the pro-
posed system. The two-level configuration of the proposed
framework is capable of handling large pose and expression
variations with better convergence.

This paper is organized as follows. Section 2 provides de-
tails of the proposed method. The experimental results are
presented in Section 3 demonstrating the performance of the
system and future work and conclusions are drawn in Sec-
tion 4.

2. METHODOLOGY

2.1. Two-level shape models

The Point Distribution Model (PDM) [1] has been widely
used to model the shape of deformable objects, such as in [4,
10, 12]. Given a set of N points Z; = (x;, y; ), they are repre-
sented as one 2N dimensional vector S = (Z1, .0y @iy o'y TN)
which in turn can be represented as the linear combination:
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where s is the average shape, v; are the eigenvectors of the
n largest eigenvalues derived from PCA and p; represent the
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parameters in the subspace. PDM reduces the optimization
dimension significantly by considering correlations between
the points. Although the subspace has the ability to repre-
sent a large number of deformable shape variations, the linear
constraints in the lower dimensional space make it possible
for the search to converge to local minimum.

In this paper, a two-level shape model consisting of
clamped local shape models and a global shape model is
proposed to overcome the optimization problem. An intu-
itive solution to the problem is to represent the point set by
using two shape models with overlapping members. This
configuration breaks the link between the points which have
weak correlations while it still has the strong spatial shape
constraints by keeping the overlapping points as close as
possible. This is illustrated in Figure 2 (a), the search using
the global shape model converges to the local minimum and
both the feature points on the eye and mouth regions fail to
converge to a global optimal solution.

However, the search stages for the clamped local shape
models, where two PDM models are trained based on fea-
ture points from upper and lower faces, provide a better so-
Iution which is shown in Figure 2 (b). Although the conver-
gence on both models may not be perfect, due to the lack of
global shape constraints, it provides an initial parameter vec-
tor which is much closer to the global optimal solution. With
the parameter vector set as the initial position for the search in
the second level global shape model space, the method con-
verges to the global optimal solution shown in Figure 2 (c).

(a) Global

(b) Local (c¢) Combined

Fig. 2. Search results for the global shape model, clamped
local shape models and two-level shape models

2.2. Optimization function design

The optimization function for fiducial point localization is
composed of a texture cost function and a shape cost func-
tion. The texture cost function makes sure that the patches
extracted from the feature points match well with the stan-
dard face component templates, while the shape cost function
gaurantees that the algorithm converges avoiding illegal shape
varation.



2.2.1. Texture cost function

Local texture representation, based on Haar-like rectangular
features [14, 10], is extracted in a 24 x 24 rectangular patch
around each fiducial facial point. After the features are ex-
tracted, the GentleBoost algorithm [15] is used to learn a
discrimination function for providing a response score. The
patches around the manually labelled fiducial facial points in
the training dataset are set as the positive training samples for
each boosting classifier. At the same time, a number of neg-
ative samples are collected by random perturbation for the
classifier where the Euclidean distances between the ground
truth positions and the perturbed positions are greater than
5 pixels. Examples of positive patches and negative patches
sampled around the ground truth location of the left eye center
and perturbed positions are shown in Figure 3. Each classifier
provides a confidence value for how well each feature point
(in the point set defined by the shape model) is coded by the
face shape parameter vector.
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Fig. 3. Positive patches (upper row) and negative patches

(lower row) sampled around the ground truth location of the
left eye center

For the evaluation stage, given the shape parameters p, the
texture fitness function is:

TF(p)=—>_ > fumI(2:i(p))) ©)

where I represents the patch sampled from the i point z;
given parameters p from either a local shape model or a holis-
tic model. f,, represents the response value obtained from the
mt" weak classifier trained from the boosting algorithm.

2.2.2. Shape cost function

The shape cost function provides shape constraints on the op-
timization in order to avoid illegal shape variations and out-
liers. We follow the work in [4] to define the shape constraints
in the global shape model as follows:
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where k is the number of dimensions in the shape model
space, p; represent the i*" parameter and \; represent the 7"
eigenvalue.

For the clamped local shape models, we introduce a new
shape constraint term into the cost function. This term keeps
the overlapping points in the local component shape models
close to each other. As a result, the cost function can be de-
fined as:

SFtotal(puppemplower) - SF(pupper) + SF(plower)
_aD(puppera plmue'r’) (4)

where pypper and piower represent the parameters from the
local shape models, D(pupper; Piower) i the Euclidean dis-
tance between the generated overlapping points based on the
two model parameters and c is a normalizing scale.

2.3. Optimization algorithm

The simplex algorithm [4] was used to optimize the fitness
function which combined both the texture costs and shape
costs balanced by another normalizing factor 5, which is
shown in Equation. 5.

CF(p) =TF(p)+ BSF(p) (5)

A K-simplex is a convex hull of its k+1 vertices and the algo-
rithm drives the optimizing step away from the worst vertex
in the space. The efficiency of this optimization scheme gau-
rantees that the system can be delivered in a real-time appli-
cation.

3. EXPERIMENTAL RESULTS

The proposed two-level algorithm was applied to a dataset
collected at Swansea University for evaluating the perfor-
mance. There are 258 images under varying poses and ex-
pressions (examples from the dataset are shown in Figure 1).
The reason for using this dataset is that the face instances
demonstrate a high degree of non-rigid deformation which
makes the localization task more difficult than usual. A set of
35 feature points, shown in Figure 4, were manually labelled
to provide a training set and ground truth for quantitative
evaluation.

We used CLM as a benchmark to evaluate the perfor-
mance as it outperformed many state-of-the-art methods such
as AAM and Pictorial Structure Matching algorithm [16].
The cumulative error distribution criterion [4], which refers
to an accuracy curve by changing different tolerance point-
to-point error levels, was used to compare the performance
between the proposed two-level shape models and CLM[4].
The distance metric of point-to-point errors between the lo-
calization algorithm and the ground truth was defined as
follow:



Davg = — 3, (©)

where d; is the absolute Euclidean point to point error, n is
the number of feature points and s is a scale factor being the
ground truth distance between the left and right eye pupils.
At each tolerance error level, a higher percentage of conver-
gence means better performance. As shown in Figure 5, the
proposed method provides more accurate facial fiducial point
localization compared to the CLM algorithm. Given 6% dis-
placement tolerance, the proposed method converged on 90%
of images compared to 80% of images for CLM.
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Fig. 5. Cumulative distribution of point to point error com-
parison between proposed method and CLM

Figure. 6 shows some visualized results of the facial fidu-
cial points labelled by the proposed algorithm. The images
demonstrate that the algorithm converges well even under
large off-plane pose rotation, exaggerated expressions or
wearing spectacles.
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Fig. 6. Qualitative evaluations of the localization method

4. CONCLUSIONS AND FUTURE WORK

In this paper, a novel algorithm is presented to model face
shape deformations in order to locate fiducial facial points
automatically in unlabelled face images. A sequential system
with two-level shape models which combine the advantages
of local component shape models and a global model is im-
plemented for the task of efficient points localization as well
as avoiding convergence to local minima. The local compo-
nent shape models provide flexibility in searching with a new
spatial shape constraint. With the initalization from clamped
local shape models, the system achieved a better convergence
on a global shape model.

In future work, this algorithm will be used to track facial
deformations in human facial interaction sequences in order
to understand high-level semantic social conversational be-
haviors. It is believed that the better localization performance
is able to improve the analysis of human social interactions
and provides a sound base for the next generation human-
computer-interaction techniques.
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