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Abstract

Segment-wise matching is an important research problem that supports higher-level understanding of
shapes in geometry processing. Many existing segment-wise matching techniques assume perfect input seg-
mentation, and would suffer from imperfect or over-segmented input. To handle this shortcoming, we propose
multi-layer graphs (MLGs) to represent possible arrangements of partially merged segments of input shapes.
We then adapt the diffusion pruning technique on the MLGs to find consistent segment-wise matching. To
obtain high quality matching, we develop a voting step to find hierarchically consistent correspondences as
final output. We evaluate our technique with both qualitative and quantitative experiments on both man-
made and deformable shapes. Experimental results demonstrate the effectiveness of our technique when
compared to two state-of-the-art methods.

Keywords: Segment-wise matching, Mesh models, Shape analysis

1. Introduction1

Given two similar 3D meshes with pre-defined segments, 3D segment-wise matching aims to establish2

meaningful correspondences of segments between the two meshes. It is an important problem as it helps3

with higher-level and hierarchical understanding in geometry analysis Zhu et al. (2017). It further impacts4

many downstream applications, like defining better similarity measures between 3D models Kleiman et al.5

(2015); Shapira et al. (2010); Kleiman and Ovsjanikov (2017), functionality analysis van Kaick et al. (2013a),6

surface registration Huang et al. (2008) and structure-aware analysis Mitra et al. (2013).7

A few notable techniques have been proposed in the recent literature. Many of them combine topolog-8

ical and geometrical information to help solve the segment-wise matching problem. Kleiman et al. (2015);9

Kleiman and Ovsjanikov (2017) both take input shape segments and build a component graph to capture the10

topological relationship of segments. Together with geometric similarity of segments, they adapt the spec-11

tral technique Leordeanu and Hebert (2005) for matching. SHED (Shape Editing Distance) Kleiman et al.12

(2015) innovates to consider one-to-many matching whilst Kleiman and Ovsjanikov (2017) focuses on robust13

matching of non-isometrically deformed segments and disambiguating symmetric segments. Alhashim et al.14

(2015) also takes pre-defined shape segments as input and builds a component graph to represent their topol-15

ogy. To solve the segment-wise matching problem, they use a deformation energy as an effective constraint16

to produce higher-level semantic matching results. Zhu et al. (2017) builds a component hierarchical graph17

using a binary partition technique. Their matching technique adopts a top-down approach and achieves18

good results.19

We observe two problems for the methods in existing literature. First, most of these techniques rely on20

input with consistent segmentation Kleiman et al. (2015); Kleiman and Ovsjanikov (2017); Alhashim et al.21

(2015); Zhu et al. (2017). When the input segmentation is inconsistent (over-/imperfectly segmented), they22

often lead to incorrect correspondences. For example in Figure 1, the two lamps are inconsistently segmented23

(one has more segments than the other on the joint). Kleiman et al. (2015) (Figure 1a) investigates one-24

to-many correspondences and further requires full matching, i.e. every segment from one shape is matched25

to at least one segment in another shape. Affected by the different joint composition on the right lamp,26

the topology (graph distance) of the underlying component graphs differs a lot. As a result Kleiman et al.27

(2015) returns incorrect matchings (indicated by red lines). Second, correct segment-wise matching also28

depends on the global shapes and functionality. For example, in Figure 1b the upper stick of the right lamp29
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(a) SHED Matching Result (b) Our Bottom Layer Matching Result (c) Our Higher Layer Matching Result

Figure 1: Example matching of inconsistently (over/imperfectly) segmented shapes. In all figures in this paper, color of segment
indicates segment boundary only (not correct correspondences). Instead, we use blue lines for correct correspondences and red
lines for incorrect ones (according to our user study). We further use polygons with the same color to indicate one-to-merged
or merged-to-merged correspondences in our results. In this example, it is difficult to define a correct correspondence for the
middle (purple) joint of the left lamp. In our results we do not force full matching but leave it as unmatched to reduce incorrect
matching. Full matching techniques such as SHED produce incorrect matching between inconsistently segmented regions.

and the lower stick of the left lamp are over-segmented into two segments. Ideally, the left lamp’s upper30

stick should be matched to all segments of upper stick on the right lamp. This requires merging of segments31

before a meaningful consistent segment-wise matching can be established (Figure 1c). These observations32

inspire us to investigate the following research questions:33

• Can a technique that handles moderate topological changes in the underlying segment graphs improve34

matching results?35

• Can merged segments help improve the accuracy of segment-wise matching with inconsistent (over-36

/imperfectly) segmented inputs?37

• How can we develop a representation that facilitates matching of merged segments, and a technique38

for robust segment-wise matching?39

40

To address these questions, we propose to construct multi-layer graphs (MLGs) to represent the input41

shapes with inconsistent segments. Inspired by Laga et al. (2013), an MLG is a graph consisting of nodes42

with input and merged segments which is built in a bottom-up manner by neighbor merging. Different from43

Laga et al. (2013), our merging technique uses many possible combinations based on the connectivity (if44

two segments share common faces/vertices) of input segments. In this way we achieve better capability with45

over-/imperfect input segmentation than Laga et al. (2013).46

Next we find consistent matching between MLGs by adapting the diffusion pruning (DP) technique Tam47

et al. (2014b) and using both geometric and topological constraints. Inspired by spectral techniques, DP48

computes matching results by inferring global consistency from the local matching. It has been shown to49

be robust against moderate non-isometric deformation Tam et al. (2014b). It would allow us to handle50

moderate changes in graph distance due to over/imperfect input segmentation.51

Further, different from existing techniques Kleiman et al. (2015); Kleiman and Ovsjanikov (2017) that52

apply spectral matching on component graphs built from input segments only, we apply DP on the proposed53

multi-layer graphs (MLGs) consisting of both input and merged segments. Compared to Kleiman et al.54

(2015) which innovates in one-to-many matching, our technique can offer both one-to-merged and merged-55

to-merged correspondences. From our experiments, our technique produces better results than Kleiman et al.56

(2015). The obtained matching results are also consistent across layers while existing top-down approach57

Zhu et al. (2017) may fail (see Section 8). In summary, our contributions include:58

• We propose a multi-layer graph (MLG) representation to capture detailed geometric, topological and59

hierarchical information from the input and merged segments of shapes.60

• We propose a matching technique to obtain geometrically, topologically and hierarchically consis-61

tent matching results with over/imperfectly-segmented inputs. From our experiments, it outperforms62

Kleiman et al. (2015) quantitatively and qualitatively in our user study.63
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• To the best of our knowledge, this is the first technique which can obtain meaningful merged-to-merged64

segment-wise correspondences. This has not been considered before in the literature.65

To be consistent throughout this paper, we use the term “components” for semantic parts obtained from66

perfect segmentation that respect human intuition. “Segments” instead refer to regions resulted from perfect67

or imperfect segmentation. We discuss related work in Section 2. Section 3 provides an overview of our68

technique. Then we discuss the construction of MLGs from input shapes and initial matching computation69

in Section 4. Section 5 explains diffusion pruning and how to adapt it on MLGs. After that we vote the70

pruned results in Section 6. We evaluate our method in Section 7. Finally, discussions and conclusions are71

presented in Sections 8 and 9.72

2. Related Work73

Our method involves global geometry features, partial matching between shapes, and hierarchical analysis74

of shape topology. We summarize and discuss existing works related to ours below.75

2.1. Global Geometry Features76

There are many important shape features developed over the past decades. We mention some important77

features, and those that are particularly relevant in this section. We would like to refer readers to recent78

surveys Tam et al. (2013); van Kaick et al. (2011).79

Light Field Descriptor Chen et al. (2003) is one of the notable geometry descriptors. It is based on80

a set of 2D images of the input shape (captured from different angles) and use image-based features for81

measuring shape similarity. Ankerst et al. (1999) introduces a 3D shape histogram approach with sampled82

points on meshes to determine shape similarity. Osada et al. (2002) further extends 3D shape histograms into83

A3/D1/D2/D3/D4 descriptors with different random sampling based measures. Blomley et al. (2014) uses84

eigenvalues from PCA to determine shape distribution features (such as linearity, sphericity, omni-variance,85

change of curvature). These distribution-based features may be unreliable in certain cases (e.g. the left base86

and right cap have similar scores in Fig. 6). Heat Kernel based descriptors such as Heat Kernel Signature87

(HKS) Sun et al. (2009) use heat diffusion on meshes to define point-based features. Persistent-HKS Dey88

et al. (2010) extends HKS and can be used as a descriptor for partial matching of non-rigid shapes.89

Our proposed technique mainly uses LFD as it is more robust for small segments. In general, local90

features can be used to obtain initial matching, but the results are likely to be globally inconsistent. Our91

technique aims to produce consistent segment-wise matching results.92

2.2. Shape Registration and Matching93

Shape registration and point-based matching is an important research area with long history Tam et al.94

(2013). The research challenges are to develop robust and accurate techniques to handle shapes undergoing95

different real-life transforms (rigid) and deformations (non-rigid), including near-/non-isometric deforma-96

tions Kim et al. (2011). Finding subsets of sampled shape features can help form meaningful or semantic97

matching van Kaick et al. (2011). There are further many existing works, e.g. Maciel and Costeira (2003);98

Berg et al. (2005); Gelfand et al. (2005); Zhang et al. (2008) which rely on sampled/key points on input99

shapes, and then use designated objective functions to analyze alignment/distortion errors and generate100

matching. One of the notable techniques van Kaick et al. (2013b) uses deformation distortions to obtain101

semantic matching.102

Compared to other techniques that require specific constraints (e.g. sphere topology Kim et al. (2011)),103

one of the notable matching techniques Leordeanu and Hebert (2005) uses spectral analysis and has inspired104

many subsequent and useful point-based matching and registration techniques e.g. Huang et al. (2008). The105

spectral pruning technique Huang et al. (2008) assumes near-isometric deformation using global geodesic106

isometry. However, when the deformation is large (becoming non-isometric deformation), the technique does107

not perform well. Tam et al. (2014b) proposes a diffusion pruning (DP) technique to infer global consistency108

from local consistent matching. It has been shown to handle moderate non-isometric deformation well. We109
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adapt DP on multi-layer graphs to handle moderate change in topological distances in the segment graph. A110

complete literature survey of shape registration and matching techniques is beyond the scope of this paper.111

We would like to refer readers to surveys (e.g. Tam et al. (2013) and van Kaick et al. (2011)).112

2.3. Hierarchical Understanding113

Some works solve the shape matching/synthesis problem using a hierarchical approach for higher-level114

understanding. Chaudhuri et al. (2011); Kalogerakis et al. (2012); Shapira et al. (2010) use graphs encoded115

with probabilistic and topological information to solve region-wise matching or shape synthesis problems.116

Zheng et al. (2013) converts input shapes into component relationship graphs and then combines graph117

subsets with designated symmetric functional arrangement for synthesizing new shapes. Alhashim et al.118

(2015) combines component relationship graphs and deformation energy constraints to establish meaningful119

segment-wise correspondences of input shapes. Binary decomposition approaches are also used to help120

with hierarchical understanding. Wang et al. (2011) introduces a novel shape representation in a binary121

hierarchical manner which cuts a shape from-whole-to-segment hierarchically. Zhu et al. (2017) finds the best122

binary segmentation in a top-down manner, via matching along the object hierarchy and uses recognition123

measures to better handle structural variations and inconsistent initial segmentation than Alhashim et al.124

(2015). The technique however may fail in fine-grained matching because such cases lack the support of125

cross-layer information (see more discussion in section 8.) Laga et al. (2013); Pechuk et al. (2008) focus on126

merging shape parts to form a hierarchical graph representation of part-functionality with geometry and127

topological information. Inspired by all these works, we propose to build a multi-layer graph by merging128

adjacent nodes in a bottom up manner. We do not define specific constraints (e.g. functional constraint129

Zheng et al. (2013) or binary segmentation Zhu et al. (2017)). The search space we consider, compared130

to existing work, is arguably larger. To address this, we further develop a robust matching technique to131

discover meaningful segment correspondences even under inconsistent (over/imperfect) input segmentation.132

2.4. Segment-Wise Matching133

A few works in the literature focus on segment-wise matching which we survey here. Kleiman and Ovs-134

janikov (2017) relies on HKS features for pre-segmentation. It uses spectral matching to find segment-wise135

correspondences with a focus on symmetric/pairwise issues. However, it outputs pair-to-pair correspon-136

dences, and may lead to no matching if there are left-right symmetry issues. Alhashim et al. (2015) uses137

combinatorial tree search and a deformation energy constraint to establish meaningful segment-wise corre-138

spondences. One shortcoming of this method is that it may not work on fine-grained segmented shapes. Zhu139

et al. (2017) finds the best binary segmentation in a top-down manner, and matches along the object hier-140

archy. It uses recognition measures to better handle structural variations and imperfect initial segmentation141

than Alhashim et al. (2015). This method does not exploit matching from object hierarchies and may result142

in some incorrect correspondences (see also Figure 14a). SHED (Shape Editing Distance) Kleiman et al.143

(2015) takes shape segments and performs matching to define a better shape similarity measure. It innovates144

to find both one-to-one and one-to-many segment-wise correspondences, using both geometry and topology145

information. It forces full matching which means each input segment must have at least one correspondence146

to another shape, which helps resolve some ambiguities with perfect input segmentation, but when the input147

segmentation is inconsistent, incorrect matching may result.148

To our knowledge, none of the existing techniques consider inconsistent (over-/imperfect) input segmen-149

tation. Our technique is the first work to handle this challenge. Our novel idea is to use a multi-layer graph150

to represent possible merging arrangement, and carry our matching on such graphs. Together with a novel151

voting step, our results are shown to be geometrically, topologically and hierarchically consistent.152

3. Method Overview153

Figure 2 shows an overview of our proposed method for segment-wise matching with inconsistent input154

segmentation. It involves four steps, namely multi-layer graph construction (Section 4), discovery of155

anchor correspondences (Section 5), higher layer matching (Section 5.2) and voting (Section 6).156
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Figure 2: Method overview: our technique first builds multi-layer graphs to represent the input meshes from the pre-defined
segmentation. Such pre-defined segmentation may be inconsistent between two shapes. Next we adapt diffusion pruning (DP)
Tam et al. (2014b) on the bottom layer to find anchors. With the support of anchor correspondences, we apply DP again on
the multi-layer graphs to obtain initial matching. A voting technique is further applied to confirm high quality segment-wise
correspondences using matching from high layers.

Given two shapes with inconsistent segments, we build two hierarchical segment graphs (referred to as157

multi-layer graphs, MLGs) to represent the original shapes. Each input segment in a shape is assigned a158

graph node. All input segment nodes are grouped into one layer, denoted as the bottom layer. A merging159

stage is then applied to the nodes in the bottom layer to construct the MLG. It generates new nodes and160

new layers and is applied recursively until all nodes are merged into one — the original shape. After we have161

built two MLGs, we compute geometry similarities between nodes in the two MLGs for initial matching.162

Next, we adapt the diffusion pruning technique to compute good matching. There are two stages: the first163

pruning stage involves only the bottom layer in both MLGs. This is inspired by Kleiman et al. (2015) as164

SHED provides reasonable results with perfect segmentation. Only strong results are used as anchors for the165

second pruning stage. For inconsistent input with large topological/geometrical variant however, using only166

nodes in the bottom layer alone often does not provide acceptable results. The second pruning further uses167

these anchors and involves more layers than previous pruning computation. Finally, we apply our voting168

technique to extract and confirm highly confident segment matching, using correspondences in higher layers.169

4. Multi-Layer Graph and Initial Matching170

Given a shape with predefined segments, we define the multi-layer graph (MLG) as a hierarchical rep-171

resentation. It covers possible merging arrangements of segments that are adjacent in a shape. An MLG172

consists of nodes and edges. Nodes are further grouped into layers. Bottom layer (layer 1) consists of input173

segment nodes whilst higher layers consist of nodes due to merging of two adjacent nodes in a lower layer.174

Nodes in internal layers are further connected by edges indicating their adjacent connections (within layer)175

and where the nodes are merged from (across this and lower layer). The highest layer consists of only one176

node. It represents the entire shape where all segments are merged. We first define the construction of177

multi-layer graph equipped with a specific volume constraint, and then discuss the initial correspondences.178

4.1. Multi Layer Graph179

Node Construction with Volume Constraint. Precisely, let S = (V,E) be a 3D shape with sets of
vertices V , edges E and pre-defined input segments {S1, S2, S3, ...} where S =

⋃
Si is the union of vertices

⊂ V and edges ⊂ E in Si. Denote by N̄
[l]
k the kth node in the lth layer of a source shape MLG(S). We

construct the nodes of MLG(S) recursively in a bottom-up manner:

N̄
[l]
k =

{
Sk if l = 1

N̄
[m]
i ∪ N̄ [m]

j if N̄
[m]
i ∩ N̄ [m]

j 6= ∅, i 6= j, Cl−1
vol ≤ V OL(N̄ l

k) < Clvol, m < l
(1)

In this way every input segment Si is assigned a node N̄
[1]
i = Si and are grouped to form the bottom layer180

(l = 1). Higher-layer nodes are created by merging all vertices and edges in lower-layer nodes (in the same181
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Figure 3: Example of MLG construction. We use blue edges to indicate adjacent nodes in the same layer. The red dotted
lines indicate cross-layer edges. Note that merged nodes may not reside in the next layer, but a layer that satisfies the volume
constraint. We use curved yellow lines to indicate the initial matching. The affinity matrix M is computed by Equation 3.

layer) only if they are adjacent. Two nodes are adjacent if they share some vertices ⊂ V , edges ⊂ E in182

S such that N̄
[l]
i ∩ N̄

[l]
j 6= ∅. Simply merging adjacent nodes would lead to exponential growth in number183

of merged nodes. We thus define a volume constraint Cl−1
vol < V OL(N̄ l

k) < Clvol to restrict the volume of a184

node in each layer. We define the upper bound Clvol = l
LV OL(S) for each layer l, where L is the maximum185

number (a user defined parameter) of layers in MLG(S) and VOL(S) is the total volume of shape S.186

Edge Construction. Next, we define the edges of MLG(S). For every pair of nodes N̄
[l]
i , N̄

[l]
j in the same

layer l with shared vertices/edges (i.e N̄
[l]
i ∩ N̄

[l]
j 6= ∅), a within-layer or “adjacency” edge (N̄

[l]
i , N̄

[l]
j ) is

established between them. Let N̄
[l]
k = N̄

[m]
i ∪ N̄ [m]

j be an internal node which is merged from two nodes

N̄
[m]
i and N̄

[m]
j , where m < l. We establish two cross-layer or “part-of” edges (N̄

[m]
i , N̄

[l]
k ) and (N̄

[m]
j , N̄

[l]
k )

between them. That is, the edge e ∈ EMLG(S), the edge set of MLG(S), is defined as:

e =

{
(N̄

[m]
i , N̄

[l]
j ) if m = l, i 6= j

(N̄
[m]
f , N̄

[l]
k ) if m < l, i 6= j, f ∈ {i, j}, s.t. N̄

[l]
k = N̄

[m]
i ∪ N̄ [m]

j

(2)

We have tried different weights for within-layer and cross-layer edges, and found empirically that setting all187

edge weights to 1 can produce good results. We therefore use this for all subsequent experiments due to188

simplicity. An example of the construction of nodes and edges in MLG is shown in Figure 3.189

4.2. Initial Matching190

Next, we compute the geometric similarity score and generate initial correspondences. We have tried191

several techniques and found that LFD Chen et al. (2003) similarity scores perform well (even for our non-192

rigid experiments as individual segments are relatively small and close to rigid). We will use LFD similarity193

throughout this paper. We pre-compute MLG(S) and MLG(T ) for two input shapes S and T . For each194

node N̄
[u]
i in MLG(S) we pre-compute the K best matching (in terms of LFD similarity scores) of node Ñ

[v]
j195

in MLG(T ), as its initial matching (shown as the yellow lines in Figure 3).196
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5. Diffusion Pruning with Anchors197

Once the initial matching has been pre-computed, we adapt and apply diffusion pruning to obtain198

consistent matching results. We equip our technique with two pruning stages (Figure 2). The first stage199

considers input matching between nodes in the bottom layers of the two MLGs only (i.e. correspondences200

between nodes N̄
[1]
i and Ñ

[1]
j ). We treat these first-stage matching results, with high confident scores as201

anchors. In the second stage, we consider higher layers matching (i.e. correspondences between nodes N̄
[u]
i202

and Ñ
[v]
j ) in the MLG hierarchy. There are often a large number of nodes in the MLG. The first-stage203

anchors offer good constraints to the second-stage matching results.204

One of the matching problems with inconsistent input segmentation is that the underlying connectivity205

graph often shows non-isometric inconsistency in term of topological distances. The diffusion pruning206

technique Tam et al. (2014b) has been shown useful to obtain good point-wise correspondences under207

moderate non-isometric shape deformation. We thus adapt it to our use for segment-graph hierarchical208

matching. Given some initial correspondences, we construct an affinity matrix to encode both geometry209

similarity and topological consistency of initial matching. We then adapt the diffusion framework to generate210

confidence scores. Based on the scores, inconsistent correspondences are pruned in a greedy manner. We211

would refer readers to Tam et al. (2014b) for the mathematical and implementation details. Here, we focus212

on the adaptation for our segment-wise matching task.213

5.1. Affinity Matrix Computation214

Given some segment-wise correspondences C, we build an affinity matrix M of size |C| × |C|. M215

encodes both topological (MLG distance) and geometry (LFD) information. As shown in Figure 3 each216

element in M(a, b) indicates the compatibility of two segment-wise correspondences a = (N̄
[u]
i , Ñ

[v]
j ) and217

b = (N̄
[n]
x , Ñ

[m]
y ) (a, b ∈ C).218

Using local isometry to infer global consistency is a key concept in diffusion pruning Tam et al. (2014b).

For a pair of nodes N̄
[u]
i and N̄

[n]
x in the same MLG, we define the MLG distance d(N̄

[u]
i , N̄

[n]
x ) as the number

of edges in the shortest path between them. The distance models the topological (both adjacent and part-of)
relationship between segments within the MLG hierarchy. A local topological MLG region can be further

defined around a node N̄
[u]
i ∈ MLG(S) (similarly for nodes Ñ

[v]
j ∈ MLG(T )) in the MLG hierarchy as

Rδ
N̄

[u]
i

= {x|d(N̄
[u]
i , x) ≤ δD} where δ ∈ [0, 1] is a user defined threshold and D is the largest MLG distance

in an MLG. Given this, we can compute the element of matrix M . Let ma,b be the distance compatibility for
two segment-wise correspondences a, b ∈ C. We follow the normalization procedure in Huang et al. (2008);
Tam et al. (2014b) to obtain Ma,b as follows:

Ma,b =

{
ma,b−c0

1−c0 , a 6= b, ma,b ≥ c0, 0 ≤ c0 ≤ 1

GeoSim(N̄
[u]
i , Ñ

[v]
j ), otherwise,

ma,b = min

(
d(N̄

[u]
i , N̄

[n]
x )

d(Ñ
[v]
j , Ñ

[m]
y )

,
d(Ñ

[v]
j , Ñ

[m]
y )

d(N̄
[u]
i , N̄

[n]
x )

)
,

N̄ [n]
x ∈ Rδ

N̄
[u]
i

and Ñ [m]
y ∈ Rδ

Ñ
[v]
j

GeoSim(N̄
[u]
i , Ñ

[v]
j ) = |LFD(N̄

[u]
i )− LFD(Ñ

[v]
j )| (3)

Ma,b will take into account only segment-wise correspondences a and b with end-point nodes fall into219

respective local topological MLG regions Rδ
N̄

[u]
i

and Rδ
Ñ

[v]
j

Tam et al. (2014b). It further ensures c0 ≤220

ma,b ≤ 1, i.e., ma,b be at least c0 isometrically consistent Huang et al. (2008), and sparsifies M if it does221

not. Different from Tam et al. (2014b), we further encode geometric similarity in the diagonal entries Ma,a222

where GeoSim(N̄
[u]
i , Ñ

[v]
j ) is the dissimilarity score of their LFD features.223
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5.2. Diffusion Framework and Pruning224

Matrix M encodes both local geometric similarity and local topological isometric consistency information.225

The matrix is then normalized to a Markov probability matrix to model the Markov random walk for226

diffusion analysis. After this, the stationary distribution π is computed as the confidence score π(a) for a227

correspondence a. The normalisation step is essential to infer the global consistency from local topological228

isometric compatibility in MLGs. This framework is supported by the spectral graph theory Tam et al.229

(2014b). (Due to the page limits, readers are referred to Section 4.3 in Tam et al. (2014b) for detailed230

explanation.) We sort all initial matchings with descending confidence scores and examine each of them in231

a greedy manner Leordeanu and Hebert (2005); Huang et al. (2008); Tam et al. (2014b).232

In our algorithm, we apply diffusion pruning twice. In the first run, we only use bottom layers to233

obtain good correspondences (anchors). In the second run, we involve more layers in the two MLG(S) and234

MLG(T ). During the second pruning stage, we first accept anchors into result correspondences, and then235

greedily add new consistent correspondences from higher layers. The idea is supported by two observations.236

First, SHED Kleiman et al. (2015) produces reasonable results if the input contains perfect segments or237

there are some segments with high distinctive geometric scores. Our technique is similar to SHED that uses238

spectral analysis and shows similar behavior. Second, given imperfect input segmentation, our technique239

can better handle moderate non-isometric differences because of diffusion pruning. It can often find good240

and consistent matching based on local regions using just bottom layer. Given these good anchors, we can241

further constrain consistent outputs in the higher layers.242

6. Voting and Final Output243

Most of the results obtained in the previous step are useful. Still, some incorrect matching may still244

present due to the greedy pruning procedure. There are two further reasons. First, our simple topological245

distance incorporates both adjacency and part-of relationships as one measure and does not differentiate246

the two relationships. Second, nodes in higher layers often have similar shorter MLG distances, which easily247

lead to ambiguous matching. In our final step, we would like to further confirm that the pruned segment-248

wise correspondences are consistent throughout the MLG hierarchy. For example, a consistent segment-wise249

correspondence should appear as “part of” some merged-to-merged segment-wise correspondences in a higher250

layer. To confirm lower-layer correspondences using higher-layer ones, we develop a voting-prune procedure251

which is discussed below.252

Let Cdp be a set of segment-wise correspondences (e.g. Figure 4) obtained from our adapted diffusion253

pruning step (Section 5.2). We first go through each correspondence a = (N̄i, Ñj) ∈ Cdp and check against254

another correspondence b = (N̄x, Ñy) ∈ Cdp where a 6= b. If both N̄i ⊂ N̄x and Ñj ⊂ Ñy, we increment a255

vote Vote(a) for a. A correspondence a from lower layers which are consistent with higher layer correspon-256

dences will accumulate more votes. Next, we sort all a ∈ Cdp in descending order of Vote(a) and use higher257

confidence score π(a) from DP to break the tie if possible. Figure 4 shows example values of Vote(a) and258

π(a) of each correspondence at the top left and right corners of each subfigure respectively.259

Our greedy hierarchical pruning step is then carried out using the sorted list. We first accept the
first a ∈ Cdp with the highest Vote(a) into the Cvote, and remove a from Cdp. For each subsequent

b = (N̄x, Ñy) ∈ Cdp, we check ∀a = (N̄i, Ñj) ∈ Cvote if b satisfies either:

N̄i ⊂ N̄x and Ñj ⊂ Ñy or N̄i 6⊂ N̄x and Ñj 6⊂ Ñy

This step requires that the new segment-wise correspondence b is consistent with all accepted a ∈ Cvote260

or b is not seen before. We then move b from Cdp to Cvote. If b violates both constraints, it means that261

b is an inconsistent correspondence. We simply prune it from Cdp. Matchings highlighted in blue round262

boxes in Figure 4 are all accepted correspondences Cvote. Matchings highlighted in red are inconsistent263

correspondences that are pruned. In our implementation, we further use Cvote as anchors for DP (which264

sometimes improves the greedy results), and run the voting-prune step again to obtain C ′vote as the final265

output (Figure 5(b)-(c)).266
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Algorithm 1: Voting Algorithm

Input: Cdp

Output: Cvote

1: procedure Voting(Cdp)

2: for each a = (N̄i, Ñj) ∈ Cdp

3: Vote(a) ← 0

4: for each b = (N̄x, Ñy) ∈ Cdp \ a
5: if N̄i ⊂ N̄x and N̄i ⊂ Ñy then
6: Vote(a) ← Vote(a) + 1
7: end if
8: end for
9: end for

10: Cvote ← ∅
11: while Cdp 6= ∅ do

12: b = (N̄x, Ñy)← argmaxa∈Cdp
Vote(a)

13: if ∀a = (N̄i, Ñj) ∈ Cvote

14: N̄i ⊂ N̄x and Ñj ⊂ Ñy ∨
15: N̄i 6⊂ N̄x and N̄i 6⊂ Ñy then
16: Cvote ← Cvote ∪ b
17: end if
18: Cdp ← Cdp \ b
19: end while
20: return Cvote

21: end procedure

Figure 4: Voting of pruned results. The red ones are removed by
voting. Top left numbers are votes and top right numbers are diffusion
pruning confident scores.

(a) SHED Matching Result (b) Our Bottom Layer Matching Result (c) Our Higher Layers Matching Result

Figure 5: Refined matching by voting mechanism. All diffusion pruning results have been visualized in Figure 4. There are
incorrect matchings, for example, at the top right corner head-body is matched to body-tail. After voting, these incorrect
matchings are pruned (b-c). As a comparison, the SHED result is shown in (a).

This voting step, together with diffusion pruning (Section 5.2), ensures that the accepted correspondences267

are topologically and hierarchically consistent within MLGs, and their endpoint nodes are geometrically268

similar. The algorithm is detailed in Algorithm 1.269

7. Evaluation270

We evaluate our method on both rigid (man-made) and non-rigid shapes. The rigid data set is down-271

loaded from the SHED’s project page, which consists of four subsets, namely vases, airplanes, lamps and272

candles. All rigid shapes are segmented by a weakly-convex segmentation technique as mentioned in Kleiman273

et al. (2015). Our non-rigid set consists of wolf, human, horse, and centaur. We use the consistent segmen-274

tation results from Huang et al. (2011) and further manually over-segment those shapes to provide initial275

inconsistent segmentations for our evaluation. With these inputs, we use SHED Kleiman et al. (2015) and our276

proposed technique to compute segment-wise correspondences, and evaluate both techniques qualitatively277

(visual examples) and quantitatively (precision).278

To our knowledge, there is no existing ground-truth dataset for segment-wise matching. For high-level279

matching, there is a certain degree of human subjectivity involved. For example in Figure 1b, the purple joint280

on the left lamp has only one segment, but there would be many possible correct matching segments (e.g.281

all or one of the unmatched segments) on the right lamp. Even a no matching as shown in Figure 1b-1c can282

be a correct choice. To provide a fair evaluation, we recruited three volunteers (one sculptor, two musicians)283

from non-computer science background to carry out the annotations. We informed all volunteers that their284

annotations should be based on their own intuition of meaningful/reasonable correspondences with respect285

to the shape and segments. In this way each correspondence produced by Kleiman et al. (2015) and our286

technique is given a correct or wrong label. We use a majority vote in cases where there is a discrepancy.287

These are used to compute the precision and to indicate correct or incorrect matchings in all figures. For288
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(a) SHED Matching Result (b) Our Bottom Layer Matching Re-
sult

(c) Our Higher Layer Matching Result

Figure 6: Near-consistent segmentation matching result. Our method outputs meaningful matching at upper and lower sticks.
There is a large variation between the two bases and our method does not match them.

(a) SHED Matching Result (b) Our Bottom Layer Matching Re-
sult

(c) Our Higher Layer Matching Result

Figure 7: Comparison results of candles with inconsistent segmentation. As shown in green polygons our method can match
body segments in a meaningful way.

all visualized figures, segment colors are only used to show distinct boundaries of segments, rather than289

matching correctness. Blue (red) lines indicate correct (incorrect) segment-wise correspondences. We further290

use colored polygonal lines to indicate our one-to-merged / merged-to-merged segment-wise correspondence291

results.292

7.1. Rigid Shapes293

We have tried HKS Sun et al. (2009) and persistent HKS Dey et al. (2010) but they cannot produce294

distinct similarity scores for MLG nodes. Similarly, PCA Blomley et al. (2014) and D1/D2 Osada et al.295

(2002) distributions occasionally produce incorrect scores. In this paper we use LFD Chen et al. (2003) to296

generate geometry similarity scores for segments, since it performs well in our experiments.297

In this section we evaluate our method on rigid shapes. We first test our method on shapes with298

near consistent input segmentation, and then with inconsistent input segmentation. Our evaluation mainly299

focuses on inconsistent segmentation which is the focus of this paper.300

7.1.1. Near-consistent Input Segmentation301

In Figure 6 two lamps have similar input segmentation except some small over-segmented pieces in the302

stand and cap joint. Figure 6a shows that SHED mismatches the base of the left lamp to the right lamp’s cap.303

The mismatch is caused by a good geometry similarity score due to D1/D2/volume computation between304

the base (left lamp) and cap (right lamp). Further, both segments are located at the endpoints of their305

respective component graphs with similar topological distances to the rest of the nodes. As both geometric306

and topological information is very similar, SHED outputs an upside down matching. The volunteers307
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consider the result as a mismatch. Our technique shows reasonable correspondences, with many one-to-308

merged segment-wise correspondences (Figure 6b-6c). For example in the left lamp, the small red piece309

above the cap joint, and the small purple piece in the lower stand are merged with respective larger piece in310

the matching results. Further, our technique is able to solve the upside down ambiguity because the one-to-311

merged segment-wise correspondences offer better geometric, topological and hierarchical consistency. The312

base is not matched because their geometry (LFD features) differs a lot.313

In Figure 7, we show another example where the upper candlestick is near-consistently segmented, but314

the lower base is highly over-segmented. It is a challenging case because the base contains six inter-connected315

segments making the component graph very complex. Though SHED is able to obtain a one-to-many base-316

to-base matching, it also badly mismatches both candlesticks to the bases. Our technique is able to discover317

candlestick matching in a reasonable manner without any incorrect matching. It does not discover the one-318

to-merged base matching because it requires merging of all six segments to form the base which is beyond319

the number of layers we consider for the example (see Section 7.3).320

7.1.2. Inconsistent Input Segmentation321

(a) SHED Matching Results (b) Our Bottom Layer Matching Results (c) Our Higher Layers Matching Results

Figure 8: Lamp matching results with large topological variation. Our method can find consistent matching with no mismatched
correspondences.

Matching with large difference in number of nodes322

Figure 8 shows an example with large topological variation. The number of segments in the left lamp323

is almost two times more than that of right lamp. SHED’s one-to-many results are mostly good, but324

mismatches still appear. For example, the lower stick in the left lamp is adjacent to the base, but it is325

mismatched to a node in the right lamp which is not adjacent to the base. Our volunteers consider the326

matching incorrect. Our technique considers merged nodes in higher layers. It finds consistent matching327

on the left branch of the left lamp. Caps and bases are matched with two one-to-one correspondences,328

whilst the main stick is matched with a merged-to-merged correspondence. In this way we match all stick329

segments consistently, and avoid incorrect matching. Our technique does not offer one-to-many matching330

and thus no matching is obtained for the right stick (which is plausible). Our method may be extended331

to produce matching to the right lamp by first removing matched nodes and re-applying our technique (as332

demonstrated in Tam et al. (2014a) for discovering point-wise correspondences of multiple parts).333

Matching with inconsistent input segments and loops334

Figure 9 shows another challenging candle example with inconsistent over-segments and loops. SHED335

matches many segments incorrectly. These incorrect matchings are largely influenced by the topologically-336

adjacent correct matchings. However, by using geometric and topological information alone, it is not suf-337

ficient to find good matching. Our technique discovers many reasonable matchings with merged nodes in338

higher layers which are consistent with human intuition. The loop handle is very challenging as it consists339

of many small pieces. Note that both SHED and our technique cannot resolve symmetry issue. Therefore,340

both SHED and our technique have some matchings that are controversial. For example, SHED returns341

many one-to-many matchings in the loop handle (Figure 9a). Our technique obtains a matching from the342

lower piece of the loop to the upper piece of the loop handle (in Figure 9b, and similarly upper piece to343

lower piece matching in the loop in Figure 9c). Our volunteers independently consider them (both SHED’s344

and ours results) correct because they are part of the handle (due to functionality). Having said that, our345

technique discovers the loop pieces in a upside down, but consistent manner.346
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(a) SHED Matching Result (b) Our Bottom Layer Result (c) Our Higher Layer Result (d) Our Higher Layers Result

Figure 9: Matching results of candles with inconsistent segmentation. For challenging segments our method matches them in
higher layers to avoid incorrect correspondences. We show all higher layers results in two sub-figures (c) and (d) for clarity
purpose.

(a) SHED Matching Result (b) Our Bottom Layer Result (c) Our Middle Layers Result (d) Our Higher Layers Result

Figure 10: Matching result comparison for shapes with large topological variation and loops. We show all higher layers results
in two sub-figures (c) and (d) for clarity purpose.

Figure 11: Segment graphs of two lamps.

347

Matching with multiple loop structures348

Next, we focus on a more challenging example. Figure 10 shows349

the matching between two lamps with highly inconsistent input350

segmentation. In particular, the crossbeam and T-shaped segment351

(adjacent to the crossbeam) exist only in the right lamp. SHED352

tries to find one-to-many matchings for all segments. Though it353

can find some good matchings, it also returns many incorrect ones354

(Figure 10a). Note that in the left stand (left lamp), the upper355

segment is inconsistently matched to the left and right stand (right356

lamp). The results can be explained by the segment graphs in357

Figure 11 as both segment graphs contain cycles. The crossbeam acts as a shortcut edge and creates another358

shorter cycle. This shorter path significantly distorts the topological distance on the segment graphs, leading359

to the inconsistent matchings in SHED.360

Figure 10b shows that our technique obtains more reliable one-to-one matchings in the right stand. For361

the left stand, nodes are merged in the higher layers in the MLG graph (green circles in Figure 11). One-362

to-merged and merged-to-merged segment-wise matchings are resulted (see also the brown, blue and purple363

polygons in Figure 10c-10d). Since our technique looks for geometrically, topologically and hierarchically364

consistent matching, the crossbeam is not matched. The volunteers find our result reasonable.365

7.2. Non-Rigid366

In the literature, some segment-wise matching techniques do not support non-rigid shapes (e.g. Alhashim367

et al. (2015); Zhu et al. (2017)). We further evaluate if our technique can support them. We have tried368
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(a) SHED Matching Result (b) Our Bottom Layer Result(c) Our Higher Layers Result

Figure 12: Non-rigid matching comparison with consistent segmentation.

(a) SHED Results (b) Our Bottom Layer (c) Our Higher Layers

Figure 13: Non-rigid matching comparison with inconsistent segmentation.

some geometric features designed for non-rigid shapes (e.g. HKS Sun et al. (2009), Persistent HKS Dey369

et al. (2010)) but they do not provide distinctive geometric measures. Therefore, we use LFD in these370

experiments. Both SHED and our technique are built on top of component/segment graphs, and are not371

designed to handle symmetry issue — both cannot differentiate left or right. In non-rigid shapes symmetry372

is common. We thus consider matching say, left arm to right arm (or vice versa) as correct, as long as the373

whole arm (every segments in the arm) is consistently matched. Such symmetry issues could be addressed374

by incorporating a symmetry detection technique to resolve ambiguities.375

Figure 12 demonstrates one human example with consistent input segmentation. In our technique, the376

non-rigidly deformed hands are not matched due to no initial correspondences (low LFD scores). LFD377

are defined mostly for rigid shapes only. In our result, hand and arm merged-to-merged matching can be378

obtained in higher layers because initial correspondences are available (merging hand and arm offer good379

LFD scores). We do not obtain matching for lower legs because of the volume constraint defined in the380

MLG (see section 4) where the leg (for the left human) is moved into higher layer for one of the shapes. It381

can be easily solved by relaxing the topological consistency thresholds c0. We argue that our technique still382

performs reasonably well in this example despite of the LFD issue.383

Figure 13 shows a horse example with inconsistent input segmentation. Our technique is able to obtain384

accurate matching under inconsistent input segmentation in legs and body. Note that under symmetry,385

front legs to back legs matching in both SHED and our techniques are considered correct. In Figure 13b our386

method outputs 1 incorrect result between tails. This is caused by LFD scores are highly similar. However,387

SHED often mismatches leg to tail or head. The volunteers consider them incorrect.388

7.3. Quantitative Evaluation389

We further evaluate our technique on large rigid and non-rigid datasets. Our method outputs matching390

of higher layers. There is no ground truth dataset, so volunteers have to manually examine each output391

matching to compute precision rate — it is a time consuming process. It is also not possible for us to392

enumerate all higher layer matching. For example, a shape with 14 segments can lead to 500+ internal393
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Rigid MLG SHED pairs layers
lamps 85.2% 76.7% 30 8
vases 86.0% 63.0% 20 4

candles 86.2% 71.3% 11 4
planes 83.5% 60.8% 11 8
average 85.3%(1.2) 69.6%(7.4)

Table 1: Precision (std. dev.) on rigid (man-made) set.

Non-Rigid MLG SHED pairs layers
wolf 97.2% 59.0% 3 8

human 83.3% 62.7% 7 8
horse 85.3% 81.6% 6 8

centaur 90.9% 67.5% 4 8
average 87.5%(6.2) 68.8%(9.9)

Table 2: Precision (std. dev.) on non-rigid set.

nodes in the MLG depending on their topology. It is simply too laborious and time-consuming to annotate394

all of them. Therefore we do not evaluate on recall rate. Following Kim et al. (2011) we randomly select395

pairs of shapes from each set and annotate the output. The whole annotation process takes several weeks396

to finish among all three unpaid volunteers. In our experiments, we use fixed parameters for all pairs in a397

set (similar to Kleiman et al. (2015)).398

For the rigid set, we use the following parameters for the adapted diffusion pruning to compute anchors:399

local distance δ1 = 0.2 and LFD threshold is 0.8. The second run of diffusion pruning uses δ2 = 0.8 and LFD400

threshold = 0.8. For both runs, the number of initial matching for each node K is set to 7; the threshold in401

diffusion pruning is set as default c0 = 0.7 (Tam et al. (2014b)). For the non-rigid set, the values of δ1 = 0.8402

and δ2 = 0.2 and other parameters stay the same as the rigid set.403

The only parameter we adjust is the number of layers in MLG construction. We use eight layers in lamp404

and plane sets, and four layers for vase and candle sets. The reason is that there are too many internal nodes405

in the constructed MLGs with eight layers. Reducing the number of layers to four still provides reasonable406

results. All shapes in non-rigid sets have eight layers.407

All quantitative results are shown in Tables 1 and 2, and are based on 72 pairs of rigid shapes and 20408

pairs of non-rigid shapes. Our method outperforms SHED in all cases. For both rigid (man-made) and409

non-rigid sets, our technique outperforms SHED in precision with lower standard deviation. The lower410

standard deviation further shows the stability and robustness of our technique.411

Our annotation focuses on the outputs of the two techniques. We plan to release the annotation results412

and codes to the research community, for inspection, comparison and downstream applications.413

8. Discussion414

(a) (b) (c) (d)

Figure 14: (a) is from Zhu et al. (2017). (b)(c)(d) are our method matching results.

Here, we further provide a brief comparison of our technique with the state-of-the-art Zhu et al. (2017).415

Figure 14a shows the matching result of two chairs (image courtesy of Zhu et al. (2017)). In the figure, the416

red side panels are mismatched to the front panels between chairs. The technique proposed in Zhu et al.417

(2017) is a top-down matching technique assuming perfect input segmentations. The technique seeks the418

best split along the component tree. To our knowledge, it does not use higher layer matching to support419

lower layer matching which would have solved the mismatch.420

We tried our technique on the same set of chairs by manually labeling the left (right) chair into 10 (12)421

segments, according to the initial segmentation as shown in Figure 14a. We then apply our technique using422
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(a) Results of changed δ (b) Results of changed c2 (c) Large difference in shapes

Figure 15: Results from adjusting different parameters, compared to Figure 10. The δ1 used in (a) is 0.5 (anchor stage) and
0.7 (final stage) - note the symmetric issue, (b) uses the same δ as (a) and further reduce threshold c2 to 0.2. (c2 is a threshold
used in diffusion pruning for greedy pruning.) Here, relaxing c2 leads to only higher layer matchings. (c) shows our method
performs poorly when the inputs have large topological and geometrical difference.

our two-stage diffusion pruning (DP) with a 2-layer MLG for each chair. We only use 2 layers because the423

chair is highly complex with high connectivity for each segment. If we use 3 or more layers, the number of424

internal nodes grows to 1000+ which is too slow to compute. Due to the lack of high-layer nodes, we cannot425

apply our voting step. However, simply using the proposed two-stage DP step yields perfect matching result426

(Figure 14b-14d). This answers our research question that considering merged nodes in the MLG hierarchy427

can improve matching results. As the source codes and data for Zhu et al. (2017) is not available, further428

comparison is not possible. Having said that Zhu et al. (2017) cannot support non-rigid shapes, and assume429

consistent input segmentations. Our technique is comparatively more flexible. It can handle non-rigid shapes430

and inconsistent input segmentations.431

There are limitations in our technique however. One issue is the sensitivity to the right parameters.432

Figure 15 compares the results in Figure 10 with different parameters. In Figure 15a, we tighten the δ1433

threshold (i.e., use smaller local isometric disk). Though the volunteers consider the results correct, it leads434

to more local matching and cannot avoid the symmetry issue. In Figure 15b we further reduce c2 (a threshold435

used in Tam et al. (2014b) for the last greedy pruning step), the matching results all shift to higher layers,436

with no bottom-layer one-to-one correspondences found. Figure 15c further shows that our technique do437

not perform well when the input shapes have large difference in topology and/or geometry.438

Our current unoptimised code is too slow to handle shapes with a large number of input segments. There439

is an exponential growth in the number of possible internal nodes in MLG, with respect to the number of440

input segments. We constrain the MLG using volume, but it can sometimes miss some matchings (e.g.441

the leg in Figure 12). In the future, we hope to develop a more robust hierarchical representation than442

MLG to reduce the search space. Another direction is to incorporate our bottom-up idea into a top-down443

approach Zhu et al. (2017). Further, our technique consists of quite a few parameters. Although most of444

them are fixed to default settings, we plan to develop a more robust technique and make it more generic to445

a large variety of input shapes and inconsistent segmentations.446

In the future, we are going to use better geometrical features to enhance our matching techniques. We447

also need to condense the size of MLG, which means a better merging technique is necessary. Based on the448

simplified MLG we can further investigate the convergence property of our technique.449

9. Conclusion450

In this paper, we propose a novel segment-wise matching technique that can handle shapes with inconsis-451

tent (over-/imperfect) input segmentation. Our idea is to greedily optimize matchings that are geometrically,452

topologically and hierarchically consistent. To do so, we develop a multi-layer graph (MLG) representation453

to store the possible merging arrangement of segments. Apart from geometric and topological consistency,454

we explicitly seek consistency in the hierarchical segment merging space. Experimental results demonstrate455

the effectiveness of our technique when compared to two state-of-the-art methods.456
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