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Abstract: In this paper, we propose a novel level set based active contour model to segment textured images. The pro-
posed methos is based on the assumption that local histograms of filtering responses between foreground and
background regions are statistically separable. In order to be able to handle texture non-uniformities, which
often occur in real world images, we use rotation invariant filtering features and local spectral histograms as
image feature to drive the snake segmentation. Automatic histogram bin size selection is carried out so that
its underlying distribution can be best represented. Experimental results on both synthetic and real data show
promising results and significant imporvements compared to direct modeling based on filtering responses.

1 INTRODUCTION

Active contours have been increasingly used in ana-
lyzing textured images, e.g. (Sandberg et al., 2002;
Ni et al., 2007; Houhou and Thiran, 2008; Savelonas
et al., 2008). Despite recent advances in edge based
approaches, e.g. (Paragios et al., 2004), region based
approaches have some obvious advantages when an-
alyzing heavily texture images in that edge based
boundary description can easily be compromised by
texture patterns. Region based approach generally
deforms initial contours towards the region/object
boundaries of interest by minimizing an energy func-
tion, whose minimum ideally collocates with those
boundaries. Thus, it is vitally important to use robust
features and region indication/separation functionals.

Various features have been investigated in the con-
tour segmentation framework, such as co-occurrence
matrices (Pujol and Radeva, 2004), structure ten-
sor (Rousson et al., 2004), and local binary patterns
(Savelonas et al., 2008). However, filtering responses
are among the most popular approaches, e.g. (Para-
gios and Deriche, 2002; Sandberg et al., 2002; Au-
jol et al., 2003; He et al., 2004; Sagiv et al., 2006).
In (Sandberg et al., 2002) the authors decompose the
image using Gabor filters. The collected filtering re-
sponses at each pixel are used to measure the differ-

ence between pixels in a piecewise constant model.
However, it largely ignores the spatial distribution
among local filtering coefficients and this direct com-
parison of filter responses is error prone since the re-
sponses can be misaligned due to the anisotropic na-
ture of most of the filters. Wavelet packet transform
is used in (Aujol et al., 2003) and the energy distribu-
tions in sub-bands are used to characterize textures.
One of the main difficulties in dealing with filtering
responses is their large dimensionality. It is also chal-
lengin to handle textural variations within regions of
interest due to, for example, rotation or view point
changes, since most of the filters are orientation sen-
sitive.

Once the features are derived, one also needs to
decide how to model their distribution so that correct
features are included in describing the object of inter-
est. In other words, this modeling provides a region
indication or separation functional to drive the active
contours. Modeling based on global distribution is a
popular approach. For example, in (Paragios and De-
riche, 2002; He et al., 2004) Mixture of Gaussians are
used to model the image features. Another powerful
approach is based on the piecewise constant assump-
tion (Chan and Vese, 2001). It also has been recently
asopted in texture segmentation, e.g. (Sandberg et al.,
2002; Sagiv et al., 2006; Ni et al., 2007). However,



how to cope with texture inhomogeneity is a major
challenge.

2 PROPOSED APPROACH
In this paper, we propose a novel region based ac-
tive contour model, which is based on the assump-
tion that local histograms of filtering responses be-
tween object of interest and background regions are
statistically separable. Briefly, we first apply a bank
of filters to the image, from which we have a set of
filter responses at different scales and orientations.
These responses are then grouped and condensed so
that it can handle textural non-uniformity which may
occur in real world images. Reduced, invariant fea-
tures are thus obtained. This process also effectively
decreases the dimensionality of filter feature space,
which is beneficial for single image segmentation.
We then collect local distributions of these features
at each pixels, known as local spectral histograms.
These local histograms contains not only directly fil-
tering responses but also their spatial distributions in
their local neighbourhoods. The optimal bin size for
these histograms are obtained by minimizing a mean
integrated square error based cost function. An en-
ergy minimization problem is thus formulated by fit-
ting two spectral histograms, one of which is used to
approximate the foreground region and the other for
the background. We will show that this approach is
effective to handle texture inhomogeneity, compared
to, for example, direct modeling based on filtering re-
sponses (Sandberg et al., 2002) or local intensity dis-
tributions (Ni et al., 2007).

Next, Section 2.1 describes the filter bank and ro-
tation invariant feature selection. Local spectral his-
togram extraction is presented in Section 2.2 and au-
tomatic optimal histogram bin size computation is
given in Section 2.3. Finally, Section 2.4 introduces
the level set based sbake model using these invariant
features for image segmentation.

2.1 Filters and Feature Selection
Texture provides important information for recogni-
tion and interpolation. Numerous techniques have
been reported in the literature to carry out texture
analysis. They can be generally categorized in four
ways: statistical approaches, structural approaches,
filter based approaches, and model based approaches.
Filter bank based approaches have been very popular
since they can analyze textures in arbitrary orienta-
tions and scales and have been strongly motivated by
psychological studies of human vision system.

However, filter bank based methods often result
in high dimensional feature space which can be diffi-

Figure 1: The filter bank consists 38 filters in total, which
include one Gaussian filter, one Laplacian of Gaussian fil-
ter, and 36 edge and bar filters across 6 orientations and 3
scales.

Figure 2: An example testing image.

cult to handle for certain applications. Unlike image
classification, in snake based image segmentation, we
may not have enough features extracted from a sin-
gle image to populate the high dimensional feature
space in order to accurately estimate the underlying
feature distributions. Moreover, there are usually sig-
nificant amount of redundant information among the
filtering responses. For example, a set of anisotropic
filters will get the same responses from isotropic im-
age regions. Fig. 1 shows a bank of filters which
has been used in (Varma and Zisserman, 2002) for
image classification. It contains two isotropic filters
and thirty six anisotropic filters. The two isotropic
filters are Gaussian and Laplacian of Gaussian both
with σ = 10. Those thrifty six anisotropic filters
come from two families, edges and bars, each of
which consists filters at three progressive scales, i.e.
(σx,σy) = {(1,3),(2,6),(4,12)}, and six uniformly
spaced different orientations. This moderate size filter



Figure 3: Filter responses.

bank will produce a thirty eight dimensional feature
space, which considerable large for features extracted
from a single image to populate. Fig. 3 gives the
filter response images of the example image shown
in Fig. 2. It is evidently clear that there are certain
correlations among these filter responses and not all
the channels are effectively revealing the image struc-
tures. Thus, it is natural to condense the feature space,
which is particularly desirable for our application.

It is also worth noting that object in the scene may
have inhomogeneous textures due to, for example,
perspective projection. This inhomogeneity will ex-
hibit nonuniform responses after applying directional
filters, e.g. animal stripe texture (see zebra example
in Fig. 7) and brick wall texture (see Fig. 8). Rotation
invariance is thus desirable in such circumstance. We
follow (Varma and Zisserman, 2002) to condense the
filter responses by collecting only the maximum fil-
ter response across all the six orientations, i.e. those
thirty six directional filter responses are reduced to
six. Alternative methods, such as steerable filters (Ja-
cob and Unser, 2004) can also be used. Thus, this not
only reduces the dimensionality of the feature space
but also simultaneously improve rotational invariancy.

Instead of applying convolution operators, the recur-
sive technique (Geusebroek et al., 2003) is used to ef-
ficiently filter the images. Fig. 4 shows the collected
maximum responses from those thirty eight filter co-
efficients. Note the isotropic filter responses are re-
main unchanged since they are inherently rotationally
invariant.

2.2 Local Spectral Histogram

vso The filtering responses can be directly used to
drive the active contours as in, for example, (Sand-
berg et al., 2002). However, we can further incor-
porate local spatial dependency of filtering responses
by computing the marginal distributions of filter re-
sponses over a local window. Thus, it captures lo-
cal pixel dependency through filtering and global pat-
terns through histograms. Local spectral histogram
has been found useful, for example, texture classifi-
cation (Liu and Wang, 2003). The maximum filter
responses are largely local dominant features, such as
edges and bars (e.g. see 4). Their spatial distribu-
tion conveys important information regarding the na-
ture of the texture. Misaligning of filter responses due



Figure 4: Maximum filter responses - The first row shows
the filter responses from the isotropic Gaussian and Lapla-
cian of Gaussian are kept the same. The rest six filter re-
sponses are collected from the 36 directional (isotropic)
filter responses. Each of them contains the maximum re-
sponses across 6 different orientations (i.e. the six rows of
the directional filter responses in Fig. 3 are collapsed into
six rotational invariant filter responses).

to inhomogeneity of filter responses can be a serious
problem for direct approaches. Using local spectral
histogram further enhances our model in dealing with
texture inhomogeneity and helps to produce more co-
herent segmentation. Fig. 8 provides an example
where directly using filter response and without tak-
ing into texture inhomogeneity resulted in a very poor
segmentation, while as the proposed method correctly
segmented the foreground object from the texturally
nonuniform background.

Let W denote a local window and W(α)(x) a max-
imum filter response patch centered at x, where α =
1,2, ...,8. Thus, for W(α) the histogram is defined as
(Liu and Wang, 2006):

P(α)
W (z1,z2) = ∑

x∈W

∫ z2

z1

δ(z−W(α)(x))dz, (1)

where z1 and z2 specify the range of the bin. The spec-
tral histogram is then defined as:

PW =
1
W

(
P(1)

W ,P(2)
W , ...,P(8)

W ,
)
. (2)

Example spectral histograms extracted from the test-
ing image can be found in Fig. 6.

Very recently in (Ni et al., 2007), local image
intensity histogram was used to in the Chan-Vese
model. However, this method may have difficulties in
dealing with highly textured images where intensity
alone is not sufficient to describe the texture. Inten-
sity variation, for example, due to illumination varia-
tion can also cause severe problems. A comparative
example is given in 9 where the best result reported in
(Ni et al., 2007) is still significantly less accurate than
the proposed approach.

2.3 Deducing Optimal Bin Size

Although histogram based have been routinely used
various image processing tasks, the importance of au-
tomatically selecting appropriate histogram bin size
has been largely ignored. However, if a too small
bin size is selected, the frequency value at each bin
will suffer from significant large fluctuation due to the
paucity of samples in each bin. On the other hand, if
the bin size is chosen too large, the histogram will not
be a good representation of the underlying distribu-
tion. Thus, it is necessary to select optimal bin size. It
also avoids the practical issues associated with man-
ual parameter tunning.

We follow the method in (Shimazaki and Shi-
nomoto, 2007) to estimate the optimal bin size. Let
us consider a histogram as a bar graph. Also, let ∆
denote the bin size and Z the range of the coefficients.
The expected frequency for s ∈ [0,∆] is:

θ =
1
∆

∫ ∆

0
λsds, (3)

where λs is the underlying true frequency which is not
known. The goodness of fit of the estimated λ̂s to λs is
measured according to mean integrated squared error
(MISE):

MISE =
1
∆

∫ ∆

0
⟨E(θ̂−λs)

2⟩ds, (4)

where E denotes expectation and the empirical bar
height θ̂i ≡ ki/∆ (ki is the frequency count for ith bin).
The associated cost function is then defined as:

O(∆) = MISE− 1
∆

∫ ∆

0
⟨(λs −⟨θ⟩)2⟩ds. (5)

The second term represents a mean squared fluctua-
tion. By assuming the number of events counted in
each bin obeys a Poisson distribution, the cost func-
tion can be written as:

O(∆) =
2
∆
⟨Eθ̂⟩−⟨E(θ̂−⟨Eθ̂⟩)2⟩. (6)

The optimal bin size thus is obtained by minimizing
the above cost function, i.e.

∆̂ = argmin
∆

O(∆). (7)
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Figure 5: Optimal bin size selection - left: A typical spectral histogram for a single maximum response filter; right: The plot
shows the relationship between the MISE based cost function and bin size (the red cross indicates the optimal bin size with
the lowest MISE value).

Thus, the testing image is first filtered through the
bank of isotropic and anisotropic filters and their re-
sponses are condensed into eight channels. Before
generating the local spectral histograms at each pixel,
global spectral histograms for every eight channels
are produced. Then, this optimal bin size selection
for each channel is taken place, based on which lo-
cal spectral histograms are computed. Fig. 5 gives an
example of optimal bin size computation.

2.4 Active Contour based on
Wasserstein Distance

The snake based segmentation can be viewed as a
foreground-background partition problem (in the case
of bi-phase). The snake evolves in the image domain,
attempting to minimizing the feature similarity for
those inside and outside the contours. Meanwhile, it
tries to minimize the feature difference for those that
are belong to the same region. Thus, we can formulate
our snake based on the piece-wise constant assump-
tion (Chan and Vese, 2001; Ni et al., 2007). However,
since we are using invariant image features and local
spectral histograms, the proposed method can cope
with texture inhomogeneity much better (see Figs. 8
and 9 as comparative examples).

Let Ω be the image domain, Λ+ denote the re-
gions inside the snake (foreground) and Λ− those out-
side the snake (background). The snake segmentation
can be achieved by solving the following energy min-
imization problem:

inf
Λ+

E(Λ+) =αL(Λ+)

+
∫

Λ+

D(P(x),P+)dx (8)

+
∫

Λ−
D(P(x),P−)dx,

where α is a constant, L denote length, D is the met-
ric which measures the difference between two his-

tograms, and P+ and P− are the foreground and back-
ground spectral histograms to be determined. The
first term is the length minimization term which regu-
larize the contour. The next two terms are data fitting
terms, which carry out the binary segmentation.

Among many other candidates, such as χ2 dis-
tance and normalized cross correlation, The Wasser-
stein distance (also known as the earth mover’s dis-
tance) (Rubner et al., 1998) is used to compute the
distance between two normalized spectral histograms.
since it is a true metric (unlike χ2 distance) and has
been found very useful in various applications, e.g.
image retrieval (Rubner et al., 1998). Let Ha(y) and
Hb(y) be two normalized spectral histograms. The
Wasserstein distance between these two histograms is
defined as:

D(Pa,Pb) =
∫

T
|Fa(y)−Fb(y)|dy, (9)

where T denoted the range of the histogram bins, and
Fa and Fb are cumulative distributions of Pa and Pb,
respectively.

The level set method is implemented to solve
this energy minimization problem so that topological
changes, such as merging and splitting, can be effec-
tively handled. Let ϕ denote the level set function.
The foreground is identified as Λ+ = {x ∈ Ω : ϕ(x)>
0}, which can be computed using the Heaviside func-
tion, i.e.

∫
Ω H (ϕ)dx where H is the Heaviside func-

tion. The level set formulation can be expressed as:

inf
Λ+

E(Λ+) =α
∫

Ω
|∇H (ϕ)|dx

+
∫

Ω
D(P(x),P+)H (ϕ)dx (10)

+
∫

Ω
D(P(x),P−)(1−H )(ϕ)dx

The regularized Heaviside function proposed in
(Chan and Vese, 2001) is used to allow larger support
in the vicinity of the zero level set so that the contours
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Figure 6: The average local spectral histogram inside and outside the snake - top: These two histograms are largely over-
lapping each other; bottom: It clearly shows the difference between the histograms when the snake converged to the object
boundaries.

can be initialized anywhere across the image (e.g. see
Fig. 7):

Hε(z) =
1
2

(
1+

2
π

arctan(
z
ε
)

)
. (11)

Thus, minimizing E with respect to ϕ gives us the
following partial differential equation:

∂ϕ
∂t

= δ(ϕ)
[
α∇ ·

(
∇ϕ
|∇ϕ|

)
− (D(P(x),P+)−D(P(x),P−))

]
= δ(ϕ)

[
α∇ ·

(
∇ϕ
|∇ϕ|

)
−

∫
T
|Fx(y)−F+(y)|dy

+
∫

T
|Fx(y)−F−(y)|dy

]
, (12)

where δ(x) = d
dx H (x), F+ and F− are the spectral cu-

mulative histogram inside and outside the contours,
respectively. The minimization process thus moves
the contours towards object boundaries through com-
peting pixels by measuring the similarity of local cu-
mulative spectral histogram with those inside and out-
side current foreground.

Fig. 6 shows an example of spectral histogram
changes between the initial stage and the stabilized
result. The corresponding segmentation result can be
found in the first row of Fig. 7.

3 RESULTS
The proposed method have been tested on both syn-
thetic and real world images. Fig. 7 shows some
typical examples results obtained using the proposed

method. The first row shows the result of the run-
ning example given earlier. Good segmentation was
achieved despite the large variations in the body re-
gion. In the second example, reasonable result was
obtained, missing some very fine and thin structures.
In the third example, there are clearly texture orienta-
tion variations. In the last two rows, the initial snakes
were placed outside the objects of interest but still
managed to localize them. Particularly, in the last ex-
ample, there are significant texture variations both in
foreground and background regions, which made it
very difficult to segment.

In Figs. 8 and 9, we mainly compare our work
with two extensions of the piece-wise constant model,
which is also our fundamental model. Fig. 8 demon-
strates when dealing with inhomogeneous textures,
the proposed method performs significantly better
than that directly using filter responses (Sandberg
et al., 2002). The proposed method also showed im-
provements against a very recent method based on lo-
cal histograms (Ni et al., 2007). It illustrates the ef-
fectiveness of using invariant filtering technique. Fig.
9 also gives example results obtained from geodesic
snake and generalized GVF snake (Xu and Prince,
1998). It is expected that these edge based techniques
are not appropriate when dealing with highly textured
images.

The proposed method requires very little parame-
ter tunning. All the images given in this paper are us-
ing a fixed set of parameters. The parameters used to
generate the filter bank are given in Section 2.1. The
local window used to collect the spectral histogram
is empirically fixed as 19. For a too small window
size, the local spectral histogram may have difficulties
in reflecting underlying distribution and can result in
isolated regions. For a too large window, the segmen-



Figure 7: Examples results of the proposed method - from left to right: initial snake, intermediate stages, and stabilized
results.

tation can be less accurate around object boundaries.
We found that a window size of 19 is a good trade-
off, however, we attempt to automatically select the
window size as part of our future work. The parame-
ter α controls the smoothness of the contour and very
rarely needs to be adjusted.

4 CONCLUSIONS
In this paper, we introduced a novel region based
snake method which is based on the assumption that
foreground and background local filtering response
distributions are statistically separable. Maximum re-
sponses filters were used to achieve rotational invari-
ancy and their local spectral histograms were used as

image features to drive the snake. The experimental
studies showed some promising results. As part of
our future work, we will further investigate optimal
filter selection and automatic local spectral histogram
window selection.
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