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RAGS: Region-Aided Geometric Snake
Xianghua Xie and Majid Mirmehdi

Abstract—An enhanced, region-aided, geometric active contour
that is more tolerant toward weak edges and noise in images is
introduced. The proposed method integrates gradient flow forces
with region constraints, composed of image region vector flow
forces obtained through the diffusion of the region segmentation
map. We refer to this as the Region-aided Geometric Snake or
RAGS. The diffused region forces can be generated from any
reliable region segmentation technique, greylevel or color. This
extra region force gives the snake a global complementary view of
the boundary information within the image which, along with the
local gradient flow, helps detect fuzzy boundaries and overcome
noisy regions. The partial differential equation (PDE) resulting
from this integration of image gradient flow and diffused region
flow is implemented using a level set approach. We present various
examples and also evaluate and compare the performance of
RAGS on weak boundaries and noisy images.

Index Terms—Color snakes, deformable contours, geometric
snakes, region segmentation, region-aided snakes, weak-edge
leakage.

I. INTRODUCTION

DEFORMABLE contour models are commonly used in
image processing and computer vision, for example

for shape description [1], object localization [2], and visual
tracking [3], due to their natural handling of shape variation
and independence of operation once initialized. A hypothesised
contour, represented as a curve or surface, evolves based on
energy minimization methods under the influence of internal
forces, external image dependent forces, and certain user-spec-
ified constraints, till it converges on the object(s) of interest.

The parametric active contour or “snake,” developed by Kass
et al. [4] for image segmentation, is attracted toward features
such as edges and lines. The energy is composed of terms
that control the smoothness of the deforming curve and attract
it to the image boundary. Parametric snakes are maintained
by a spline, explicitly represented as parameterised curves in
a Lagrangian formulation; they have undergone significant
improvements since their conception, for example in [5], [6].
Region-based parametric snake frameworks have been reported
in [7]–[9], however these still suffer from the disadvantages of
parametric contours for shape representation.

The geometric model of active contours, simultaneously
proposed by Caselles et al. [10] and Malladi et al. [11], avoids
the need to reparameterize the curve and evolves according to
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an Eulerian formulation [12]. Geometric snakes are based on
the theory of curve evolution in time according to intrinsic geo-
metric measures of the image and are numerically implemented
via level set algorithms [13]. This helps to automatically handle
changes in topology and hence, without resorting to dedicated
contour tracking, unknown numbers of multiple objects can be
detected simultaneously. Furthermore, geometric snakes can
have much larger capture areas than parametric snakes.

Whilst geometric or geodesic snakes have been hailed as the
solution to the problem of required topological changes during
curve evolution [12], they are still prone to shortcomings. These
are at least twofold. First, they suffer from leakage into neigh-
boring image regions when confronted with weak edges, and
second, they rest at local maximums in noisy images. In this
paper, we deal with both of these problems concurrently by in-
troducing a diffused region force into the standard geometric
snake formulation. The proposed method is referred to as the
Region-aided Geometric Snake or RAGS as it integrates gra-
dient flow forces with diffused region forces. The diffused re-
gion force is obtained from the region segmentation map vector
flow and gives the snake a global view of the object boundaries.
The theory is independent of any particular region segmenta-
tion technique which in turn can be generated using different
approaches according to the needs of the application at hand. We
implement the PDE resulting from the proposed method numer-
ically using level set theory [13], [14] which enables topolog-
ical changes to be dealt with automatically. We demonstrate the
weak edge improvements and evaluate the tolerance to noise as
well as present applied results. Using color edge gradients (after
[15]), the RAGS snake will be shown to naturally extend to ob-
ject detection in color images, as also briefly shown in [16].

There has been a number of works based on the geometric
snake and level set framework, e.g. [12], [17]–[21]. Siddiqi et
al. [17] augmented the performance of the standard geometric
snake that minimizes a modified length functional, by com-
bining it with a weighted area functional, with an image depen-
dent weighting factor. This resulted in a modification of the con-
stant term of the curve to help it move in the desired direction
more efficiently. However, this still did not provide a satisfac-
tory solution to the weak edge leakage problem [12], [17].

In [20], Chan and Vese described a region-segmentation
based active contour that does not use the geometric snake’s
gradient flow to halt the curve at object boundaries. Instead, this
was modeled as an energy minimization of a Mumford-Shah
based minimal partition problem and implemented via level
sets. Their use of a segmented region map is similar to the
concept we have explored here, however their method is
constrained to bimodal image segmentation.

Xu and Prince extended their parametric gradient vector flow
(GVF) snake [5] into the Generalized GVF snake (the GGVF)
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in [6]. Later, they also established an equivalence model be-
tween parametric and geometric active contours [12] based on
the GGVF. The gradient vector flow concept is useful when
there are boundary concavities as it preserves the perceptual
edge property of snakes [5], [6]. However, the GGVF still has
topological problems as will be shown later. Also when a weak
edge lies beside a strong edge, the snake is likely to step through
toward the strong edge. A geometric GGVF snake enhanced
with simple region-based information was presented in [12] and
briefly shown to deal with weak edges. However, the exam-
ples used were for bimodal regions only. A major benefit of the
GVF/GGVF method is the long capture range introduced by the
gradient vector diffusion. We apply this concept by diffusing the
region vector map and integrating it into the standard geometric
snake formulation.

Paragios and Deriche [18], [19] presented a boundary and
region unifying geometric snake framework which integrates
a specific region segmentation technique with the geometric
snake. The Geodesic Active Region model in [18], [19] initially
models the image using a Gaussian mixture model to determine
the number of regions and their statistics. Then, multiple curves
are used to consider each separate homogeneous region and its
probabilistically determined boundaries in a bimodal fashion
within a geodesic segmentation framework. The geodesic con-
tour model consists of a region boundary term and a region term
which acts as the external pressure force in the active region for-
mulation and is implemented via the level set algorithm.

In [21], Yezzi et al. developed coupled curve evolution equa-
tions and combined them with image statistics for images of a
known number of region types, with every pixel contributing to
the statistics of the regions inside and outside an evolving curve.
They showed practical examples of bimodal and trimodal region
images and discussed a theoretical approach for more than three
region classes. More recently, Vese and Chan [22] proposed a
different multiple level set representation method to segment an
image with more than two regions. Their method needs fewer
level set functions to represent the same number of phases and
there is no overlap and vacuum in the phases.

This paper is organized as follows. In the next section, we
briefly introduce the standard geometric snake and cover some
of its associated shortcomings and attempted solutions. In Sec-
tion III, the region-aided snake RAGS is introduced. We ex-
tend RAGS to vector-valued images in Section IV. Implemen-
tations, experimental results, and comparisons are presented in
Section V. The paper is concluded in Section VI. Weak edge and
noise issues are referred to throughout as appropriate.

II. BACKGROUND AND SHORTCOMINGS

We briefly review the geometric active contour to help de-
scribe the proposed region-aided improvement later. Geometric
active contours were introduced by Caselles et al. [10] and Mal-
ladi et al. [11] and are based on the theory of curve evolution.
Using a reaction-diffusion model from mathematical physics a
planar contour is evolved with a velocity vector in the direction
normal to the curve. The velocity contains two terms: a constant
(hyperbolic) motion term that leads to the formation of shocks
from which a representation of shapes can be derived, and a

(parabolic) curvature term that smoothes the front, showing up
significant features and shortening the curve. In [23] and [24]
the formulation of the geodesic active contour, hereafter also
referred to as the standard geometric model, was introduced.

Let be a 2D active contour. The Euclidean curve
shortening flow is given by

(1)

where denotes the time, is the Euclidean curvature, and
is the inward unit normal of the contour. This formulation

has many useful properties, one of which is that it provides the
fastest way to reduce the Euclidean curve length in the direction
of the gradient of the curve [25].

Let be an input image in which the
task of extracting an object contour is considered. The Euclidean
length of a curve is given by

(2)

where is the Euclidean arc-length. The standard Euclidean
metric of the underlying space over which the
evolution takes place is modified to a conformal metric

where the term represents a de-
creasing function such that as , and
as . Using this metric, a new length definition in Rie-
mannian space is given by

(3)

Then the steady state of the active contour is achieved by
searching for the minimum length curve in the modified
Euclidean metric:

(4)

As shown in [23], the steady state is achieved by solving the
following equation, showing how each point in the active con-
tour should move in order to decrease the length. The Euler-La-
grange of (4) gives the right-hand side of (5):

(5)

Note that (5) has two terms. The first is the curvature term mul-
tiplied by the weighting function . In application to shape
modeling, the weighting factor could be an edge indication func-
tion that has larger values in homogeneous regions and very
small values on the edges. Since (5) is slow, [23] added a con-
stant inflation term to speed up the convergence. The constant
flow is given by showing each point on the contour
moves in the direction of its normal at a constant speed and on
its own can cause a smooth curve to evolve to a singular one.
However, integrating it into the geometric snake model lets the
curvature flow (1) remain regular:

(6)
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Fig. 1. GGVF snake topological problem—from left: initial snake, final state of the GGVF snake which fails to detect the four objects, and final state of the
RAGS snake.

where is a real constant making the contour shrink or expand
to the object boundaries at a constant speed in the normal direc-
tion. The second term of (5) or (6) depends on the gradient of
the conformal factor and acts like a doublet, which attracts
the active contour closer to the feature of interest since the vec-
tors of point toward the valleys of , the middle of the
boundaries. This increases the attraction of the active con-
tour toward these boundaries. For an ideal edge, tends to
zero. Thus, it tries to force the curve to stop at the edge, but the
convergence quality still highly depends on this stopping term.
If is not small enough along edges, there will be an under-
lying constant force caused by .

The geodesic or geometric active contour is numerically im-
plemented using level sets [14], [23], [25].

A. Geometric Snake Problems

Geometric active contour models have the significant advan-
tage over classical snakes that changes in topology due to the
splitting and merging of multiple contours are handled in a nat-
ural way. However, they suffer from sensitivity to local minima
and only use local information. Hence, they are attracted to
noisy pixels and they fail to recognize weaker edges for lack
of a better global understanding of the image.

The constant flow term makes the snake expand or shrink. It
can speed up the convergence and push the snake into concavi-
ties easily when the objects have good contrast, i.e. the gradient
values at object boundaries are large. However, when the ob-
ject boundary is indistinct or has gaps, the snake tends to leak
through the boundary mainly because of this constant force. The
second term in (6) is designed to attract the contour further close
to the object boundary and also to pull back the contour if it
leaks through the boundary, but the force may just not be strong
enough since it still depends on the gradient values. It can not
solve the weak-edge leakage problem. The top row in Fig. 2
demonstrates this shortcoming of the standard geometric snake.
The evolving of the snake is based on the gradient information,
and as there is gradual change of the intensity, the contour leaks
through.

B. Geometric GGVF Snake Problems

In [5], Xu and Prince presented a new external force for para-
metric active contours attempting to solve the initialization and
convergence problems related to traditional snakes. This ex-
ternal force, which they called gradient vector flow, was com-
puted as a diffusion of the gradient vectors of a greylevel or bi-

nary edge map derived from the original image. In [6], the same
authors introduced the GGVF, a generalized GVF snake model.
GGVF improves over GVF by replacing the constant weighting
factor with two spatially varying weighting functions that allows
the active contour to converge into long, thin boundary indenta-
tions.

Later in [12], Xu et al. showed the GGVF equivalence in
a geometric framework. A simple bimodal region force gen-
erated as a two-class fuzzy membership function was added
to briefly demonstrate weak-edge leakage handling [12]. The
GGVF snake is useful when dealing with boundaries with small
gaps. However, it’s still not robust to weak edges, especially
when a weak boundary is close to a strong edge, the snake
readily steps through the weak edge and stops at the strong one
(illustrated later in Fig. 4).

A further problem with the GGVF snake is that it does not al-
ways allow the detection of multiple objects. These topological
problems arise, even though the GGVF snake was specified in
the geometric model [12], when the vector field is tangent to the
snake contour. In such cases there would be no force to push or
pull it in the perpendicular direction (to the vectors). This effect
is shown in Fig. 1. Both the standard geometric snake and RAGS
do not suffer from this problem due to the constant pressure
force incorporated in their framework. Note that recently, Para-
gios et al. [26] also fit the GVF snake into the geometric frame-
work and introduced an adaptive balloon force, which helps the
snake expand or shrink when the gradient vector is tangent to
the normal of the active contour.

III. REGION-AIDED GEOMETRIC SNAKE

Here we propose a novel approach to make the geometric
snake much more tolerant toward weak edges and image noise.
It comprises the integration of the gradient flow forces with dif-
fused region forces in the image resulting in our region-aided
geometric snake, RAGS. The gradient flow force supplants the
snake with local object boundary information while the region
force is based on the global image features. We show that this
combination of forces not only improves the performance of the
geometric snake toward weak edges, but also makes it more im-
mune to noise. The PDE thus obtained, evolves an initial contour
toward final convergence under the influence of both internal
forces and boundary-regional image forces, and is implemented
via level sets.

The gradient flow force is sensitive to edge information and
active contours are generally driven by it, e.g. [4]–[6], [15], [17],
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Fig. 2. Weak-edge leakage testing on a synthetic image—top row: geodesic snake steps through; bottom row: RAGS snake converges properly using its extra
region force.

[23], [25] to name a few, with one notable exception [20]. The
proposed region force can be generated from any image segmen-
tation technique, e.g. [27], [28]. This means that while RAGS is
independent of any particular segmentation technique, it is de-
pendent on the quality of the regions produced. However, we
show a good degree of tolerance to (reasonable) segmentation
quality, and that our snake can indeed also act as a refinement of
the results of the initial region segmentation. To examine this,
we demonstrate our results on region maps obtained from both
the under-segmentation and over-segmentation options of the
software from Comaniciu and Meer [27], [29].

A. Region Force Diffusion

The region force could be generated by a variety of segmen-
tation techniques, greylevel or color. The segmentation splits
the image into several regions distinguished by their dominant
color. By putting these through a simple gradient filter, we ob-
tain the region boundary map . The magnitude of this region
boundary map is then proportional to the color distance between
any two adjacent region colors in the color
space. Then, we compute the gradient of the region boundary
map , giving region constraints in the vicinity of the region
boundaries. While the snake evolves in a homogeneous image
region, it does so mainly based on the gradient flow force. If the
snake tries to step from one region into another, it must concur
with the region force since it breaks the region criteria, which
probably indicates a leakage. The capture area of the pure re-
gion force is quite small. A gradient vector diffusion method
was proposed in [6] to extend the gradient map vectors fur-
ther away from the edges for a larger capture field. We use this
same concept to diffuse the region boundary gradient map re-
sulting in region forces with a larger capture area along the re-
gion boundaries. Hence, we obtain a two dimensional vector
field by solving the following
equations:

(7)

where is the Laplacian operator, and are weighting
functions that control the amount of diffusion, and and

are the components of vector field along the and
directions. These are selected such that gets smaller as
becomes larger with the desirable result that in the proximity
of large gradients, there will be very little smoothing and the
vector field will be nearly equal to the gradient of the region
map. We use the following functions for diffusing the region
gradient vectors:

(8)

where is a constant and acts as a trade-off between field
smoothness and gradient conformity.

B. Region-Aided Snake Formulation

Next, we can derive the region-aided geometric snake formu-
lation. The diffused region force is treated as an extra external
force of the snake. The original internal and external forces of
(6) are given by

(9)

where is the stopping function as before. Now we add the
diffused region force obtained in (7) to the external term:

(10)

where is a new constant incorporating and causes behavior
that is similar to in [23] or [15]. Constants and act as a
trade-off between gradient forces and region forces. In practice,
constant takes a value in the range (0,1) and depends on the
quality of the region segmentation.
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The snake evolves under all the internal and external forces.
As only the forces in the normal direction deform the curve, the
evolving curve can be represented as

(11)

Finally, the region-aided geometric snake formulation is

(12)

C. Level Set Representation

In this section, we outline the level set representation for
the region-aided geometric snake. Level sets describe a moving
front and are the basis for the numerical algorithm for curve evo-
lution according to functions of curvature, introduced by Osher
and Sethian [13], [14].

Let be a level set of a function of .
That is, is embedded into the zero level set with an implicit
representation of the curve . This representation is parameter
free and intrinsic. Given a planar curve that evolves according
to for a given function , then the embedding func-
tion should deform according to , where is com-
puted on the level sets. By embedding the evolution of in that
of , topological changes of are handled automatically and
accuracy and stability are achieved using the proper numerical
algorithm.

The internal curvature and external pressure terms of the
RAGS formulation in (12) can be easily transferred to level set
representation:

(13)

The external forces in (12) are static vector fields derived
from image data which do not change as the active contour
deforms. Static force fields are defined on the spatial positions
rather than the active contour itself. Since is the inward
normal, the level set representation of the inward unit normal
is given by

(14)

Then we have

(15)

This leads to the level set representation of RAGS as:

(16)

where is the stopping function as before. The expression for
the curvature of the zero level set assigned to the interface itself
is given by

(17)

IV. REGION-AIDED GEOMETRIC SNAKE ON

VECTOR-VALUED IMAGES

As shown in [23], the theory of boundary detection by the
geometric or geodesic snake can be applied to any general “edge
detector” function. The stopping function should tend to zero
when reaching edges. Let be the edge detector. Then, the de-
creasing function can be any decreasing function of such
that as . When dealing with graylevel images,
the solution (as used in this work) is straight forward:

(18)

We use a similar stopping function for edges obtained directly
from vector-valued images such as a color image. We foster the
approach developed by di Zenzo [30] which provides a consis-
tent extension of scalar gradients based on a solid theoretical
foundation. The concept was also applied in [15] and [31] for
their geometric and parametric snakes respectively.

In a vector-valued image the vector edge is considered as the
largest difference between eigenvalues in the tensor metric. Let

be a m-band image for .
For color images, . A point in the image is considered as
a vector in . The distance between two points,
and , is given by . When this
distance tends to the infinitesimal, the difference becomes the
differential with its squared norm
given by

(19)

Using standard Riemannian geometry notation, then let
, such that

(20)
For a unit vector , then indicates the
rate of change of the image in the direction of . The extrema of
the quadratic form are obtained in the directions of the eigenvec-
tors of the metric tensor , and the corresponding eigenvalues
are:

(21)

with eigenvectors where the angles
are given by and

. The maximal and minimal rates of change
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Fig. 3. Diffused region force on weak edge—top row, from left: the edge map and the stopping function g(:) of edge map—bottom row, from left: magnitude of
its gradient rg(:), the region segmentation map, and the vector map of the diffused region force ~R.

are the and eigenvalues respectively, with corresponding
directions of change and . The strength of an edge in a
vector-valued case is not given simply by the rate of maximal
change , but by the difference between the extremums.
Hence, a good approximation function for the vector edge
magnitude should be based on . Now we can
extend RAGS to the region-aided geometric color snake by
selecting an appropriate edge function . The edge stopping
function is defined such that it tends to 0 as .
Here, the following functions are used (cf. (18)):

(22)

Then replacing for the edge stopping term in (12),
we have the color RAGS snake:

(23)
Finally, its level set representation is also given by replacing

for in (16):

(24)

V. EXPERIMENTS AND RESULTS

In summary, the region-aided geometric (color) snake prop-
agates under the influence of one internal force, i.e. the curva-
ture flow, and three external forces: (a) the pressure force gener-
ated by the constant gradient flow, (b) the gradient of the (color)
edge stopping force, and (c) the diffused region vector force de-
rived from the region constraints. These constraints can be gen-
erated in a variety of ways. In this paper, a general greylevel and
color segmentation technique, i.e. the mean shift algorithm [27],
[29] is applied. The software made publicly available by the au-
thors of the mean shift algorithm provides standard options for

over-segmentation and under-segmentation. We will show re-
sults for both of the options.

Furthermore, we present mainly results that show improve-
ments over either the standard geometric snake or the GGVF
snake or both, and mainly in images where there are weak edges
or noisy regions preventing the aforementioned snakes to per-
form at their best. Although GGVF’s have been reported using
greylevel image gradients [6], we apply them to our “color”
gradients presented in the previous section, which allows direct
comparison with the color RAGS. It must also be noted that the
GGVF can sometimes perform better than we have shown in
some of the following examples as long as it is initialized dif-
ferently, i.e much closer to the desired boundary. Unless specif-
ically stated, in all our experiments we have initiated the geo-
metric, GGVF, and RAGS snakes at the same position.

A. Preventing Weak-Edge Leakage

We first illustrate the way weak-edge leakage is handled on
a synthetic image (as in [12], [17]). The test object is a circular
shape with a small blurred area on the upper right boundary as
shown in Fig. 2. The standard geometric snake steps through the
weak edge because the intensity changes so gradually that there
is no clear boundary indication in the edge map. The RAGS
snake converges to the boundary since the extra diffused re-
gion force delivers useful global information about the object
boundary and helps prevent the snake from stepping through.
Fig. 3 shows, for the test object in Fig. 2, the edge map, the stop-
ping function , magnitude of its gradient , the region
segmentation map, and the vector map of the diffused region
force .

B. Neighboring Weak/Strong Edges

The next experiment is designed to demonstrate that both
the standard geometric snake and the GGVF snake readily step
through a weak edge to reach a neighboring strong edge. The
test object in Fig. 4 contains a prominent circle inside a fainter
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Fig. 4. Strong neighboring edge leakage—from left: initial snake, geodesic snake steps through weak edge in top right of outer boundary, GGVF is attracted by
the stronger inner edge, RAGS snake converges properly using extra region force.

Fig. 5. A shape and its boundary (a harmonic curve).

one. The presence of the weaker edge at the outer boundary is
detected only by the RAGS snake. The geodesic snake fails be-
cause the weaker outer boundary allows the whole snake to leak
through (similar to but in the opposite direction of propagation
of Fig. 2). The GGVF snake fails due to the strong gradient
vector force caused by the inner object boundary. Practical ex-
amples of this can also be observed in Figs. 12 and 13.

C. Testing on Noisy Images

We also performed comparative tests to examine for tolerance
to noise. For this a Harmonic shape was used, as in [6], shown
in Fig. 5. It was generated according to ,
where , , and remain constant and can be used to pro-
duce different numbers of “bumps”; in this case . We
added varying amounts of noise and measured the accuracy of fit
(i.e. boundary description) after convergence. The accuracy was
computed using Maximum Radial Error (MRE), i.e. the max-
imum distance in the radial direction between the true boundary
and each active contour.

Impulse noise was added to the original image from 10% to
60% as shown in the first column of Fig. 6. The region segmen-
tation data used for RAGS is in the second column (without any
post-processing to close gaps etc.). The third, fourth, and fifth
columns show the converged snake for the standard geometric,
the GGVF, and RAGS snakes respectively. A simple subjec-
tive examination clearly demonstrates the superior segmenta-
tion quality of the proposed snake. The initial state for the stan-
dard geometric and RAGS snakes is a square at the edge of the
image, while for the GGVF it is set closer to the true boundary
to ensure better convergence. At low percentages of noise, all
snakes could find the boundary accurately enough. However,
at increasing noise levels ( 20%), more and more local max-
imums appear in the gradient flow force field, which prevent
the standard geometric and GGVF snakes from converging to
the true boundaries. The RAGS snake has a global view of the
noisy image and the underlying region force pushes it toward the
boundary. The quantitative MRE results are shown in Table I.

TABLE I
MAXIMUM RADIAL ERROR COMPARISON FOR THE HARMONIC SHAPES IN FIG. 6

D. RAGS on Example Images

Figs. 7 to 9 demonstrate RAGS in comparison to the standard
geometric and GGVF snakes on various greylevel images. Fig. 7
shows a good example of weak-edge leakage at the right side
of object of interest. While RAGS does extremely well here,
the geometric snake leaks through and the GGVF snake fails to
progress in the narrow object at all. In Fig. 8, RAGS achieves a
much better overall fit, particularly in the lower regions of the
right-hand snake and the upper-right regions of the left-hand
snake. In Fig. 9, both RAGS and GGVF manage a better fit
than the standard geometric snake at the nose-rest of the glasses,
however, the GGVF has been pulled toward a stronger edge at
various places, such as the inner side of the mug in the top-right
corner of the image. On the other hand, RAGS has stopped at
the first outer edge.

Fig. 10 compares the standard geometric snake against the
proposed RAGS snake on a color image of a mouth ulcer. A
snake is initialized to detect an inner region which has a small
blurred section along its upper boundary. This is again a hard
case for the geometric snake because the weak edge is difficult
to detect without global information. It not only has similar color
to the inner and outer areas, but also “dilutes” gradually into the
background. Indeed, the standard snake steps through the edge.
However, the region-aided geometric snake (last two rows of
Fig. 10) reaches its steady state and successfully converges to
the inner boundary irrespective of whether the under or over-
segmentation of the method in [29] is used to generate the initial
region map, as shown.

Fig. 11 demonstrates the improvement over the standard
geometric color snake introduced in [15]. Unlike the latter,
RAGS manages to ignore the noisy region in the top right of
the image and converges tightly around the object, again due to
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Fig. 6. Shape recovery in noisy images—(column 1) original image with various levels of added Gaussian noise [0%,10%,. . .,60%], (column 2) the region maps
later diffused by RAGS; (column 3) standard geometric snake results; (column 4) GGVF snake results; (column 5) RAGS results.

the stronger diffused region forces at the object boundary. The
GGVF in this example suffers from the problem illustrated in
Fig. 1. This GGVF snake also leaks to a stronger inner edge at
the bottom-left corner of the lower object (similar to the mug
example). This and the next two examples demonstrate the

problem shown in Fig. 4. In Fig. 12, a close-up view of a retinal
disk is shown after color morphology pre-processing is used to
eliminate the blood vessels [2]. The boundary of the optic disk
is quite fuzzy and well blended with the background. The region
force helps the proposed snake stop at weak edges while the
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Fig. 7. Brain MRI (corpus callosum) image—from left: Initial snake, standard geometric snake, GGVF snake, and RAGS snake.

Fig. 8. Heart MRI image—from left: initial snakes, standard geometric snakes, GGVF snakes, and final RAGS snakes showing improvement on the top right of
the left snake and the lower region of the right snake.

Fig. 9. Mug and sunglasses—from left: initial snake, standard geometric snakes, GGVF snakes, final RAGS snakes showing improvements in the tightness of fit
all around, particularly at the sunglasses nose-rest.

standard geometric snake leaks through and the GGVF is highly
dependent on where the initial snake is placed (hence GGVF
result not provided). Region segmentation results (under and
over-segmentation) with corresponding snakes are also shown.
In the cell image in Fig. 13, the standard geometric snake splits
and converges unsatisfactorily and the GGVF snake is pulled in
and out by a stronger inner cell nucleus and neighboring cells
respectively, while the RAGS snake converges well to the outer
cell boundary without leaking through.

Fig. 14 again shows that RAGS converges on the object very
well despite the unsmooth, coarse texture background regions.
The standard geodesic snake must deal with local minima of
which there are many in the background. Hence, at typical pres-
sure forces it will get stuck in the background and even at larger
pressure forces it still is confused by the multiple close edges
at the tail of the fish. The GGVF suffers from similar prob-
lems. Further examples of RAGS on various images are shown
in Fig. 15.

All the examples shown here illustrate the resilience of RAGS
to weak edges and noise. However, the RAGS snake does suffer
some shortcomings. As with the standard geometric snake, or its
color-based relation in [15], or the geometric GGVF snake [12],
it will not perform well in highly textured regions in which the
gradient flow forces may be hampered by multitudes of texture
edge information. It is also dependent on a reasonable segmen-
tation stage, although this was shown to be quite flexible using
a popular method with standard built-in options in the software
from [29]. Further images and experiments can be found on-
line.1

VI. CONCLUSIONS

A novel method, the region-aided geometric snake or RAGS,
was proposed. It integrates the gradient flow forces with region
constraints, composed by the image region vector flow forces

1http://www.cs.bris.ac.uk/home/xie/rags.htm
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Fig. 10. Weak-edge leakage testing—top row: original image with starting contour and geodesic snake which steps through, middle row: over-segmentation color
region map and converged RAGS snake, bottom row: under-segmentation color region map and converged RAGS snake.

Fig. 11. Thigh slice—from left: initial snake, final Sapiro’s geodesic color snakes (from [15]), final GGVF snake, final RAGS snakes.

obtained through the diffusion of the region segmentation map.
The theory behind RAGS is stand-alone and hence the region
force can be generated from any reasonable segmentation tech-
nique. We also showed its simple extension to color gradients.
We demonstrated the performance of RAGS, against the stan-
dard geometric snake and the geometric GGVF snake, on weak
edges and noisy images, as well as on a number of other exam-
ples.

The experimental results have shown that the region-aided
snake is much more robust toward weak edges. Also it has better

convergence quality compared with both the standard geometric
snake and the geometric GGVF snake. The weak-edge leakage
problem is usually caused by inconclusive edge values at the
boundaries, which makes it difficult for gradient-based tech-
niques to define a good edge. The gradual changes do not pro-
vide a sufficient minima for the stopping function to prevent the
level set accumulating in that area. The diffused region segmen-
tation gives the snake an extra underlying force at the bound-
aries. It also makes the snake more tolerable to noise as shown
by the harmonic shape recovery experiment and many of the real
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Fig. 12. Optic disk localization—top row: original image with starting contour and geodesic snake which steps through to the stronger central region of the optic
disk, middle row: over-segmentation color region map and converged RAGS snake, bottom row: under-segmentation color region map and converged RAGS snake.

Fig. 13. Cell with strong nucleus feature—from left: initial snake, standard geometric snake, GGVF snake, RAGS snake showing how the stronger inner edge
in the cell nucleus does not cause it to lose the outer weaker edge.
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Fig. 14. Fish—top row: initial snake and standard geometric snake, bottom row: GGVF snake and RAGS snake which is not affected by the coarse texture
background.

Fig. 15. More RAGS examples.

images. The noise in the image introduces local minima in the
stopping function preventing the standard geometric snake to
converge to the true boundary. However, for RAGS the diffused
region forces give a better global idea of the object boundary in
the noise clutter and helps the snake step closer and converge to
the global minima.
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