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Abstract
Decision making is an intrinsic part of human life. While some decisions are trivial and sim-

ple, some of them are not. The paralysis we experience in such situations can be defined as

decision making deadlock. As a result of a collaboration with ccBrain Lab at CUBRIC an

experiment relating to a decision making deadlock was conducted. Each subject had to choose

between two equally rewarding shapes i.e. the probability of getting a reward was the same for

both shapes. Three cases have been examined: 100%, 80% and 20%. The reaction time and

brain activity (EEG) has been measured during the experiment. The tendency among subjects

showed the inverse proportion to the probability of getting the reward. This gave the basis for

the hypothesis of different human cognition processes being discriminative.

Using frame-wise and sequential approaches this problem was explored. Applying k-NN,

Random Forest and LDA in frame-wise approach on both, subject generic scenario with Leave

One Group Out cross-validation and subject specific scenario using k-folds validation did not

result in satisfactory classification outcomes. The attempt to enhance models performance

using dimensionality reduction (PCA) didn’t show any significant improvement. However,

using Gini Impurity to investigate feature importance gave an insight into significant cognition

period in brain activity across the patients proving singularity of the signal for each case.

Due to the time dependencies, memory mechanism in sequential approach was examined

using RNN, LSTM and GRU. Alternative input formulation was presented using hand-crafted

features which are based on Discrete Wavelet Transform coefficients. While the problem re-

mained challenging to generalise, interesting observation of the possible relationship between

the channels was presented creating cross-channel connectivity theory which could be applied

over time.
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Chapter 1

Introduction

For the past few decades, machine learning has been going through its renaissance where not

only traditional machine learning techniques but also new architectures are being used. Many

of emerging applications of machine learning are applied to disciplines such as healthcare, ed-

ucation, transport an logistics, public services, finance, pharmaceuticals, energy legal sector

and more [1]. Those widespread techniques are applied to a variety of domains to learn under-

lying information based on the gathered data (also known as learning by example). Medicine

is an extensive field, consisting of many sub-domains where machine learning has the potential

to change its trajectory. Sub-domains of medicine: cognitive science, psychology and neuro-

science are intersecting areas of expertise where exploring and comprehending the processes

within the human brain is the main principle [2].

1 Motivation

In psychology, decision-making is defined as a cognitive process of selection over several

alternative possibilities. This process is composed of three parts: multiple options, expectations

of the future events related to each option and consequences associated with possible outcome

[3]. While it seems to be a complicated process, according to a German psychologist and

neuroscientist, Ernest Pöppel, ”We make about 20,000 decisions every day, most of them at

lightning speed.” *As soon as you wake up, you decide whether to get out of the bed or not.

Then, it is time to choose what’s for breakfast, outfit for the day and so forth. Human being has

to make choices at every single step, whether it is trivial or not. Some answers come quicker

than others. When you decide on the life path you take, career or the right partner for you, the

6



1. Introduction

decision becomes more problematic. The paralysis we experience in such a situation can be

defined as decision making deadlock [4].

As the result of collaboration with ccBrain Lab (Cognition and Computational Brain Lab)

at Cardiff University Brain Research Imaging Centre (CUBRIC) which specialise in “computa-

tional mechanisms of decision-making, learning and action”† the cognition process of decision

making has been investigated.

Due to the experiment conducted by ccBrain Lab, a question related to a decision making

deadlock has been raised [4]. By choosing between two independent shapes the subject had

to make a decision while their reaction time and brain activity (EEG) were recorded. The

tendency among subjects showed the inverse proportion to the probability of getting the reward

a.k.a. the higher the probability of getting the reward was, the quicker the subject made a

decision. This gave the basis for the hypothesis of three cases (scenarios) being discriminative.

Comprehending the process of decision making is a huge step towards the exploration of

human cognition in a field of psychology and neuroscience where applications of this research

can be powerful and endless. As decision making is an intrinsic part of our nature, increas-

ing comfort of daily activities could potentially influence the mass of people. We live in the

era of consumerism where the interest of customers is the highest priority. Analysing how to

improve products, advertising or other marketing elements by measuring the brain’s responses

to marketing stimuli is denoted as Neuromarketing. Learning why consumers make decisions

they do and what part of the brain is responsible for this action, is the main purpose behind

neuromarketing [5]. Frequently we are paralysed by the number of options we have not know-

ing what to choose. Performing deep analysis of the data and understanding the process of

decision-making deadlocks (paralyse situations) could help businesses understand customers

and their needs to make the choice clear and dynamic.

Since the second half of the XX century we have entered a digital revolution which con-

tinues till now. As many domains of our lives have been digitised the idea of communica-

tion between a human and a machine was born. Interface between human (brain) and a ma-

chine (computer) was defined as Brain-Computer Interface (BCI). Basic pipeline for BCI is

denoted as signal acquisition; preprocessing and feature extraction; feature classification and

tasks/commands. This concept can be applied from electronics, automatic cars to embedded

*ErnestPoppelDecisionMaking
†https://ccbrain.org/
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1. Introduction

systems (smart houses), medicine and so forth [6] [7]. One of the common techniques for

EEG BCI is using P300 (P3). P3 signal is a component of Event Related Potential (ERP)

elicited in the process of decision making. It is categorised as an endogenous potential since

its occurrence is based on a person’s reaction to a stimulus. The ability to discriminate be-

tween different deadlock decision-making cases could enhance the classification process for

the actions we desire to proceed (ability to control things using our minds using BCI systems).

2 Contribution

The purpose of the research is to investigate and discriminate decision making between equal

choices using machine learning techniques. Previous research shares some insights into equal

choice decisions where benefit of ‘rushing to decisions’ [8] and lack of choice randomness

in consumer [9] and lab-based settings [10] have been explored. Yet, it is unclear how re-

ward certainty and shape preference (bias) influences sub-components of the whole process of

decision-making. Furthermore, observing macroscopic brain activities during equal decision

choice in time could explain the preference bias and response time dependencies between var-

ied reward certainty options. Interpretation and classification of the EEG data has the potential

to give more insights into the process of decision making for equal choices to unravel above

presented unresolved issues.

Two main approaches are investigated: frame-wise and sequential. The main concept be-

hind the frame-wise approach is based on dividing the sequence space of the signals (from 32

channels) into independent timestep frames. No intercorrelations between frames are assumed.

The prediction is made per each frame where using majority voting the final outcome of each

sequence is calculated. Two methodologies are used in this approach: subject generic and sub-

ject specific. In the subject generic scenario, Leave One Group Out cross-validation is applied

while subject specific implements k-fold cross-validation. This approach was examined using

classical machine learning techniques: k-NN, Random Forest and LDA.

The results of both methodologies were limited. To enhance models performance dimen-

sionality reduction using PCA was applied yet with no significant improvement. However,

extensive analysis of the data enabled finding interesting observation on significant cognition

period. The singularity of brain activity (for each case) demonstrated certain prediction pattern

within a sequence, common across all the subjects, proving cognition to be time-dependent.

The second approach focuses on investigating time dependencies and prediction of the se-

quence as one. The first approach uses self learnt features with neural networks where memory
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mechanism present in RNN, LSTM and GRU was applied. The models were fed with frames

one by one to pass the information within and output the final result of the sequence in many to

one manner (for the whole sequences). The second approach used hand-crafted features based

on signal decomposition where Discrete Wavelet Transform was implemented. Transformed

and modified input from each channel was then flatten into one observation (within a single

sequence) and fed to Random Forest and Fully Connected Neural Network.

Extending the idea of prediction based on the whole sequence (trial) remained unsatisfac-

tory. However, using hand-crafted features based on Discrete Wavelet Transform enabled us to

make further observations about cross-channel connectivity which will be investigated in the

future.

Extensive data analysis provided problem formulation, initial benchmarking and link to the

hypothesis as the pillars for the future work.

3 Outline

The remainder of this thesis is outlined as follows:

Section 2 Background:

The background section introduces current research related to the problem domain. Fur-

thermore, techniques used to analyse and explore the data have been presented in-depth

where classical machine learning and deep learning were used. The section includes

additional information on signal decomposition using Wavelet Transform which was ap-

plied to the data. Common techniques for evaluation of the models’ performance were

demonstrated.

Section 3 Dataset:

Dataset section presents an experiment conducted by ccBrain Lab in CUBRIC. The ini-

tial observations made by the neuroscientists are used to formulate the hypothesis of

this work. Data formatting and normalisation used as part of the pre-processing step are

presented and applied. Techniques used for feature extraction are defined.

Section 4 Frame-wise Approach:

This section presents an initial approach where frame-wise prediction is implemented.

Two methodologies used in this approach: subject generic and subject specific are ex-

plained. The results of applied classical machine learning architectures: k-NN, Random

9
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Forest, LDA and PCA are discussed. Based on the findings of frame-wise approach,

observation of significant cognition period is introduced.

Section 5 Sequential Approach:

Sequential approach section presents two methodologies of the input data formulation:

self learnt features with neural networks and hand-crafted features. Deep learning tech-

niques such as RNN, LSTM and GRU are implemented and investigated. Signal decom-

position for hand-crafted features is applied using Wavelets to Random Forest and Fully

Connected Neural Network. Discussed findings give observations based on the sequen-

tial approach to classification of the signal data presenting cross-channel connectivity

theory.

Section 6 Conclusions:

Conclusions section gives an outline of findings from the conducted experiments. It

presents contributions to the research and future work to apply.
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Chapter 2

Background

1 Classic Machine Learning

As previously mentioned, machine learning has become a new trend in science, using statistical

models and algorithms computers learn how to perform specific tasks based on gathered data.

Machine learning can be divided into subcategories depending on their learning process where

supervised, unsupervised and reinforcement learning are distinguishable approaches.

Out of all, the ability to create function through the learning process by matching input

and output data is possible due to the supervised learning. The mathematical model by learn-

ing through experience (input-output pairs) is then able to solve a particular task on unseen

data (test data). Depending on the problem that has to be tackled, predicting future outcome

can be approached in varied ways. The fundamental division into classification and regression

algorithms enables finding an appropriate plan of attack with respect to the end result. Regres-

sion algorithms are used for estimation of continuous outputs, for instance, temperature, price,

length, while classification is used for discrete response variables [11].

An algorithm that implements classification, known as classifier, identifies within the set

of categories to which the new sample (observation) belongs based on previously trained ex-

amples. The simplistic case involves binary choice Y : {0,1} called binary classification. This

technique is often used in medical testing to determine whether a patient has a certain disease

or not. In the multi-class classification problem, the number of categories is equal to three

or more. Using algorithm adaptation techniques extension from binary classification can be

used in multi-class classification problems. Architectures such as Support Vector Machines,

k-Nearest Neighbours, Decision Trees, Naive Bayes or Neural networks are adaptable estima-
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2. Background

tors for a higher number of outputs [12]. Many of these algorithms are used in medicine, but

support vector machine and neural networks dominated AI in healthcare. [13] *

Figure 2.1: Top machine learning algorithms in medical literature. Data has been generated
based on searching results of machine learning algorithms within healthcare on PubMed thanks
to SciForce†.

1.1 Random Forest

In the late 1970s and early 1980s, a decision tree algorithm known as ID3 (Iterative Di-

chotomiser) has been developed by J.Ross Quinlan who later presented its successor C4.5.

In 1984, Leo Breiman et al. published book Classification and Regression Trees [14] which

presented a similar approach of decision trees learning from the training tuples. All previously

mentioned, ID3, C4.5 and CART, have been constructed in a “top-down recursive divide-and-

conquer manner”.

As the prediction follows multiple branches of “if ... then ...” decision splits we cre-

ate someway a structure looking like a tree. Each branch split is based on the feature

threshold that divides remaining samples in the most efficient way. To define the “best

split” Gini impurity (CART), information gain (ID3) or gain ratio (C4.5) are used. As ID3

does not deal with continuous data and C4.5 is susceptible to outliers, CART is frequently used.

CART is a binary partitioning recursively performed on continuous and nominal attributes

(for both predictors and targets) [15] [12]. It handles data in raw form where in continuous
†https://medium.com/sciforce/top-ai-algorithms-for-healthcare-aa5007ffa330
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input no binning is required. Each root/parent node holds an attribute (a single input variable)

xi which divides the input space.

Figure 2.2: Binary decision tree partition of the feature space. The presented tree has threshold
values qi which lead to leaf values (A,B,C,..).

This process is done by using the greedy approach in recursive binary splitting where the

best split (lowest value of a cost function) is selected. Previously mentioned Gini Index also

known as Gini coefficient or Gini impurity is used to measure the impurity of D, a training

dataset or a data partition, by subtracting the sum of the squared probabilities from all the

classes from one:

Gini(D) = 1�
m

Â
i=1

p2
i (2.1)

where pi represents the probability of a tuple belonging to a class Ci. The sum is an accu-

mulation of squared probabilities pi across all the m classes. For each attribute all possible

scenarios of a binary split are tested by computing a weighted sum of the impurity of every

single partition to always find the best split:

GiniA(D) =
| D1 |
| D | Gini(D1)+

| D2 |
| D | Gini(D2), (2.2)

where A is an attribute and D1,D2 represent possible split values. While for an attribute with a

discrete value finding the minimum of Gini Index indicates the splitting subset, for continuous-

valued attributes all possible split points have to be taken into consideration. In such a case

the split point is defined by localising the midpoint between each pair of sorted adjacent values

which becomes a split-point if the subset gives the minimum Gini Index.

The impurity reduction in a binary split on a discrete-/continuous-valued attribute A is

computed as follows:

DGini(A) = Gini(D)�GiniA(D), (2.3)
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Maximising the reduction in impurity (equivalent to reaching the minimum Gini Index)

indicates the best splitting attribute. This attribute using either splitting subset (discrete value

of a splitting attribute) or split-point (in continuous value of a splitting attribute) creates the

splitting criterion.

To decide when the tree is already built the stopping criterion needs to be satisfied. Without

any early termination, the tree stops splitting if all instances have identical attribute values

or belong to the same class. While decision tree classifiers are trained to differentiate data

samples based on attributes, many times the model grows a tree to maximum size with each

leaf for a single class data (causes overfitting) rather than the overall population which leads to

bad performance on the test dataset. Decision trees often can be affected by data anomalies in

training dataset by noise and outliers.

Tree pruning is an approach to face such obstacles where pre- and post-pruning methods

are used. Pruning trees results in easy to comprehend, less complex and faster structure which

boosts model generalization for unseen data. In pre-pruning the further split of the node or

partition the subset is halt based on the certain criterion, for instance, minimum sample leaf or

measuring Gini Index which results in a node transforming into a leaf. The method of trimming

(removing subtrees) from a fully grown tree where the removed subtree is replaced by the most

frequent class (among the subtree) is known as post-pruning.

An example of a post-pruning algorithm is the cost complexity pruning used in CART

which considers the error rate of the tree (percentage of misclassified tuples) and the number

of leaves. Starting from the root, it computes the cost complexity of the subtree at node N

and the cost complexity at the same node if it would be pruned. Those values are compared

and if pruning the subtree would result in a smaller cost complexity, the subtree is pruned. To

estimate the cost complexity a pruning set of tuples with class labels is used. It is independent

of both training and test data and the algorithm generates a set gradually expanding pruned

trees.

To enhance the robustness of the model the ensemble technique whereby combing predic-

tions of several base estimators the performance can be improved. Random Forest groups to-

gether multiple individual decision trees and combines their output using bagging, also known

as Bootstrap aggregation. Using bagging, randomly sampled subsets of the dataset are used

to train individual decision trees where sampling is done with replacement. This methodology
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decreases the variance of the model as individual trees are sensitive to noise and prone to over-

fitting. By randomly subsampling the data for each and every tree the correlation risk is low

and the bagging makes the process more robust without increasing the bias.

The random forest provides also feature bagging which at each split considers only a ran-

dom subset of features which reduces correlation among trees even more effectively. As every

decision tree is independent the model can be run in parallel to average all the predictions or

use a majority vote (mode) at the final stage. The final result of our model is calculated by

averaging over all predictions from these sampled trees or by majority vote.

1.2 k-Nearest Neighbor

k-Nearest Neighbor is a non-parametric algorithm used in classification and regression prob-

lems. It is instance-based learning i.e. instead of performing explicit generalization the func-

tion approximation is done locally and computations are postponed until classification [15]

[16]. The idea behind k-NN concentrates on feature space of all the training samples where

for a new test observation k nearest objects from train dataset are found. Based on those a

particular class is assigned to a new sample with respect to the predominance of that class in

the neighbourhood.

Figure 2.3: k-Nearest Neighbor algorithm presented in the feature space X1 and X2 using
different values of k (3 and 6) classifies new data point (red) based on the majority of samples
in the neighborhood.
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Three key aspects have to be considered while using this approach. The data has to be

labelled (supervised learning), metric for computing distance (or similarity) between samples

has to be chosen and the number of neighbours that influence the final output, hyperparameter

k needs to be selected.

Given a new test sample z = (x0,y0) and training dataset D, the algorithm computes the

distance between z and every observation in dataset (x,y)eD to define Dz (all nearest neighbour

samples), where Dz ✓ D. Then based on Dz , test object is classified using majority voting:

Ma jority Voting : y0 = argmaxc S(xi,yi)eDz I(c = yi), (2.4)

where c represents class label, yi is a label of the ith neighbor and I() is an indicator function

which if true returns 1 and 0 otherwise.

Several aspects have a significant influence on the performance of k-NN. Choosing the

right number of neighbours, k, can result in either a model sensitive to noise (if k is too small)

or holding a higher number of samples from other classes (k being too big), as shown in Figure

2.3.

Finding the most efficient way of measuring the distance (or similarity) between two

points aims to create a relationship where the smaller the distance, the greater the likelihood

of belonging to the same class. The naive approach includes linear search where the distance

is being measured between every single point in the training dataset and the new sample. The

running time of O(dN), where N represents cardinality (no. of observations) of D and d is

the dimensionality of the feature space. In higher dimensional feature space, the naive search

usually outperforms space partitioning [17].

Space partitioning using the branch and bound methodology has been applied to the nearest

search neighbour problem to decrease the complexity of the algorithm. Using a k-d tree, the

search space is bisected into two regions (half-spaces) recursively creating hyperplanes that

result in a binary tree where every leaf node stores a k-dimensional point. Using traversal of

the tree query point can be found (starting from the root to a leaf) due to evaluation of the query

point at each split. Depending on k sometimes neighbouring branches has to be considered.

The average complexity (“for constant dimension query time”) is O(logN). Another type of

space partitioning algorithm divides the dataset into a nested set of balls (hyperspheres) hence

the name: ball tree. For every internal node, the dataset is partitioned into two disjoint subsets

which are assigned to different balls. Although the balls may intersect, the data in the subsets
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are explicit for each ball according to their distance from the ball’s centre point. Leaf nodes

are represented as balls with all the data points within. Thus, for an unseen test point t, the

distance between t and point in a subset (inside a ball B) is either equal or greater than the

distance between t and the ball which can be presented in a mathematical formula as follows:

DB(t) =

8
<

:
max(|t �B.pivot|�B.radius,DB.parent), if B 6= Root

max(|t �B.pivot|�B.radius,0), if B = Root
(2.5)

Where DB(t) represents the minimum distance between test point t any point in the ball B.

The last major issue is choosing the right approach to combine all yi, yieDz (class labels of

the nearest neighbours points). Although using majority voting is the common approach, in a

case where there is high variation in the distance (among nearest neighbours) and closer located

data points indicate more accurately the class of the test sample, another technique needs to be

applied. By weighting all samples in Dz by their distance to the object the prediction becomes

more accurate and usually less sensitive to hyperparameter k.

Distance�Weighted Voting : y0 = argmaxc S(xi,yi)eDz wi ⇥ I(c = yi), (2.6)

where wi represents weight that is reciprocal of the distance (squared): wi =
1

d(x0,xi)2 .

1.3 Principle Component Analysis

One of the popular techniques used for dimensionality reduction is Principal Component Anal-

ysis (PCA) [18]. This unsupervised technique projects data onto linearly uncorrelated orthog-

onal axes (principal components, PCs) in m-dimensional space. In order to find components

that describe the data the best, the variance in the data projected onto the PCs needs to be max-

imised. The first principal component captures variance of the data in the best possible way,

then others come in descending order.

Principal components can be found by calculating covariance matrix as defined:

A = cov(X ,Y ) = E[(X �E[X ])(Y �E[Y ])], (2.7)

where E(.) denotes an expected value (i.e. mean) and X and Y and two (random) variables. As

it is a square matrix, the eigenvalues and eigenvectors are calculated respectively:

det(l̄ I �A) = 0 (2.8)

(l̄ I �A)v = 0, (2.9)
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where det is the determinant of the matrix, l̄ represents eigenvalue, v is an eigenvector, I

denotes identity matrix and A is previously calculated matrix. The eigenvector corresponding

to the highest eigenvalue is the principal component that projects the data onto itself with the

highest variance.

Another technique frequently used to achieve principal components is Singular Value De-

composition (SVD) [19]. It is a factorization technique that decomposes a matrix M (m⇥n

matrix) from the data in the field K into the following:

M =USV ⇤ (2.10)

where U is a unitary matrix (U⇤U = UU⇤ = I) over K (if K = R , unitary matrix is as well

an orthogonal matrix), S is a diagonal m⇥n matrix which contains non-negative real numbers

and V is another unitary matrix of a size n⇥n over K, and V ⇤ is the conjugate transpose of V .

The entries on the diagonal in a S matrix are known as the singular values of M which usually

are listed in a descending order to rank eigenvalues (together with their eigenvectors) by the

measure of spreadability of the data.

Figure 2.4: A diagram of a Singular Value Decomposition and matrix U and V as unitary
matrix‡.

‡https://en.wikipedia.org/wiki/Singular_value_decomposition
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1.4 Linear Discriminant Analysis

Linear Discriminant Analysis is another technique used for dimensionality reduction and

pattern-classification [20]. The principle idea behind it is to project a n-dimensional dataset

in a lower-dimensional space k (where k  n�1) while preserving class-separability to avoid

overfitting, curse of dimensionality, and reduce computational costs. This linear classifier

has been formulated by Ronald A. Fisher in 1936, The Use of Multiple Measurements in

Taxonomic Problems [21]. While LDA and Principal Component Analysis approach is

generally similar, PCA focuses on finding the component axis that maximises the variance of

the data and LDA maximises the distance between multiple classes.

LDA finds most discriminant projection by maximising between-class distance and min-

imising within-class distance. Lets assume we have a set of 2-dimensional samples, the goal is

to obtain a scalar y by projecting samples x onto the line (where w represents the projection):

y = wT x (2.11)

Based on all the possible lines, the one which would maximise the separability of the scalars

would be chosen. The key to finding a good projection vector is defining a measure of separa-

tion between projections. This can be achieved by calculating the mean vector of each class in

x (2.12) and y (2.13) feature space as shown respectively:

µi =
1
Ni

Sxewix (2.12)

µ̃i =
1
Ni

Sxewiy =
1
Ni

Sxewiw
T x = wT µi, (2.13)

where N represents number of samples that belongs to a class w. Then the distance between

the projected mean values represents separability of two different classes after projection:

|µ̃1 � µ̃2|= |wT (µ1 �µ2)| (2.14)

19



2. Background

Figure 2.5: Distance between means of two classes where although in X1 the distance is greater
yet the overlap of the classes is higher showing poor class separability.

However, this is not sufficient enough, which is visualised in the Figure 2.5 as x1 has

a larger distance between the means of two classes while x2 gives better class separability.

Proposed by Fisher solution aims for maximisation of the distance between the means which

is normalised by within-class scatter. The scatter of a class (equivalent to variance) is defined

as:

s̃i
2 = Sxewi(y� µ̃i)

2 (2.15)

Within-class scatter of projected samples (s̃1
2 + s̃2

2) is an essential part of criterion function J

which linear function wT x aims to maximise. The Fisher’s LDA criterion is described as in the

equation 2.16. This results in efficient projection of the data onto the new feature space with

maximised between class separation as presented in the Figure 2.6.

J(w) =
|µ̃1 � µ̃2|2

s̃1
2 + s̃2

2 (2.16)

2 Deep Learning

In 1943, a logician, Walter Pitts, and a neuroscientist, Warren McCulloch presented the

first mathematical model of neural network [22]. Using propositional logic and various

applications of calculus they gave the origins to algorithms that attempt to mimic human brain

functionality. In 1947, one of the greatest brains in the computer science field, Alan Turing,

gave a talk in London Mathematical Society, where he said “What we want is a machine

that can learn from experience”. This brought artificial intelligence to a new era of machine
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Figure 2.6: Projection of a new feature space using LDA by maximising separation between
the classes and minimise within.

learning. In 1950, Turing also published a paper “Computing machinery and intelligence” [23]

where he introduced a phenomenon of The Turing Test, which originally was presented as The

Imitation Game. The main question was whether machines can think or not and to what level

a machine is supposed to act intelligently enough to be taken as a human being.

The main concept focused on designing a model that learns from previous experiences to

create accurate predictions [24]. Inspired by a human brain structure, neural nets became one

of the sub-fields of machine learning. A brain is made of 86 billion interconnected neurons

[25]. In a comparison of computational speed, machine outperforms neurobiological device

by 100,000 times. Although they can perform these type of tasks in an extremely quick time,

simple decision making, which a child is capable of, like face recognition is a challenge for

them [26].

However, the inspiration driven by a human brain decided to overcome this issue. The

process of learning by a child is formed on examples verified by their parents and the environ-

ment. Based on a trained dataset with labels, the neural network model predicts the output of

new data previously not known. When a child at first explores the world and learns, it is not

being told by parents what features look for in a cat: whiskers, shape of eyes, ears etc. It is be-

ing shown many examples of this animal that brain’s model processes and learns features from.

As a reflection of a human brain, an Artificial Neural Network (ANN) is an architecture

where the basic building block is an artificial neuron (perceptron) where the sum of the dot
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product of the inputs and weights
m

Â
i=1

wixi (where wi is weight assigned to each node xi and m

represents all the inputs) is then fed to the activation function to give a final output.

Figure 2.7: Single-layer perceptron (only one hidden layer) [27].

The other crucial design element taken from the brain is the ability to train the neurons,

using weights stored on synapses of the neural network to pass through only useful information

[25]. Based on the trained model ANN is enabled to make predictions.

In 1965, Alexey Ivakhnenko et al. developed the Group Method of Data Handling (GMDH)

and in 1971 he demonstrated the first working deep neural network. Using a feedforward 8-

layer neural network, he trained his model in a “computer identification system called Alpha”.

Then Kunihiko Fukushima in 1979-80, created neocognitron, a hierarchical and multi-layered

ANN which learnt how to recognize visual patterns and became an inspiration for the develop-

ment of convolutional neural networks.

Considered as a godfather of deep learning, Geoffrey Hinton et al. published a paper

about “Learning representations by back-propagating errors” in 1986 [28]. Use of the back-

propagation algorithm solved one of the biggest problems in multi-layer neural networks called

the credit assignment problem (Minsky, 1961) by calculating synaptic weight changes on each

layer [29].

2.1 Recurrent Neural Network

The concept of RNN (recurrent neural network) was shortly presented in 1974 [30], but the

actual notion of this model was presented by Hopfield Network in 1982 [31]. Usually, depend-

ing on the data and its characteristic the right approach is being chosen. In some cases, for
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instance, text translation, stock price prediction or sentiment classification, the data is sequen-

tial and the context is crucial (data inside the sequence are not identically distributed). Using

memory context in a process of translation, the following word can be heavily influenced by

its predecessors.

The memory mechanism learns from the past where at timestep t+1, previous information

(xt ,xt�1,xt�2, ...,x1) from timestep 1, .., t are projected onto the latent space ct . The parameters

q at the new timestep t +1 are re-used:

ct+1 = hq (xt+1,ct) (2.17)

which can be expanded to this form:

ct+1 = hq (xt+1,hq (xt ,hq (xt�1,hq (xt�2, ...hq (x1,c0)))) (2.18)

By looking as this formula we can conclude the model has a repeating block which can be

presented in a loop. When the memory mechanism is modelled then input, output and memory

I/O are assigned weights to form a structure presented in the Figure 2.8.

Figure 2.8: On the left side unrolled structure and its equivalent representation (using a loop)
on the right side.

The model is based on a chain of the same modules with a single tanh layer (Equation

2.19) which to be scaled down to the range between (0,1) uses softmax layer as presented in

Equation 2.20:

ct = tanh(U xt + W ct�1) (2.19)

yt = so f tmax(V ct), (2.20)

where standard (unit) softmax is defined as a function that after inputting a vector of M real

numbers, it creates probability distribution consisting of M probabilities (which sum up to 1)
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as in the following formula:

s(z)i =
ezi

ÂM
j=1 ez j

for i = 1, . . . ,M and z = (z1, . . . ,zM) 2 RM, (2.21)

where z represents an input vector and i is ith element of this vector.

Back Propagation Through Time is an extended form of back propagation used in neural

networks for optimization purposes. After unfolding an RNN the model essentially becomes a

very deep in time neural architecture. In order for the model to learn, it has to be trained where

by using a cost function (loss function) the output (ŷ) is compared to the desirable result (y).

Often used logistic regression which also known as cross entropy is used to calculate the error

at each timestep t (where t = 1, ...,T ) (2.22).

Lt(ŷt ,yt) =�yt logŷt � (1� yt)log(1� ŷt), (2.22)

which is used to find the overall loss of the entire sequence 2.23:

L(ŷt ,yt) = STy
t=1 Lt(ŷt ,yt). (2.23)

By calculating the gradient of a loss function (with respect to the parameters of the net-

work), the optimisation technique such as gradient descent aims to minimise the loss function

by updating the weights in the model. In recurrent neural networks, backpropagation happens

through the time where from Lt every single neuron that participated in this prediction at time

t should have their weight updated as presented in the Figure 2.9.

Depending on the problem formulation the models’ structure can have its variations (Figure

2.10). Typical Vanilla Neural Network will have fixed-size input and will give fixed-size output

and can be used for instance in image classification (A). Per contra, to create a model which

will output image captioning one to many relationship (image to a sequence of words) would

be used (B). In a case where the input is a sequence and the output is a vector (for instance

sentiment classification), many to one model structure would be created (C). When both, input

and output of the architecture are sequences, depending on the type of the problem the model

can have two forms as presented below. In a D sub-point the output is delayed which can be

used in language translation where the form of a certain word can be heavily influenced by the

others or use another structure (E) for video classification (on frame level).
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Figure 2.9: Backpropagation through time shown from the timestep t where based on Lt the
weights in the previous timesteps have to be updated.

Figure 2.10: Relationship types within sequence architecture where depending on the purpose
of the model the models structure varies.

2.2 Long-Short Term Memory

As previously mentioned, gradient descent is a technique used for optimizing the performance

of the architecture such as RNN. While all the weights are being updated in the process of

backpropagation, the common issue with long sequences is vanishing gradient descent. It is

caused by the gradient of the loss function getting smaller and smaller (approaching towards

zero) which makes the training process problematic. These long-term dependencies have been

solved in 1997 by Sepp Hochreiter and his supervisor during his PhD Jürgen Schmidhuber.

They presented Long Short-Term Memory(LSTM) [32] which structure includes 4 interacting

layers as in a Figure2.11.
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Figure 2.11: The LSTM structure with 4 interacting layers (indicated by a green colour)§ [32].

The main idea behind this model is a use of a cell state (the horizontal line which lies at the

top of the module). It works like a conveyor belt which has only 2 element-wise operations,

Equation2.27. Minor linear modifications allow to add and remove certain information from

the cell state which let is stay almost unchanged. In the first gate known as forget gate ( ft)

using sigmoid layer the model decides what information are redundant based on the output of

the previous timestep ht�1 and a new input in the following timestep xt (2.24).

ft = s(Wf [ht�1,xt ]+b f ) (2.24)

In order to decide what information shall be added, the following input gate (it) (Equation

2.25) is used to modulate the input followed by the C̃ (Equation 2.26) which generates a vector

of candidates using tanh layer (Equation 2.26). Updating the cell state is the result of forgetting

unnecessary information (by multiplying old cell state Ct�1 and forget gate ft) and adding new

candidate values thanks to it and C̃ (Equation 2.27).

it = s(Wi[ht�1,xt ]+bi) (2.25)

C̃ = (tanh(Wc[hc�1,xt ]+bc)) (2.26)

Ct = ft �Ct�1 + it �C̃ (2.27)

The last, output gate ot(Equation2.28) together with tanh value of Ct enables finding a value to

be taken by ht (hidden layer vector), the output:

ot = s(Wo[ht�1,xt ]+bo) (2.28)

ht = ot � tanh(Ct) (2.29)
§https://colah.github.io/posts/2015-08-Understanding-LSTMs/

26



2. Background

2.3 Gated Recurrent Unit

Another type of recurrent neural network presented in 2014 by Cho et al. was Gated Recurrent

Unit (GRU) [33]. The model shows its simplicity which makes it a lighter version of LSTM

including computational cost and its topology. The main structure of this network is presented

below.

To avoid vanishing gradient problem, GRU uses update (zt) and reset (rt) gates. These

vectors decide what information will go through to the output. To update gate we use the

following formula which applies sigmoid activation function (s ):

zt = s(Wz[ht�1,xt ]) (2.30)

The reset gate decides what information are redundant:

rt = s(Wr[ht�1,xt ]) (2.31)

Then h̃t is calculated using rt to store related information from the previous layers. This new

memory content h̃t is then used to produce the final memory at the current time step ht (2.33):

h̃t = tanh(W [rt �ht�1,xt ]) (2.32)

ht = (1� zt)�ht�1 + zt � h̃ (2.33)

Figure 2.12: Structure of Gated Recurrent Unit ¶.

According to studies, it is unclear which RNN is better. While GRU is faster due to the

fewer number of parameters, LSTM with sufficient computational power and enough data ob-

tains better results [34]. Nevertheless, investigating time dependencies in spatio-temporal data

using RNN will be performed.
¶https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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3 Evaluation Metrics

Evaluation is an essential part of a machine learning algorithm where the performance of the

model can be verified and evaluated using various measurement techniques. Two main com-

ponents that these analyses are based on are actual class labels known as well as ground truth

labels (y) and predicted class values (ŷ). Four different categories are created based on those

values. True positive (TP) values are positive samples correctly classified while false positive

(FP) represent negative tuples which are not labelled correctly (as positive). Negative tuples

that are correctly classified are named as true negative (TN) and false negative (FN) symbolize

misclassified positive tuples as negative. These categories are used as fundamentals of metrics

for evaluation accuracy.

Figure 2.13: Confusion matrix representing combination of ground truth and predicted values
resulting in four different categories: true positive (TP), true negative (TN), false positive (FP)
and false negative (FN).

Based on these values the accuracy (recognition rate), proportion of correctly predicted data

samples against all data, can be calculated (2.34). The other evaluation metrics which evaluates

how many selected items are relevant is based on the number of correctly predicted samples

from all the positive ones is precision (2.35). The recall known as sensitivity or true positive

rate calculates how many relevant items are selected as a result of a number of real positive

values (T P) against all samples predicted as positive (Equation 2.36, Figure2.14). Depending

on precision and recall, F1 Score is “weighted average” of them are presented in Equation 2.37.

Accuracy =
T P+T N

FP+FN +T P+T N
(2.34)

Precision =
T P

FP+T P
(2.35)
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Recall =
T P
P

(2.36)

F1 Score =
precision⇥ recall ⇥2

precision+ recall
(2.37)

Figure 2.14: Figure presents predicted values where based on number of selected elements and
relevant elements precision and recall can be calculated.

4 EEG Data

In 1875, Richard Caton as the first man, observed on the exposed brains of monkeys and rabbits

EEG. Then in 1924, German psychiatrist, Hans Berger recorded the electric field of a human

brain and named it electroencephalogram (EEG). Between 1929 and 1938 he published 20 sci-

entific papers based on this discovery [35]. After describing the technique for recording the

electrical brain activity from the human scalp in 1929, he faced scepticism and doubtfulness

which disappeared after replicating Berger’s experiment by Lord Adrian, Cambridge physiol-

ogist, in 1934 [36]. Nevertheless, his method due to its non-invasive nature is still used for

diagnosis of a variety of brain diseases such as stroke, tumour and other focal brain disor-

ders [37].

Electroencephalography is an electrophysiological monitoring technique that acquires elec-

trical activity in a human brain using sensors (electrodes) on the surface of the head. EEG data

is measured by recording voltage fluctuations from ionic current within neurons [38]. This
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happens due to the synaptic excitation of dendrites inside of pyramidal neurons in the cere-

bral cortex where current flows are produced. Differences of electrical potentials are caused

by summed postsynaptic graded potentials from pyramidal cells that create electrical dipoles

between soma (body of a neuron) and apical dendrites (neural branches) [39].

Recording small potential changes in the EEG signal as a direct result of a thought process

or perception in response to an internal or external stimulus is known as Event-Related Poten-

tials (ERPs). It is an often-used technique for analysis of psychophysiological states within the

brain. One of its biggest advantages of EEG is the temporal resolution which lets us precisely

define the timing of neural activity and sequence of mental operations. However, a lack of

spatial resolution leads to difficulties in localizing brain neural activity.

5 Machine Learning in Neuroscience

Deep learning has many applications in various fields where medical data analysis is one of

the fields evolving rapidly using image classification, segmentation, object detection etc. [40].

Over the past few years, a great amount of research has been done towards the brain data

analysis. Using Magnetic Resonance Imaging, disorder classification (Alzheimer’s disease,

MCI and Schizophrenia) was investigated using numerous deep learning models [41] [42].

As most of the researches based on EEG data is focused on the binary activity of a sin-

gle person, multi-brain and multi-class scenario needed further investigation. Conducted by

Xiang Zhang et al. research presented a “Multi-Person Brain Activity Recognition via Com-

prehensive EEG Signal Analysis [43]. This study approaches the multi-person and multi-class

brain activity recognition solutions while dealing with massive noises in raw EEG data and the

“low signal-to-noise ratio” in this data. Achieving this goal was based on employing XGBoost

classifier on extracted by Autoencoder (AE) features from EEG data.

EEG data has been gathered from PhysioNet eegmmidb (EEG motor movement/imagery

database), collected by BCI2000 (Brain-Computer Interface) instrumentation system. While

EEG data was recorded the subject had five tasks to do:
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Task 1: The subject closes eyes and remains relaxed.

Task 2: When a target appears at the left side of the screen then subject

focuses on the left hand and imagines opening and closing this hand until the

target disappears.

Task 3: When a target appears at the right side of the screen then subject

focuses on the right hand and imagines opening and closing this hand until the

target disappears.

Task 4: When a target appears on the top of the screen then subject focuses on

both hands and imagines opening and closing them until the target disappears.

Task 5: When a target appears at the bottom of the screen then subject focuses

on both feet and imagines opening and closing them until the target disappears.

The experiment was conducted on 560,000 samples from 20 subjects and 5 classes. Every

sample corresponded to one of the five tasks and represented a vector made of 64 channels.

Figure 2.15: The methodology flowchart represents EEG data used as an input to Autoencoder
where xi indicates input layer, hi hidden layer and x

0
i output layer. The compact form of the

data (h) is sent to an XGBoost classification model with K trees. The prediction is based on
the user’s brain activity and five actions (classes) they performed [43].

To discover and analyze the discrepancy between different EEG classes with robustness

over different subjects they considered the effect of normalization methods, the training data

size and the impact of a neuron size in hidden representation in Autoencoder (number of di-

mensions of extracted features).

After analyzing widespread normalization methods, a Z-score outperformed Unity and

Min-Max by achieving the best test error results. This normalization method was used through-

out the whole study.
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Figure 2.16: Comparison of three different normalization methods applied to 121 neurons
in hidden layer which implemented into XGBoost produced test errors over the number of
iterations [43].

While investigating training data size, five experiments with a proportion of 60%, 70%,

80%, 90% and 95% were considered. After performing five iterations, the test error was the

lowest (0.206) for the training dataset with the proportion of 95%. This ratio, 95% training and

5% of the testing dataset, was maintained throughout the whole study.

To evaluate the performance of varied classifiers applied to EEG data, 16 different meth-

ods have been investigated. As shown in Figure 2.17, the first 9 of the classification techniques

present typical data classifiers where based on the results, the highest accuracy was performed

by XGBoost (0.7453). The following 7 groups present the attempt of improving this score

by applying various feature extraction methods (e.g., PCA, AE and Discrete Wavelet Trans-

form). Based on the table, the best score (0.794) was achieved by an AE applied to XGBoost

method, where Basic Autoencoder with a hidden layer of 121 neurons outperformed Stacked

Autoencoder with 3 hidden layers: 100, 121, 100 neurons, respectively. What’s even more

interesting, the Stacked Autoencoder applied to XGBoost performed worse (0.7048) than an

XGBoost classifier by itself (0.7453).
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Figure 2.17: Comparison of 16 different classifications approaches that has been investigated
throughout this study [43]. Classifiers presented in a table are as follows: SVM, RNN, LDA,
CNN, DT, AdaBoost, RF, XGBoost. The last 7 groups uses various feature represenation meth-
ods, such as: PCA (Principal component analysis), AE, EIG (eigenvector-based dimensionality
reduction presented in Eigenface recognition) and DWT.

To prove the efficiency of this approach the case study was designed, where 172,800 samples

were gathered and collected from 5 subjects and 6 classes. The accuracy of 74.85% outper-

formed state-of-the-art methods.

On the 9th April 2019, a Journal of Neural Engineering published A.Craik et al. paper

about Deep learning for electroencephalogram (EEG) classification tasks: a review [44]. This

review of the literature was based on data from the past 5 years from Web of Science and

PubMed which resulted in 90 studies to analyse. The aim was to answer three critical questions

common for EEG classification problems. What type of EEG classification tasks have been

explored using deep learning, how the input of the data has been formulated and whether there

are certain architectures suitable for a particular type of tasks.

Classification of EEG data usually follows a pipeline which includes artifact removal, fea-

ture extraction and classification. Frequently used technique for artifact removal is known

as Independent Component Analysis (ICA) while Principal Component Analysis and Local

Fishers Discriminant Analysis (LFDA) are effective methods for dimensionality reduction.

Classical machine learning techniques such as Linear Discriminant Analysis, Support Vector

Machines, and Decision Trees are commonly used in classification tasks.

Based on gathered studies, there are six different groups representing different tasks: motor

imagery (22%), emotion recognition (16%), mental workload (16%), seizure detection (14%),

event-related potential detection (10%) and sleep stage scoring (9%) and other studies (13%).

Besides that, researchers analysed input formulation in all the studies to find three main cat-

egories of input formulation: calculated features (41%), the signal values (39%) and images

(20%) as shown in the Figure 2.18. As feature extraction is dominating input formulation

(41%), techniques such as statistical measures of signal, Power Spectral Density (PSD) and

wavelet decomposition were found to be the most common.
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Figure 2.18: (A) Input formulations across all studies. The inner circle shows the general input
formulation while the outer circle shows more specific choices. (B) General input formulation
compared across different tasks. Most tasks had calculated features as inputs, with seizure
detection studies instead having a much higher proportion of signal values. Key CVT: Com-
plex Value Transformation, CSP: Common Spatial Pattern, DE: Dynamic Energy, FFT: fast
Fourier Transform, MAD: Mean Absolute Difference, PSD: Power Spectral Density, STFT:
Short Time Fourier Teransform, SVD: Singular Value Decomposition, SWD: Swarm Decom-
position [44].

Input formulations are also task-specific where emotion recognition, motor imagery and

mental workload tasks use in majority calculated features whereas seizure detection, sleep

stage scoring, and event-related potential analysis tend to use the signal as input values. In

terms of classification techniques, Convolutional Neural Network (43%), Deep Belief Network

(18%) and Recurrent Neural Network (10%) outperformed Stacked Autoencoder (8%) and

Multi-Layer Perceptron Neural Networks (9%) in accuracy for classification tasks. While CNN

dominates, depending on the task different architectures are also desirable as presented in the

Figure 2.19.
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Figure 2.19: Proportions of deep learning architectures categorised by the task type. [44].

In summary, this systematic literature review presents EEG classification research under-

taken within the last 5 years using machine learning techniques. As we can see the classifi-

cation of EEG data can be approached in various ways depending on the data, different input

formulations and classification architectures are preferable. Some tasks are still in a need for

further in-depth research, yet this review gives high-quality guidance for future work.

6 Signal Decomposition

Frequently, a signal is presented as a relationship between time and amplitude. However, in

many cases, the frequency of the signal is desired. A popular useful technique for analysing

the frequency components of the signal is known as Fourier Transform (FT) [45]. According

to Joseph Fouriers theory which is based on Euler’s formula, every signal f (t) can be

decomposed using a series of sine waves with different frequencies w [46](Equation 2.38).

The high frequency resolution in FT enables finding peaks in the frequency spectrum which

indicates the most frequently occurring frequencies in the signal. Although Fourier Transform

can produce exact frequencies present in the signal, their location in time is unknown as FT

has zero resolution in time-domain. An alternative type of signal decomposition which makes

a trade-off between resolution in frequency and time domain is Wavelet Transform. The ability

to analyse signal at different frequencies with different resolutions is known as Multiresolution

Analysis (MRA).
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F(w) =
Z •

�•
f (t)e� jwtdt (2.38)

Wavelet Transform uses mathematical functions, wavelets to describe the signal [47]. Wavelet

is a rapidly decaying wave-like oscillation with zero mean which exists for a finite duration

(Figure 2.20). There are various types of wavelets and depending on the application, the choice

of the wavelet can vary.

Figure 2.20: Figure presents examples of different families of wavelets (with mean 0) ||.

Two main wavelet transform concepts are scaling and shifting. Scale refers to the signal

shrinking and extending in time where the scale value is inversely proportional to the frequency.

A stretched wavelet captures slowly varying changes in a signal while shrank wavelet is able

to recognize abrupt changes. Hence, scales which presents interesting time-dependent features

have high resolution in time-domain while scales which show interesting frequency-dependent

features have high resolution in the frequency domain.

Shifting on the other hands is responsible for advancing or delaying the onset of the

wavelet along the length of the signal. This helps in aligning the wavelet with the signal when

we look for a feature.

There are two main types of wavelets: Continuous Wavelet Transform (CWT) and Dis-

crete Wavelet Transform (DWT). CWT is a sum of scaled and shifted mother wavelet function

Y across all time of the signal which outputs coefficients of scale and time position (Equation

2.39).
||WaveletFamiliesMathworks
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C(scale, position) =
Z •

�•
Y(scale, position, t)dt (2.39)

While CWT can calculate wavelet coefficients at every possible scale it causes a huge amount

of data to deal with. Discretization method for the scale and the translation parameters is what

differs CWT from DWT. Using so-called dyadic scales and positions the signal analysis can be

much more efficient and still accurate. Signal analysis using wavelets is done through a filtering

process where signal S is passed through low-pass and high-pass filter. Each filter produces the

same amount of samples as the original signal. As the results from both filters are merged,

the signal will have twice as many samples as initially. Hence, downsampling is performed

to produce two sequences of coefficients, approximation: cA and detail: cD (each half-length

of the original signal) as shown in Figure 2.21. The approximations represent high-scale and

low-frequency components while details are the low-scale and high-frequency components.

The signal decomposition process can be iterated, where successive approximations can be

decomposed further creating wavelet decomposition tree.

Figure 2.21: Filtering process on signal S, where the signal is passed though high-pass and low-
pass filters then downsampled to create approximate (cA) and detail (cD) coefficients which
together have approximately the same size as the original signal**.

7 Summary

In this chapter related research work has been presented where various machine learning tech-

niques were applied to the EEG data. Presented survey of EEG classification gave us an

**https://www.ltu.se/cms_fs/1.51590!/wavelet%20toolbox%204%20user’s%20guide%
20(larger%20selection).pdf
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overview of task-specificity which influences the choice to input formulation and architectures

used for classification. Section 4 introduced EEG data characteristics which were followed

by classical machine learning techniques: Random Forest, k-NN, PCA and LDA explained in

depth. An idea behind an advanced branch of machine learning, deep learning, was then in-

troduced. Architectures which share the memory mechanism ideology with back-propagation

through time learning technique (such as RNN, LSTM and GRU) were then demonstrated.

As signal can be represented in different ways, signal decomposition technique was intro-

duced where the trade-off between frequency and time domain resolution using WT can be

applied. The last part of this chapter includes various techniques used for model evaluation.
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Dataset

1 Experiment

Conducted by ccBrain Lab experiment used visual stimuli (varied cues) with assigned to each

certainty of getting a reward to record and analyse the process of decision-making. Recruited

from Cardiff University School of Psychology 23 participants (20 females) were the subjects

of the experiment. The age range of participants was between 19 and 32, 22 of them were

right-handed. Unfortunately due to the quality of observed data, only data of 21 participants

were further used in the experiment analysis.

During experiment visual stimuli was shown on 24-inch LED monitor, situated approxi-

mately in a distance of 100cm in front of subjects. Using a response box (NATA technologies*)

the decision made by a subject was recorded. Each participant had to choose between two

shapes the one, with a higher probability of getting a reward. Two shapes had 100%, another

two had 80% and the last ones 20% probability of payoff (Figure 3.1). All the shapes (cues)

were presented on the black background and had the same colour, RGB = (246,242,92). The

subject was familiar with cues and their value before performing a decision making task. The

allocation of the reward for each shape was randomized across all the subjects and changed

half-way through the experiment (for each subject).

An experiment was based on 3 conditions: equal (e.g. 100% of probability of getting a

reward versus another shape with 100% of probability of payoff shape), not equal (e.g. 100%

versus 20%) and single. The study was conducted in 4 blocks each having 160 trials. Partic-

ipants took a break after every 40 trials and between the blocks. After block 1&2 the reward

*www.http://www.natatech.com/
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probabilities were re-mapped for all participants to reduce the possibility of a bias associated

with particular cue shapes. For experiment analysis block 1&2 were defined as First Part of

the results, while block 3&4 were associated with the Second Part. Each block consisted of

40% of the trials in equal condition (32 trials for 100% vs. 100%, 16 for 80% vs. 80% and

16 for 20% vs. 20%); another 40% for not equal (32 trials for 80% vs. 20%, 16 for 100% vs.

20% and 16 for 100% vs. 80%) and 20% of the trials on single (16 for 100%, 8 for 80% and 8

for 20%). In equal condition the choice of a cue shape did not affect the result as the chance of

getting the reward for both shapes was noted with the same probability value.

Figure 3.1: On the left side 6 different shapes were presented. The allocation of the probabil-
ity of the reward to shape was randomized for all participants. The allocation of the reward
probability was changed halfway through the experiment for each participant†.

As presented in Figure 3.2 the maximum duration time of a singular procedure was

5100ms. Firstly, the subject saw a fixation point at the centre of the screen for 500ms. Then de-

pending on the case, different variations of cues appeared on the left and right side of a fixation

point in a horizontal distance of 4.34� on the screen. In equal and not equal cases 2 different

cues appeared on the left and right side of the screen. The subject had to choose by pressing

the left or right button using the right-hand index and middle fingers. For a single case, a shape

appeared only on one side. Each subject had maximum 2000ms to make a decision. The cues

disappeared after the maximum time duration was reached or the subject chose the shape. In-

stant feedback on the screen (whether a subject received 10 points or not) was then shown for

800ms followed by a random intertrial interval. The total game points were printed out at the

bottom of the screen throughout the experiment.
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Figure 3.2: A procedure of decision making during the experiment †.

The most interesting results of this study showed a peculiar tendency in timing decision

deadlock where the higher probability of getting the rewards was, the quicker subject was able

to make up their mind. Although in all three cases subjects had to choose between equally

rewarding shapes, the timing was varying as shown in Figure 3.3. The reaction time (RT) of

the results in all scenarios was higher for First Part than for Second Part. During the breaks,

the subject saw on the screen cue reward mapping and participants were allowed to take time

in the process of memorising them.

Finding the reasoning behind this decision making deadlock problem and comprehending

the results of it is the main purpose of this research. Proving these 3 cases to be discriminative

will confirm the initial observations gathered from ccBrain Lab.
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Figure 3.3: Results of equal condition where First Part denotes block 1&2 and Second Part
denotes 3&4 †.

2 Data Preprocessing

Data gathered by the Jiaxiang Zhang (principal investigator at ccBrain Lab) et al., comes from

highly advanced medical equipment which they use to obtain magnetic resonance imaging,

electroencephalography and Magnetoencephalography data. Using this type of data cogni-

tive tasks like decision making, reading, remembering and paying attention can be investi-

gated. For the purpose of this research, EEG data was gathered during the experiment ‡. Elec-

troencephalography is a non-invasive, electrophysiological monitoring technique that enables

recording electrical activity in a brain using sensors (electrodes) on the scalp §. EEG data is

measured by recording voltage fluctuations from ionic current within neurons [38] and it has

been recorded using 32-channel Biosemi ActiveTwo device.

Below, Figure 3.4 presents the EEG cap with 32 channels (channel 33 and 34 are used

for artifact removal, hence not relevant). Each of them is localised on the scalp where the

number corresponds to the signal index that has been gathered from a particular localisation.

This model by enabling us to visualise the location of channels from the data can be used for

analysis in the future.
†https://ccbrain.org/
‡https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/
facilities/electroencephalography-labs

§http://drmridha.com/services/eeg
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Figure 3.4: Channel localisation on EEG cap model where channel 33 and 34 are irrelevant
(used for removing artifacts in the preprocessing stage).

For each subject in each case, there were 32 channels and 350 time frames. In the data,

there is a small non-uniformity towards the number of trials performed in different cases. While

in Equal80 and Equal20 case the number of trials was 64, the Equal100 case has 128 trials.

This certainly has to be taken into account while modelling the classification architectures.

Additionally, raw EEG data has been transformed by ccBrain Lab using several preprocessing

techniques including:

• Linked ears reference subtraction

• Filtering data from 0.1 to 100 Hz + notch filter in 50 Hz; downsampled to 250 Hz

• ICA artifact rejection (decomposing signal into 50 spatial components)

• Correction of bad channels
§https://ccbrain.org/
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• Low-pass filtering at 40 Hz; creating epochs from -400ms to 1000ms and time-locking

to the onset of the stimulus in each trial. ‘Every epoch was baseline corrected by sub-

stracting the mean signal from -100 ms to 0 ms relative to the onset of reward cues’ [4].

2.1 Data formatting and normalization

The data provided by ccBrain Lab include three structures inside of Full Data representing

equal cases where each of them contains separate 21 subjects matrices with data. The dimen-

sionality of the data in Equal100 is 32x350x128 and 32x350x64 in Equal80 and Equal20 cases.

Figure 3.5: Signal data from 32 channels in single trial (350 timesteps) was transformed to be
used for further analysis in a frame wise manner. Each frame represented time t with signal
data from all the channels recorded in this time.

As Matlab is a powerful language to deal with numerical data, by using permutation func-

tion the data has been transformed to be read frame-wised, such that the first two dimensions

of the matrix were swapped (Figure 3.5). Then, after concatenating trials along the first di-

mension (rows) each subject in Equal100 case had 44800 samples while Equal80 and Equal20

cases have 22400 samples (each) of data all with 32 channels.

Inspired by the Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Anal-

ysis” paper [43], a normalization of the data has been implemented. To assure the input features

are not dominated by the others (depending on the different scales) using normalization meth-

ods such as Min-Max Normalization, Z-score Scaling or Unity Normalization prevents occur-

ring of such a case [48]. To achieve a range of [0,1], Min-Max Normalization (xnew = x�xmin
xmaxxmin

)

or Unity Normalization (xnew = x
Sx ) where features are being re-scaled according to the per-

centage or the weight of each element while Z-score is based on mean value (µ) and standard

deviation (s ) in xnew = x�µ
s are proposed. According to [43] classification on EEG data using
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Z-score gives the best results, hence this normalization technique was applied to our data.

To keep the data balanced after normalising Equal100 data, the trials were randomly shuffled

and 64 trials were extracted to be used further in the research. The risk of bias towards one

case was minimised by balancing the data throughout all the subjects.

2.2 Feature Extraction

Before further analysis of the EEG data, feature extraction for finding meaningful information

from the data is often applied. According to a systematic literature review of EEG classification

from past 5 years found on Web of Science and PubMed databases [44], statistical measures

of signal, power spectral density and wavelet decomposition are most common approaches for

input formulation. One of the statistical measures used in this work was 1st order derivative,

known as a gradient. It represents a rate of change of a function which often is presented as the

slope of the function. It is also known as a measurement of the sensitivity towards the change

of the function value. The generic formula known as Leibniz’s notation of a derivative f 0 where

a change of x is expressed as dx and derivative of y with respect to x is shown below:

f 0 =
dy
dx

(3.1)

The derivative of x can be also represented as a limit function:

f 0(x) = lim
h!0

f (x+h)� f (x)
h

(3.2)

When we deal with real data and simple analytic forms of the derivatives dont exist, approxima-

tion of derivatives by finite differences is used. There are three main types: forward, backward

and central differences defined respectively as:

Dh[ f ](x) = f (x+h)� f (x). (3.3)

—h[ f ](x) = f (x)� f (x�h). (3.4)

dh[ f ](x) = f
�
x+ 1

2 h
�
� f

�
x� 1

2 h
�
, (3.5)

where h represents spacing within the data [49]. In our data, gradient is computed using central

difference in the interior points and accurate one-sides (forward or backwards) differences at

the boundaries.

The second feature extracted from the data was 2st order derivative. It denotes the rate of

change of the rate of change of a point x in the graph defined as well as the rate of change of a
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quantity is itself changing¶. It is simply a derivative of a derivative of a function f ( f 00 = ( f 0)0).

In Leibniz’s notation it is represented as:

d2y
dx2 =

d
dx

✓
dy
dx

◆
(3.6)

This again is applied using previously mentioned three different finite differences on our data.

As the returned differences have the same shape as the input vector, the dimensionality of each

observation changed from 32 channels to 96 features.

While these feature extraction techniques are used in a both approaches, features extracted

from decomposed signal are presented below.

¶https://en.wikipedia.org/wiki/Second_derivative
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3 Summary

In this chapter, the experiment settings and procedure were presented. Additionally, the initial

findings from ccBrain Lab were used to formulate the hypothesis of this research. Finding rea-

soning behind specificity of such behaviour would help us understand the processes happening

within our brains and its activity whenever we face a decision to be made.

Furthermore, preprocessing steps performed by CUBRIC neuroscientists were stated and

followed by additional data formatting and normalisation. The last section presented various

techniques used for feature extraction which are used in the following experiments.
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Chapter 4

Frame-wise Approach

Due to the complexity of the signal data, binary classification is investigated firstly. As men-

tioned in a Chapter 3, the data is structured in a way where 32 channels correspond to features

which later were extracted to 96 features for each frame in a sequence. Each case has 64 trials

(for each subject) where a single trial consists of 350 timesteps.

Figure 4.1: Signal presented in a single trial in Case1 (100vs100) from a single subject. 32
different channels are plotted on the graph along a time axis. The presented rectangle shows
n-frame were the data is treated as a sentence of words (data from different channels in a
particular time step).

The frame-wise approach considers every timestep (frame) as a single observation to be pre-

dicted. Each time frame in a sequence is a vector of 32 channels (Figure 4) and its extracted
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features which belongs to the same class. For simplification, the following terminology will

be used. Case1 will represent decision deadlock case between 100% and 100% probability of

payoff, Case2 will stand for 20% versus 20% of payoff and finally, Case3 will represent 80%

against 80% of probability of payoff. For each scenario (Case1 vs Case2, Case1 vs Case3 and

Case2 vs Case3) classification is then performed.

1 Methodology

1.1 Subject Generic

For each experiment the data has been grouped where each subject Gi (ie{1,2,3, ...,21}) rep-

resented a group. Each group contained 22400 samples with 96 dimensions (features) for

each class (in binary case it gives 44800 data samples together). Using Leave One Group Out

cross-validation approach, each classification was performed 21 times for a particular machine

learning architecture where the model was trained on data from 20 subjects and tested on 1

unseen subjects data as shown in the Figure 4.3. Applying this validation technique enables an

efficient way to utilize the data where each subject is used as a test dataset once.

The test dataset included as mentioned before 44800 samples with 350 frames. Each frame

with its features is then predicted either as 0 or 1 to create 350 predictions. Using Majority

Voting based on the dominance of predicted values, a trial was assigned a final prediction value

(Figure 4.2). The accuracy of the prediction was then evaluated on 128 trials (two classes, each

with 64 trials) based on the ground truth and predicted values (Equation 2.34).

Figure 4.2: Figure captures majority voting on predicted frames within each trial (350
timesteps). Based on the majority of the predictions the trial is assigned the following pre-
diction value.
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Figure 4.3: Figure presents Leave One Group Out cross-validation where each subject is as-
signed to a particular group (1,21) with 22400 observations (each having 96 features) from
both cases to be fed to the estimator where the model will be tested on each group.

Using this methodology, classification was performed using Random Forest, k-Nearest

Neighbor and Linear Discriminant Analysis. However, as the accuracy was limited and the

dimensionality of the data is high, using dimensionality reducing technique to improve the

performance was proposed. To ensure the information within the data was preserved Principal

Component Analysis has been implemented. The modified data has been tested on previously

mentioned classifiers for further comparison.

1.2 Subject Specific

Due to the complexity of the data and its subject specific nature, narrowing down the problem to

only subject specific scenario was carried out. The experiment was performed on all 21 subjects

with their 128 trials (form both cases). To better understand the data, get more metrics and

solve an issue of a small dataset, k-fold cross-validation was performed. Once the observations

have been grouped by sequences, the data has been shuffled and split into 4 folds. As the
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number of folds had to be divisible by the number of trials and splitting data in half does not

leave much data for training the model while 8 folds leave test dataset with only 16 sequences

from both cases, 4-fold cross-validation was chosen. The test dataset followed the same idea

of predicting values with majority voting. The result of all the folds from one subject was then

averaged with additional standard deviation information. The classification was performed on

the same models as in the subject generic scenario.

2 Results and Discussion

2.1 k-Nearest Neighbors

As k-NN is a non-parametric model, i.e. it makes no assumption about the data distribution

hence no prior knowledge of the data is necessary and it has been applied to our data.

k-NN relies on a feature space of the training data, thus it can be sensitive to the outliers.

Although there is no training step this algorithm can be slow if brute force (compare

one-by-one to each training instance) approach is chosen for finding k nearest neighbours.

To avoid this issue, as mentioned in Section 1.2, space partitioning algorithm, Ball Tree

has been applied. Since the feature space where data is projected needs to have some

measure of the distance the euclidean metric system has been used. The most troublesome

part of this model is choosing the value of k, which after a couple of iterations has been set to 5.

As presented in the table below (Figure 4.4) the model prediction is restricted. While com-

paring accuracy between subject generic (S.G.) and subject specific (S.S.) approach, on average

subject generic case performs slightly better which can be caused by greater training dataset

(enabling feature space to be more interpretable). Yet, the highest averaged accuracy using

k-NN was achieved by Subject 3 (subject specific), with accuracy ⇠ 67%. Despite the fact

that Case1vs2 in subject generic approach achieved overall better results than Case1vs3 and

Case2vs3, in subject specific methodology Case1vs2 performs slightly worse and Case1vs3

has higher accuracy. As the accuracy in subject specific scenario is averaged across the folds,

standard deviation showed a divergence of the results of the folds where Case2vs3 has the

highest differences.
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Figure 4.4: Figure represents kNN for both, subject generic and subject specific case for all
the subjects. In subject generic case, the following subject in the row was used as a test dataset
during LOGO cross-validation.

Unfortunately, k-NN often suffers from the curse of dimensionality where although it

works well for a small number of input variables, increased dimensionality of the data leads

to a limited performance where k-NN struggles to predict the output of the unseen data point.

Besides that, k-NN does not have the ability to prioritise attributes to decide what features are

more valuable, each variable has the same importance, when predicting the class of the test

data set.

2.2 Random Forest

Random Forest is an ensemble technique which has been implemented for a couple of reasons.

It is more robust and efficient than most algorithms when dealing with large dimensional

space or a great amount of training data. While a single decision tree tends to overfit the data,

random forest combines the results of multiple decision trees to prevent it. As the model uses

bagging (randomly sampling subsets with replacement) on both dataset and features of the

trees in the forest, it enables the forest to reduce variance in comparison to regular decision

trees (with high variance and low bias). Unlike k-NN, RF is capable of providing feature
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importance measure which can indicate what variables are most significant among all.

Since the data is continuous, to define the best split Gini impurity has been applied together

with CART algorithm (both are mentioned in Chapter 2, Section 1.1). As decision trees can

be affected by outliers and noise in the data or simply overfit, a pre-pruning technique which

specifies the minimum number of samples required to create a leaf node has been applied

with a value of min samples leaf equal to 15. Also, the performance of the random forest is

influenced by a number of estimators (trees) in the forest. The test was performed on 5,10 and

15 estimators where although the difference in performance was minimal, 10 trees have been

presented.

Figure 4.5: Figure represents RF for both, subject generic and subject specific case for all the
subjects. In subject generic case, the following subject in the row was used as a test dataset
during LOGO cross-validation.

Although, RF performs better than k-NN in subject generic scenario when it comes to

subject specific, k-NN seems to interpret the data a little better than RF. Subject generic clas-

sification outperforms subject specific in all cases. In both S.G. and S.S. Case1vs2 performs

the best while Case1vs3 is lower (yet the difference in overall performance in Case1vs3 and

Case2vs3 is narrow). Again, Subject 3 achieves the best accuracy of ⇠ 80% (subject specific,
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Case1vs2).

Feature importance as one of the strengths of RF has the potential to improve the perfor-

mance of a model by reducing a number of features and preserving only the important ones.

Features whose importance value is above a certain threshold are then used to transform the

data and make the prediction. To find the most suitable threshold, feature importance for each

variable was calculated. Based on the sample of these values with the index of the features

in Figure 4.6 value 0.01 was chosen as the threshold. The number of features varied between

48 and 54. The experiment was performed on the subject specific scenario where the accu-

racy achieved by original data(with 96 dimensions) and modified data was compared for each

subject in all cases.

Figure 4.6: Table represents an example of an index of each feature and its feature importance.

In spite of the conjectures, the performance of the model on the data with important features

decreased by 1%. Based on it, further speculations of feature representation of the data can be

developed.
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Figure 4.7: Figure represents subject specific prediction using Random Forest on orig. (origi-
nal) data with 96 features and after thresholding feature importance to 0.01.

2.3 Linear Discriminant Analysis

While k-NN and RF are building models based on similarities in the data, Linear Discriminant

Analysis (LDA) focuses on creating differences between the classes of the data. It attempts to

explain the data based on linear combinations of the features within and between the classes.

Implementing this algorithm was an attempt for finding a linear approach to explain and clas-

sify the dataset.

One of the advantages of this model is no hyperparameter tuning. However, the solver

option can benefit the data where chosen for this experiment Singular Value Decomposition

approach does not compute the covariance matrix, hence it is suitable for high dimensional

data.

As presented in the table for both methodologies, subject generic and subject specific, the

accuracy is restricted. The highest value was achieved by Subject 2 (⇠ 58%) in Case1vs2

(S.G.). Case1vs2 also performs the best in both subject generic and subject specific scenario.

Standard deviation in S.S. indicates higher diversity of the results in Case1vs3 and Case2vs3.
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Figure 4.8: Figure represents LDA for both, subject generic and subject specific case for all the
subjects. In the subject generic case, the following subject in the row was used as a test dataset
during LOGO cross-validation.

Based on the results of the introduced models across all the subjects, the general com-

parison of their performance can be created. Figure 4.9 presented below shows the average

accuracy in both approaches across all the cases. While in subject generic case Random Forest

achieves the highest results, in subject specific: k-NN performs overall slightly better than

remaining architectures. Random Forest uses bootstrap aggregation which helps to reduce

variance and it works well with big datasets hence it performed better than others. For subject

specific scenario, k-NN that relies on the feature space was using the data from the same

subject for training and testing procedure. Diverse brain activity and signal formulation seem

to be subjective for each patient. This observation aligns with a neuroscientific notion of a

brain fingerprint where each person has their own signature pattern [50]. According to the

results, Linear Discriminant Analysis performs the worst which gives an assumption of data

being to complex for a linear classifier such as LDA.
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Figure 4.9: Figure represents average accuracy and standard deviation of the performance
across all the subjects in k-NN, RF and LDA for a subject generic and subject specific approach.

2.4 Dimensionality Reduction Model Enhancement

As the analysed data is high dimensional, it can be challenging for a model to explore and inter-

pret it. An alternative way to deal with the dimensionality of the data is to use a dimensionality

reduction technique such as PCA.

Described previously PCA, uses principle components to project the data onto itself while

aiming to maximise variance across the data. In this case, 95% of energy was aimed to be

maintained which means that the amount of variance to explain the data has to be greater than

the specified percentage. While in subject generic methodology this concurred to reducing the

number of features from 96 to 31, in subject specific scenario it varied across subjects and

models. The following result from each machine learning technique (k-NN, RF and LDA) was

presented in the tables below.

After applying PCA and classifying data using k-NN (Figure 4.10), the accuracy of the best

performance (Case1vs2, S.S.) dropped to 60%. Although Case1vs3 in S.S. gives respectively

lower results, overall the model has slightly better data interpretation prediction in both, S.G.

and S.S. scenarios across all the subjects. Standard deviation in subject specific scenario is

less diverse across the subjects than in experiment without PCA, hence prediction of the folds

varied less. This can be noticed especially by looking at Case2vs3 in S.S.

Comparing the results in Random Forest (S.G.), Case1vs2 and Case1vs3 performs better

for most of the subjects after dimensionality reduction (Figure 4.11). Previously mentioned

accuracy of a Subject 3, S.S., (⇠ 80%) dropped down to ⇠ 61%. For the majority of the

subjects in S.S. the accuracy slightly improved, yet the average accuracy across the subjects

shows a mild decrease. Also, standard deviation in subject specific scenario with PCA has

lower diversity across the folds. Besides that, subject generic case still predicts better than
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Figure 4.10: Figure represents k-NN+PCA for both, subject generic and subject specific case
for all the subjects. In subject generic case, the following subject in the row was used as a test
dataset during LOGO cross validation.

subject specific after applying PCA.

Linear Discriminant Analysis with PCA performed on average a little better (⇠ 2%)in

subject specific scenario (Figure 4.12). The prediction in subject generic case before and after

using PCA is fairly comparable in where 11 out of 21 subjects performed better after using

PCA in Case1vs2 and Case1vs3, but only 8 subjects achieved higher score after dimensionality

reduction. The average across all the subjects shows that 2 out of 3 cases (Case1vs3 and

Case2vs3) increased in their performance after introducing PCA to the model.
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Figure 4.11: Figure represents RF+PCA for both, subject generic and subject specific case for
all the subjects. In the subject generic case, the following subject in the row was used as a test
dataset during LOGO cross-validation.

Figure 4.12: Figure represents LDA+PCA for both, subject generic and subject specific case
for all the subjects. In the subject generic case, the following subject in the row was used as a
test dataset during LOGO cross-validation.
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Figure 4.13: Figure represents average accuracy and standard deviation of the performance
across all the subjects in k-NN, RF and LDA for subject generic and subject specific approach
after performing dimensionality reduction using PCA.

3 Result Overview

In all 6 models and 13 experiments presented above, various methods were used for analysing

the data. Unfortunately, the results are restricted in all cases. The first approach of subject

generic idea on k-NN, RF and LDA were used which resulted in RF achieving better scores

as it deals best with high dimensional data and large datasets (Figure 4.16). Proposed impor-

tance feature did not influence models performance. Despite the expectations, subject specific

approach didn’t improve the overall accuracy. However, while subject specific models were

trained on the subset of 33600 frames (96 trials), in the subject generic method the model used

LOGO cross-validation where training dataset consisted of 20 subjects, i.e. 896000 observa-

tions (2560 trials).

As one of the characteristics of high dimensional data is its complexity, the dimensionality

reduction was tested out. The overall results are shown in Figure 4.16. No significant im-

provement was experienced. Since k-NN is prone to curse of dimensionality it showed small

improvement after applying PCA to the data. The lowest-performing model LDA, in both ap-

proaches, with and without PCA, gave limited prediction outcomes proving that this problem

is not linearly separable. Interestingly, in majority of the experiments Case1vs2 had the high-

est accuracy showing that Case 100% versus 100% against Case 20% versus 20% is the most

distinguishable which aligns with our hypothesis, Chapter 3 Figure3.3.
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3.1 Significant Cognition Period

As in both of our methodologies we use frame-wise prediction with majority voting on a trial

(which includes 350 frames/observations) the value of each trial was assigned by the dominat-

ing output across a trial. However, by observing a number of frames being correctly predicted

in each trial the theory of analysing data as a sequence with a prediction pattern was shaped.

To comprehend and investigate this idea, the number of correct predictions per each frame was

tracked across all the subjects in k-NN, S.S. scenario.

Figure 4.14: The figure presents Case1vs2 with two visualisations of the density of correctly
predicted frames across the sequence. On the right side each subject has its distribution of the
observations which is merged into one, across subject signal prediction pattern in the plot on
the left.
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Figure 4.15: The figure presents Case1vs3 with two visualisations of the density of correctly
predicted frames across the sequence. On the right side each subject has its distribution of the
observations which is merged into one, across subject signal prediction pattern in the plot on
the left.

Figure 4.16: The figure presents Case2vs3 with two visualisations of the density of correctly
predicted frames across the sequence. On the right side, each subject has its distribution of the
observations which is merged into one, across subject signal prediction pattern in the plot on
the left.

Based on the presented results, in all 3 scenarios (Case1vs2, Case1vs3, Case2vs3), there is

a certain pattern across sequence. Every figure presents the density of correctly predicted

frames within a sequence of 350 frames. For each frame number of corrected predictions was

calculated and thresholded for enhanced visualisation. As test dataset consists of 128 trials in

subject specific case, the threshold was set to half of this value (64 trials). Presented figures

include two visualisations where on the right side univariate distribution was presented for each

subject. Then the results across all the patients were merged to find cross subject sequence

prediction pattern. As a result, all three scenarios present patterns of frames in a sequence that

contribute to higher performance (sequence prediction). This essentially gives us theory on

cognition pattern being time dependant where generic pattern across the subject is shared.

Besides that, among all scenarios, the end of a sequence contributes to the prediction the

most. Yet, in Case1vs2 and Case2vs3 there is information carried out at the beginning of the

sequence while in Case1vs3 the information builds up across the sequence. If the data would be
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treated as a sequence where information would be carried across the frames using a memory

mechanism to add up for the final prediction, the data could be discriminated satisfactorily.

This assumption leads us to the next step of the sequential approach.

4 Summary

This chapter presents the first approach for addressing the problem where each frame within

the signal is predicted separately. A single observation is made of 32 channels values from a

particular time frame t with additionally concatenated features (first and second-order deriva-

tive) extracted from it. Using majority voting of these predictions, the final outcome for every

trial sequence was defined. Two methodologies: subject generic and subject specific are used

in this approach. The subject generic methodology uses Leave One Group Out cross-validation

to efficiently utilize the data and ensure each subjects data would be used as test data.

The second approach deals with a single subject’s data to investigate subject specificity

aspect of it. As each subject has 64 trials in a case, for binary classification the total amount of

samples is equal to 44800 (128 trials). Using 4-fold cross-validation the model was able to get

more insight into the data despite the small size of it.

Due to the complexity and high dimensionality of the feature space, dimensionality re-

duction technique: PCA was applied to both methodologies. Based on the results of these

experiments, classical machine learning techniques turned out to be inefficient. While the

subject generic approach scored slightly higher, we presume it is due to the difference of train-

ing samples (subject specific: 33600 training observations, subject generic: 896000 samples).

The results of LDA model showed the complexity of the data and its inability to be linearly

separated. As Random Forest deals the best with large dimensionality and size of the data it

performed slightly better than others. PCA didn’t provide significant improvement where in

fact Random Forests score was slightly lower while k-NN due to the smaller feature space per-

formed a little bit better. According to the observations, Case1vs2 is the most distinguishable

which lines up with the observations made by ccBrain Lab.

Using feature importance ranking significant cognition period was observed. By tracking

correctly predicted frames within the trials for each case (across all the subjects) the generic

pattern for making a decision in a timeline was introduced. These conclusions give us the

grounds to suspect time-dependencies in our data.
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Chapter 5

Sequential Approach

In Chapter 4 frame-wise prediction ended up being a fiasco, yet after further analysis signal data

presented a unique prediction pattern within a sequence. To perform a further investigation,

the experiments for sequence classification were carried out in subject specific scenario with

4-fold cross-validation like in frame-wise approach. Two methodologies are introduced in this

section where different signal representation is used in classification.

1 Methodology

1.1 Self Learnt Features with Neural Networks

While in frame-wise approach majority voting across the frames indicated the final prediction

value of the sequence, no information between the frames was shared. Based on the findings

the beginning and the end of the signal sequence contributes the most to its correct classifica-

tion. Using memory mechanism where information from the previous frames (n� 1),(n� 2),

... ,1 where {n = 1,2, ...,350}, neN is passed to the following nth frame could improve

the prediction of the signal. Using time dependencies for sequential data classification is a

common technique for preserving the memory context as mentioned in a Chapter 2 Section 2.1.

For each trial, a sequence of frames is input to the model to predict the value of the sequence

using a many-to-one relationship. Previously introduced group of deep learning architectures

which act as a chain of the same modules falls into the group of Recurrent Neural Networks

where Vanilla Recurrent Neural Network, Long-Short Term Memory and Gated Recurrent Unit

are implemented.
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1.2 Hand-Crafted Features

Hitherto, data analysis was performed in the time domain where the signals from all the chan-

nels were presented in a time-amplitude manner. As mentioned previously in [44] another

common approach for signal analysis uses frequency of the signal for an input formulation

(Figure 2.18).

The Fourier Transform (FT) decomposes a signal into the frequencies it consists of yet it

has zero resolution in the time domain. As we presume the data to have time dependencies,

preserving time component is crucial. To achieve it discrete wavelet decomposition was

applied. While various wavelets have been tested, Daubechies 2 (db2) is one of the wavelet

commonly used for feature detection and it is effective with noisy data *.

To decompose signal the level of the decomposition has to be specified. Using Equation 5.1

the maximum level was computed using length of the input vector and filters length (db2) to

result in max level equal to 6. Signal from each channel was then decomposed into 6 different

levels of approximate and detail coefficients which wavelet decomposition vector consists of

(Figure 5.1).

max level = blog2(
data len

f ilter len�1
)c (5.1)

Figure 5.1: Representation of wavelet decomposition from data X into 6 different levels of
wavelet coefficients with denoted as cD(1-6) and cA(1-6), where c - coefficient, D - Detail/
A - Approximation and the number represents level of decomposition.

*https://www.mathworks.com/help/wavelet/gs/choose-a-wavelet.html
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As a result, from previously presented sample trial with 32 channels of the signal in Figure

4.1 data has been transformed to frequency-time domain and produced following data repre-

sentation:

Figure 5.2: Transformation of sample signals from a single trial presented in Figure 4.1 to
frequency-time domain.

Following the structure of the wavelet decomposition vector presented in Figure 5.1

deepest levels of decomposition with the highest frequency components are situated in a front

part of the vector. For further analysis of the coefficients, different sub-bands of a signal were

visualised. From previously presented decomposed signals, channel one was visualised below,

Figure 5.3. While cA6, cD6, cD5, cD4, and cD3 show great variety in coefficients (for this

specific signal decomposition (37,-20), (44,-67), (49,-27), (20,-36) and (14,-14) respectively),

the remaining detail coefficients from level 1 and 2 are not that informative with margin (5,-5)

and (1,-1).

To perform sequential classification, all channels within an observation have to be included.

To avoid redundant features and curse of the dimensionality, coefficients with higher diversity

of the frequency components from cA6, cD6, cD5, cD4, and cD3 are included further in ex-

periments.
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While changing signal representation to gather insightful information from the data, addi-

tional feature extraction is performed. In Chapter 3 second set of presented features including:

frobenius norm [51], entropy, zero crossing, mean crossing, 5th percentile value, 25th per-

centile value, 75th percentile value, 95th percentile value, mean, median, standard deviation,

variance and Root Mean Square value were calculated for each of the sub-bands resulting in

65 features for each channel signal. To achieve connectivity between the channels within the

trial, features from 32 channels were flattened into a single observation to be then fed into a

classifier. Due to the high dimensional space of the data, Random Forest and Fully Connect

Neural Network were tested.

2 Results and Discussion

2.1 Self Learnt Features with Neural Networks

2.1.1 Recurrent Neural Network

As mentioned before in Chapter 2, Section 2.1 Vanilla Recurrent Neural Network is an archi-

tecture that re-uses cell (group of units) across the sequence. A number of units highly depends

on the feature space, where various instances are examined. The optimal number of units with

tanh activation in our case turned out to be 48. Moreover, to reduce the complexity of the

model, regularization technique, dropout of 0.2 (where randomly chosen 20% of units within

a layer are deactivated to prevent overfitting) was added to the architecture. The final, dense

layer which outputs 1 value {0,1} with sigmoid activation function was used.

During the learning process, the model compares the ground truth label with the predicted

output which is done using loss function. In our case, where the output is binary {0,1}, binary

cross-entropy (Equation 2.22) was implemented. To update the weights of the model an opti-

mizer such as Adam [52] is used. The model can learn in a stochastic or batch-size way where

the weights update is done after every single observation (stochastic) or a specified number

of samples (a batch). The stochastic approach was chosen in this architecture. The optimal

number of iterations through the entire dataset during the training process, known as well as

a number of epochs, was set to 10 where the higher number of iterations caused even larger

overfitting issue.
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Figure 5.4: Vanilla Recurrent Neural Network results in the subject specific scenario where
for each case 21 subject recordings are presented. Each subject experiment was performed
on 4-cross validation folds which were averaged at the end to produce average loss, average
accuracy and standard deviation of both metrics.

Although the results are tight, Case2vs3 remains less distinguishable than others and

achieves lowest scores. Across all the cases, Subjects 5,6, and 21 struggled with predicting

data. Case1vs2 and Case1vs3 perform similarly, yet on average Case1vs2 scores higher which

supports initial observations presented in Figure(3.3). The highest accuracy was achieved by

Subject 1 in Case1vs2: 61.719%. Average loss value presents the average error between the

predicted value and the actual label which model tried to minimise. Yet, the smallest value of

the loss is 0.816 while in its peak it is 1.486. Although many hyperparameters were tweaked,

the model struggled to learn effectively. As the classification of long sequences can be chal-

lenging for architectures such as RNN which often suffer from exploding/vanishing gradient,

Long Short-Term Memory architecture was implemented.

2.1.2 Long-Short Term Memory

Long-Short Term Memory uses the cell unit to improve long term dependencies within the

sequence. After multiple tests, the optimal architecture giving the highest results was finally

established. The architecture had 3 stacked LSTM layers with 144, 96 and 48 units respectively.
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Each of them was followed by a dropout layer of 50% with two dense layers at the end (10 and

1 output space values using sigmoid activation function).

Similarly to RNN architecture, the model was trained using binary cross-entropy and

weights were adjusted thanks to Adam optimizer. While previously the model used a stochastic

learning approach, LSTM performed slightly better using 32-batch size training method. The

optimal level of epochs was set to 15.

Figure 5.5: Long-Short Term Memory results in subject specific scenario where for each case
21 subject recordings are presented. Each subject experiment was performed on 4-cross val-
idation folds which were averaged at the end to produce average loss, average accuracy and
standard deviation of both metrics.

This experiment resulted in performance improvement. In the majority of the subjects

across all the cases, LSTM was able to predict slightly better than RNN. Case1vs2 was the most

distinguishable, yet the highest accuracy was achieved by Subject 10 in Case1vs3. Case2vs3

improved more wherein LSTM 3 subjects scored above 60% with the average accuracy. The

loss remained high, yet in many cases, there is a visible increase, such as Subject 6 in Case2vs3:

2.0395.
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2.1.3 Gated Recurrent Unit

To test an alternative approach for dealing with long term dependencies, Gated Recurrent Unit

was implemented. The optimal architecture across all the subjects was designed using 3 GRU

layers with 144, 96 and 48 units respectively. Each GRU layer was followed by dropout of

50%. The last two were dense layers which had 10 and 1 neurons respectively, with sigmoid

activation function.

Hyperparameters for learning process were chosen similarly to LSTM, where the model

used binary cross-entropy loss function with Adam optimization technique which updated

weights every 32 observations (32 batch training). The number of epochs was set to 20.

Figure 5.6: Gated Recurrent Unit results in the subject specific scenario where for each case 21
subject recordings are presented. Each subject experiment was performed on 4-cross validation
folds which were averaged at the end to produce average loss, average accuracy and standard
deviation of both metrics

The results of GRU subject wise showed an improvement in average accuracy across the

subjects, yet in comparison to LSTM subject specific accuracy improved in the majority of

subjects only for Case1vs2. The highest accuracy was achieved by Subject 20 in Case1vs3

and the smallest average loss value belonged to Subject 2 in Case1vs2. In Case2vs3 only one

subject scored this time above 60%.
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The average value across the subjects was calculated and presented below (Figure 5.7). In

all cases, architectures were unstable where generalising the problem and extracting valuable

information from the data remained challenging (even though regularisation techniques such

as dropout were used). Models behave during training and prediction changed and varied from

subject to subject and also within the subjects which indicate huge instability of the models

where high loss gives an assumption that models are uncertain of the prediction. While there

were a few subjects which performed significantly better than others, the overall results were

limited. The complexity of the data and its subject specificity increases the complexity of

experiments. The alternative approach for input formulation mentioned in [44] was performed

using signal transformation.

Figure 5.7: Figure presents averaged across subjects results from sequential approach using
RNN, LST and GRU.

2.2 Hand-Crafted with Wavelets

2.2.1 Random Forest

Proposed input formulation is formed by decomposing signal using Discrete Wavelet Trans-

form (DWT). As mentioned previously in this chapter in Section 1.2, the signal from each

channel was decomposed into 6 sub-bands using Daubechies 2 wavelet resulting in 364 wavelet

coefficients. For cA6, cD6, cD5, cD4, and cD3 sub-bands 13 features were extracted, resulting

in 65-dimensional feature space of the signal. Concatenated and flattened representations of

channels within a sequence (a single trial) were used as a single observation with 2080 fea-

tures. From classical approaches, Random Forest which handles high-dimensional data was

implemented using Gini Impurity together with CART algorithm. The architecture was based

on 20 estimators. Additional pre-pruning to prevent outliers where minimum leaf sample of

value 30 was applied.
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Figure 5.8: Figure presents results table of subject specific Random Forest and Random Forest
with implemented Feature Importance across all the cases. The average accuracy and its stan-
dard deviation across the subject were calculated for all cases and presented at the bottom of
the table.

As a result, comparing to the previous approach with frame-wise prediction in subject spe-

cific scenario, slight improvement has been achieved. Subject 3 scored the highest, achieving

65.625% of accuracy. In most of the cases, standard deviation of the accuracy across the folds

remains low. To boost the performance of the model and avoid redundant information, feature

importance has been applied with a threshold of 0.04. Although a slight increase is visible

and the highest accuracy of 69.5% was achieved, the overall models’ performance remained

unsatisfactory.

After calculating feature importance across the sequence, the feature occurrence was

recorded and separated using 32 bins where each bin represented a different channel in the

brain. While the feature importance varies across the cases as shown in Figures 5.9, 5.10 and

5.11 some of the channels in their neighbourhood share similar number of activated features

which could indicate some sort of connectivity between them. This idea will be explored in the

further part of this document.
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Figure 5.9: Figure presents feature importance within a sequence where each bin corresponds
to features extracted from individual channels in Case1vs2.

Figure 5.10: Figure presents feature importance within a sequence where each bin corresponds
to features extracted from individual channels in Case1vs3.

Figure 5.11: Figure presents feature importance within a sequence where each bin corresponds
to features extracted from individual channels in Case2vs3.
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2.2.2 Fully Connected Neural Network

Signal data after transformation and additional modification create high-dimensional space

which is then concatenated across all the channels within a trial. The dimensionality of that size

is usually really challenging for classical models, hence fully connected neural network was

implemented. As mentioned in the introduction to deep learning in Chapter 2, neural networks

can be powerful techniques that are capable of learning from complex data. Variations of

architectures where different activation functions (such as relu and tanh), number of hidden

layers and units were examined.

The proposed architecture consists of 3 hidden layers with sigmoid activation function and

1000, 100 and 1 units respectively. To enable the model to generalise the problem and spread

out weights without focusing on specific units dropout of 50% was applied after the first 2

layers. The model was trained throughout 10 epochs using binary cross-entropy loss function

and Adam optimizer for weights update.

Figure 5.12: Figure presents feature importance within a sequence where each bin corresponds
to features extracted from individual channels in Case2vs3.

Although, neural networks usually perform well in high-dimensional space, in our case

the model was trained only on 96 samples (subject specific) which makes generalisation of

that problem and classification challenging. The architecture is unstable which was the case
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even before applying dropout to the model. Standard deviation of accuracy shows fluctuations

and average loss indicates how uncertain the model is about the predictions. Across all the

subjects, Case1vs3 achieved the smallest loss and highest accuracy. Subject 12 in Case1vs3

scored the highest with accuracy of 63.281%.

Based on the findings, the overall sequential approach for classification of this EGG data

performs slightly better. The first methodology is an extension of subject specific scenario in

frame-wise approach where prediction is made on the whole sequence (many to one relation-

ship) and the same input formulation. The second though presents different input formulation

where signal decomposition using DWT gave another insight into the data. Using feature im-

portance in the random forest the assumption of cross-channel connectivity can be made where

finding correlations between the channels could form additional information crucial for the

classification.

3 Summary

Sequential approach chapter presents experiments, were two methodologies of input formula-

tion: self learnt and hand-crafted features were presented. To test time-dependencies within

the data, models with memory mechanism such as Vanilla RNN, LSTM and GRU were imple-

mented. The data for these experiments were featured in the same manner as in the frame-wise

approach.

The second methodology uses alternative input formulation where signal decomposition

using Discrete Wavelet Transform was applied. Out of a variety of different family wavelets,

db2 has been chosen. The depth of the multilevel decomposition has been calculated based

on the length of the data and the mother wavelet. Wavelet decomposition into approximation

and detail coefficient result in wavelet decomposition vector of all the coefficients. To reduce

the dimensionality of the signal 4 deepest levels (cA6, cD6, cD5, cD4, and cD3) were used

for further implementation. Various techniques of feature extraction: frobenius norm; entropy;

zero-crossing rate; mean crossing rate; 5th, 25th, 75th and 95th percentile value; mean; me-

dian; standard deviation; variance and Root Mean Square value were calculated for each of the

sub-bands resulting in 65 features extracted for each channel signal. The data from 32 chan-

nels (within the same trial sequence) has been flattened and fed to Random Forest and Fully

Connected Neural Network.
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While the results of the models in the first methodology show a slight improvement over

classical methods, LSTM and GRU are structured efficiently for long-term dependencies which

enabled them to score higher than RNN. While GRU achieved the highest score 55.58%

(Case1vs2), overall LSTM performed slightly better across all the cases. Nevertheless, the

models’ performance was in general poor and unstable where average loss values showed mod-

els uncertainty about the predictions.

An alternative input formulation using Random Forest scored slightly better than Random

Forest in frame-wise approach (S.S.). Applied feature importance didn’t show any significant

improvement. Yet, by recording feature importance across the channels, the theory of cross-

channel connectivity was formulated. Further experiments using Fully Connected Neural Net-

work were an attempt for creating an architecture which would be able to better analyse and

understand high dimensional feature space of each observation (2080 features). Unfortunately,

the models’ performance was poor and unstable.
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Conclusions

In Chapter 4 frame-wise approach for classification of the data has been introduced where clas-

sical machine learning techniques were examined. While results for subject generic scenario

with LOGO cross validation turned out to be tight, subject specific scheme was implemented.

Yet, due to the little amount of data, subject specific case performance was lower. The at-

tempt to enhance models performance using dimensionality reduction didn’t show significant

improvement. Using LDA the data proved to be too complex to be linearly separable. Fur-

ther data investigation provided interesting insight onto significant cognition period during the

process of decision making.

In the following Chapter 5, sequential approach for data classification has been investi-

gated. While deep learning techniques which use memory mechanism to carry out informa-

tion across the sequence have shown to be slightly better than previous approach, the results

remained narrow. Alternative input formulation was introduced by performing signal decom-

position using Wavelets Transform. Four deepest levels of produced wavelet coefficients were

explored and used for feature extraction. Although, the results were not what has been orig-

inally expected, feature importance using Gini Impurity in Random Forest gave interesting

observation of possible relationship between the channels.
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1 Contributions

Based on our data analysis and further investigation, the data has been proven to be complex

and subjective which makes classification arduous. Common for medical domain, small num-

ber of data observations increases difficulty level of the problem where generalisation is the

key. Yet, five main contributions which have a potential to influence further research have been

documented.

• Problem formulation.

Extensive data analysis gave us an insight into the data and its complexity. We formu-

lated hypothesis to investigate ccBrain Lab’s findings as an attempt to comprehend and

understand how humans face decision making deadlocks.

• Benchmarking.

The initial benchmark for the classification has been set. Furthermore, reasoning behind

unsuccessful architectures and approaches was attempted to answer.

• Linking results to the initial hypothesis.

Based on initial findings from ccBrain Lab, the hypothesis of Case1, Case2 and Case3

being distinguishable were made. Although, the results were poor, binary classification

of Case1vs2 was the most discriminative proving these two cases to be more distinguish-

able than others (which was also observed by ccBrain Lab, Figure 3.3).

• Significant cognition period.

As EEG we have been provided with are time-series data, examining time dependencies

was essential. For each case there was a certain prediction pattern across all the subjects

which indicates singularity of a brain activity. This cognition pattern varied depending

on the case showing specificity of time dependencies for each of them.

• Cross-channel connectivity theory.

By visualising signal sequences in time domain across the subjects in different channels

(see Appendix), certain correlation among them can be assumed. Using presented EEG

cap visualisation of channel mapping (Figure 3.4), signals from different channels can be

compared and localised. Based on these visualisations we can see channels from frontal

lobe (5, 10, 6, 7, 8, 9, 1, 14, 13, 12, 11) sharing similar signal pattern. Same applies
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for channels in the middle section of the brain (15, 16, 17, 18, 2, 22, 21, 20, 19) where

the pattern is distinguishable. While the signals from these two sections of the brain

are somewhat similar, the lower part of parietal and occipital lobe share very contrasting

pattern. This cross-channel connectivity can additionally be seen after applying feature

importance to the model fed with features from decomposed signal data.

2 Future Work

Contributions we have made to this research can be linked where cross-channel connectivity

and significant cognition period could be modeled together. Information transmission within

the brain is possible thanks to neurotransmitters passed between synapses of neurons. If we

would like to highlight every action potential, firing neurons would create so-called net of

neurons connected via synapses. The appearance of the net would change over the time. By

sampling individual nets at different time stamps we could capture relationship between the

channels at the particular timestep and then throughout the whole sequence.

One of the crucial steps would be defining measurement methodology for calculating sim-

ilarities between the channels. Cross-correlation is a technique which measures similarity as

a function of displacement known as sliding dot product [53]. Another way to define connec-

tion between the channels could be by using graph neural networks. The representation of the

relationship between the channels at time t could be then extended across the whole sequence

creating time-series connectivity structure to perform video classification. Using some sort of

channel connectivity measurement (for instance identity matrix or graph neural networks) to

represent relationship between the channels a model could create a prediction pattern at time

t. This could be then extended across the whole sequence creating time-series connectivity

structure to perform video classification.

80



Bibliography

[1] R. S. G. Britain, Machine Learning: The Power and Promise of Computers that Learn by

Example: an Introduction. Royal Society, 2017.

[2] R. Bruffaerts, “Machine learning in neurology: what neurologists can learn from

machines and vice versa,” Journal of Neurology, vol. 265, no. 11, pp. 2745–2748, Nov

2018. [Online]. Available: https://doi.org/10.1007/s00415-018-8990-9

[3] R. Hastie and R. M. Dawes, Rational choice in an uncertain world: The psychology of

judgment and decision making. Sage, 2010.
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Appendix

Figures attached in Appendix present 32 channels where the average and standard deviation

across all the subjects (and their trials) were calculated for every time frame. Each visualisation

presents generic signal distribution across three different cases for a particular channel.
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