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Abstract

Building large pools of data has become a relatively straightforward task, with many automated

ways of obtaining different sources of data. Labelling such data has resulted in becoming an

exponential problem, both in terms of time and in the form of an interaction-heavy task. This

task only becomes exponential with feature-rich structures of data and labelling systems, as

well as requiring more advanced expertise for many different domains of a task to model.

A prominent set of techniques utilising this data, and large networks have reformed machine

learning into what we call deep learning today. Within this field, we can form levels of su-

pervision that allow for stronger signals of inductive bias for both deep network architectures

and in the training scheme. In this work, we explore both types with the target application and

domain being the manufacturing of steel.

Firstly, we present an exploratory approach to assist in decision-making for the task of cluster-

ing by utilising the feature-rich representations provided by generative models. By forming it

as a semi-supervised problem we can provide varying degrees of supervision to enhance per-

formance as a form of inductive bias into the training scheme. Supervision can be formalised

into labels from data or in an active learning setting where we request help from an expert. If

we are required to make a request, then we must provide information and visualisations so that

an accurate decision can be made.

Following this, in our second body of work we extend on an active learning setting by introduc-

ing a new acquisition function based on the distance from different representations. We apply it

to a data refinement strategy where we fix mistakes in bounding-box labelled datasets to form a

dense segmentation. Different forms of user interaction provide different levels of information

to the training scheme, we explore the effects of these user interactions on the performance of

this refinement task.
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Lastly, we apply stronger forms of inductive bias into the network architecture by modelling

hierarchical labelling systems, where such relationships between labels form an abstraction

and fine-grained level of the data. Inspired by the structure of human cognition and perception

where we recognise patterns of various levels of abstraction to define an object. By invoking

an explicit form of deep learning with feature-rich structures like graphs we can model these

interconnected labels. We define two types of hierarchical relationships: the first is a break-up

of the physical or geometric structure of the object, referred to as an encapsulation relationship.

The second is sub-classification relationships which are semantic relations of labels provided

by domain knowledge of what we are trying to capture in the dataset. We utilise both to solve

classification and segmentation tasks.
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1.1. Motivations

1.1 Motivations

A prominent set of techniques utilising data and large networks have reformed machine learn-

ing into what we call deep learning today. Stemming from its ability to learn hierarchical

representations, which enables an understanding and processing of information that can mimic

human cognition [78]. However, the true potential of deep learning lies in its flexibility to

incorporate different forms of supervision and architectural choices, which can significantly

enhance the inductive bias of models. This refers to a set of assumptions a learning algorithm

uses to predict outputs given inputs. We utilise this bias in deep learning to perform well on

unseen data. Different types of supervision provide varying degrees of inductive bias, allowing

models to be specific to a problem domain [9]. Deep learning was originally restricted to regu-

lar domains (such as images) with the most common type of training involving full supervision,

where large datasets of labelled examples are used to train models [78]. While effective, this

approach can be costly and time-consuming, especially in domains where expert annotation is

required [31]. To address the limitations of full supervision, semi-supervised techniques have

gained prominence, where we leverage both labelled and unlabelled data, allowing models to

learn from the inherent structure of data itself, leading to more robust representations and im-

proved generalisation in situations when labelled data is scarce or incorrect. Other forms of

supervision can also come from an expert in an active learning setting. By allowing the model

to interactively query for the most informative samples to be labelled, active learning can sig-

nificantly reduce the amount of labelled data required while maintaining or even improving

model performance. The choice of network architecture also plays a role in determining the

inductive bias of a model. Graph deep learning, in particular, has emerged as a powerful

framework for capturing complex relational structures in data. This motivates the idea that

many real-world problems involve data with irregular structures. We can incorporate graph

structures into the learning process that forms a strong inductive bias that can lead to more

sample-efficient learning and better generalisation due to rich forms of information provided

in the training.

1.1.1 Exploratory Analysis on Data Representations For Human-based
Decision Making

The ability to make an informed decision based on complex information has become crucial

across various domains, from business and healthcare to public policy and scientific research.

2



1.1. Motivations

The sheer volume and complexity of data often pose a significant challenge to human decision-

making. Data representations plays role of bridging the gap between raw data and human

comprehension. Effective representations can significantly reduce cognitive load, highlight

relevant patterns, and facilitate intuitive understanding of complex relationships within the data

[21]. However, determining the most appropriate representation for a given decision-making

context remains a challenging task, as it depends on the nature of the data, the specific decision

at hand, the complexity of knowledge required by the decision-maker. While attention has been

made on data visualisation and decision support systems, there remains a need for systematic

exploration of how different data representations impact human decision-making processes,

particularly within active learning frameworks. Active learning systems need to present queries

in a way that maximises information gain while minimising the amount of effect from the

expert. Exploring data representations can help identify optimal query presentation strategies.

Certain representations may inadvertently introduce or amplify biases in the decision-making.

Exploratory analysis can help identify and mitigate this bias.

1.1.2 Defect Detection in Manufacturing

Due to moving towards industry 4.0, manufacturing processes are increasingly becoming com-

plex and automated. This results in a demand for high-quality products has never been higher,

with consumers and industries alike expecting near-perfect reliability and consistency. As con-

text relies on accurate defect detection to ensure this reliability and consistency. Like in many

applications and domains, deep learning has become a common direction in deploying defect

detection tasks. Many defects are subtle and difficult to detect, this problem becomes even

more challenging when using composite materials such as in steel manufacturing. Depending

on the composite structure different types of defects can form, even with the same label the

visual features of these defects may look different. As the material moves on the conveyor

belt, where we apply different operations, defects can also evolve into new types as its to cover

large parts of the material. This has resulted in highly specific inspection solutions for a given

operation on a particular type of material. The forming of these defects can be viewed as a

hierarchical relationship where defects evolve into new ones. However, these types of relation-

ships are not used much due to the complexity of modelling such labels, there is also a limited

amount of these samples. Applying deep learning to such problems can help address these

challenges due to its adaptability, rich forms of hierarchical representations and continuous

learning schemes.
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1.1.3 Graph Deep Learning In Hierarchical Labelling Systems

Many domains are facing an increasingly large amount of data with complex relationships that

from labels. These relationships exhibit both intricate structures and are multi-faceted, hierar-

chical categorisation. From biological taxonomies to product categorisation, hierarchical label

structures are ubiquitous in real-world applications. Simultaneously, many of these domains

naturally lend themselves to graph representations, where entities are interconnected in many

ways. Hierarchical labels and graph-structured data present challenges and exciting opportu-

nities within deep learning. Hierarchical labels naturally result in varying levels of granularity

requiring the models to make predictions at these different depth levels. Graph deep learning

has become a promising area where we can learn the structure if we form these hierarchical

labels are a tree structure. Graph deep learning encodes a relational inductive bias, allowing us

to capture complex interdependencies between entities. Through message-passing we can then

propagate information across the graph, allowing for a rich form of information flow.

1.1.4 The Three Aims of This Work

We began this doctoral work with three main goals which were established around the sum-

mer of 2019, with necessary input from both external and internal stakeholders to design the

doctoral project. The three original aims are:

A The improved detection, localisation and classification of features observed by imaging

systems.

B The improved labelling and analysis of complex classes via a semi-supervised approach.

C The improved integration and use of data visualisation within a user-guided approach to

improve understanding of model inference.

Goal A and B have the application of surface-level analysis in steel manufacturing while goal

C is aimed at general data pipeline improvements. The current approach utilises a cascade

technique to first identify proposed regions of interest followed by a subsequent classification

model. For goal A our proposal was to investigate various data-driven approaches for both the

current cascade technique and a proposed multi-task model of detection and classification, with

a focus on representation of the labels. The current labelling strategy is intensive and requires
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expert insight, especially where there are ambiguities in this domain. Many different steel

plants use different names for the same surface defect, while others use the same label to mean

different defects. There are also various levels of severity within certain defect classes, which

can present very different textures and monologues depending on the severity. This domain also

has the extra challenge of varying structure spatially across defects, for example the fringes of

long lamination appearing as scratches when viewed locally (such as in the cascade technique)

rather than globally. These are all reflected in the labelling strategy, which currently relies on

subjective hand-labelling of individual samples from a wide array of labels. In goal B, our aim

was to explore a semi-supervised approach to dataset labelling and refinement, which can also

provide deeper insight into the labels of defects for a quality control process. In goal C our aim

was to integrate data visualisation and human-computer interaction methodologies within our

pipelines, coupling the expertise of the current and future human experts with the data-driven

aspect of deep learning research. By integrating data visualisation within model training and

inference, we can provide some insight into the behaviour of the model by showing similar

previously observed samples or contributing features in the observation which contributed to

the final classification. The feedback will help address over-training of the model as well as

identifying key meta-parameters or model selection.

With these 3 goals we explore the complexities of the current range of different defect types,

including subjective class boundaries and hierarchical label representations to build proposed

models, with the option to feed back this information to users for a deeper understanding. This

work provides a blend of deep learning and human-computer interaction for labelling systems

that are difficult to assign from purely a human or a machine focused perspective but benefit

from a combined approach with domain knowledge being provided in both the hierarchical

labels and in an active learning setting.

1.2 Overview

Based on the goals that formed this thesis in section 1.1.4 and the motivations in section 1.1,

we aim to explore levels of supervision that allow for stronger signals of inductive bias for both

deep network architectures and in the training schemes. We focus on image-based datasets and

application towards defect detection in manufacturing. In Chapter 3 we present an exploratory

approach to performance of generative models for the task of deep learning within the manu-

facturing domain. The focus of this chapter is twofold: first, we explore the effectiveness of
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these models in detecting and categorising steel defects, and second we present a series of ex-

ploratory analysis through a graphical user interface. The interface is designed to allow domain

experts to provide reasoning on how these models detect defects, forming a bridge of interoper-

ability between deep learning algorithms and practical applications. This form of supervision

information can benefit the embedding space, improving model performance. In chapter 4, we

present an acquisition function utilising the current embedding space and a refinement strategy

to fix mistakes in bounding-box labelled datasets. By sampling pixels to form patches of the

dataset, we can then mine this pool to get a set of the most informative ones that would bet-

ter improve the classification and representations of the generative models. This refines these

bounding-box labels to a dense segmentation of labels. In chapter 5 we present a network

architecture to model hierarchical labelled datasets via a graph-based deep learning approach

to model the feature extraction of the labels. We build a chain of classifier heads where each

target has a different depth level of the hierarchical structure. Predictions from previous classi-

fiers flow into subsequent classifiers, allowing for a richer form of information flow to capture

varying degrees of granularity. We also define two types of hierarchical relationships to solve

classification and segmentation tasks. The first is a break up of physical or geometric structure

of the object, referred to as encapsulation relationship. The second is a sub-classification rela-

tionship which are semantic relations of labels provided by domain knowledge of what we are

trying to capture in the dataset.

1.3 Contributions

The main contributions of this work are the following:

An acquisition function based on current feature representation positions. We present a

new acquisition function for finding a set of samples within the dataset that gets labelled by

an expert will result in the most informative update to the model within an active learning

setting. This utilises the current embedding space of generative models and the triplet loss. We

use mining strategies based on an anchor, a sample with the sample label as the anchor and a

negative which is close to the anchor. The mining strategies are based on the distance between

samples. We request the help of an expert to relabel or reinforce correct labels of negatives,

which focuses training to create dense clusters of related samples. The methodology of this

contribution appears in Chapter 4.
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Refinement strategy for fuzzy-labelled datasets. We present a refinement strategy within

an active learning setting to fix mistakes in bounding-box labelled datasets. By uniformly

sampling pixels to form patches of images, we then mine this pool to get a set of the most

informative ones that would better improve the classification and generative models. We use

the classification head of these models to predict a dense segmentation over the refinement

process. The methodology of this contribution appears in Chapter 4.

Incorporating explicit domain knowledge into a data-driven approach via a hierarchical
labelling system. We present a network architecture to model hierarchical labelled datasets.

These hierarchical labels are modelled via a graph-based deep learning approach where the

leaf nodes are individual samples and the root is the full dataset. Interconnecting nodes are

the aggregation of their children which forms a hierarchical relationship. As a result the nodes

further up the hierarchical structure are more generalised labels and as we move down they

become more specialised. These node embeddings then feed into one of three types of classifier

chains which target different depth levels. Previous classifier heads are used to inform new

predictions in subsequent classifiers forming a chain of information flow. We evaluate our

approach with a 5-fold of MNIST, CIFAR-100, ADE-20k datasets. We also build a synthetic

data generator to test edge cases of our methodology. This work also utilises two types of

hierarchical relationships to solve classification and segmentation tasks. The first is a break up

of the physical or geometric structure of the object, referred to as encapsulation relationships.

The second is sub-classification relationships which are semantic relations of labels provided

by domain knowledge of what we are trying to capture in the dataset. The methodology of this

contribution appears in Chapter 5.

Detecting label collisions during the training process. We explore the use of density based

deep clustering where it forms a graph. Each node represents a sample and the edges from the

clusters. As clusters of samples merge this forms a collision to which we reform the labelling

system. Clusters builds a hierarchical dataset where if they do form then this becomes a parent

node of the two children which are colliding. If a cluster starts to separate then this forms a

set of children where the cluster is the parent instead. The methodology of this contribution

appears in Chapter 3.

An acquisition function for evolving graphs. This contribution expands on the density based
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deep clustering approach by applying an active training scheme. This is where each node of the

graph is a sample and the edges form the clusters. If clusters of nodes start to merge during the

training process we request an expert to inform the model if the clusters should join together

or not. If that merging does happen then this forms a hierarchical set of labels as the joining

clusters form a single node while its children will represent the two clusters. The methodology

of this contribution appears in Chapter 3.

The outcomes of this thesis have also contributed to several publications as outlined in the List

of Publications. The contributions of each paper to the contents of the thesis are summarised

below:

Connor Clarkson, Michael Edwards, and Xianghua Xie. “Active Anchors”. In: Compan-

ion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Com-

puting Systems. EICS ’23 Companion. Swansea, United Kingdom: Association for Com-
puting Machinery, 2023, pp. 68–69. ISBN: 9798400702068. DOI: 10.1145/3596454.
3597185

We demonstrate a refinement strategy within an active learning setting to fix mistakes in

bounding-box labelled datasets. This is demonstration paper where we focus on different user

interactions to inform the model. We measure the impact of these user interactions in the

manufacturing domain. This contributes application, human-centred perspective and the user

interface sections of chapter 4.

Connor Clarkson, Michael Edwards, and Xianghua Xie. “Active Anchors: Similarity
Based Refinement Learning”. In: Proceedings of the International Conference on Applied

Computing. 2023, pp. 47–57. ISBN: 978-989-8704-53-5

We propose a new acquisition function based on the similarity of defects for refining labels

over time by showing the user only the most required to be labelled. We explore different

initial labels for refinement and ways in which we can feed these refinements back into the

model. This contributes the methodology and the some of the results in chapter 4.

Connor Clarkson, Michael Edwards, and Xianghua Xie. “Dense Semantic Refinement
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Using Active Similarity Learning”. In: IADIS International Journal on Computer Science

and Information Systems. 2024, pp. 15–30. ISBN: 1646-3692

This work is a continuation from our earlier work on Active Anchors following an invitation to

IADIS International Journal on Computer Science and Information Systems. We extend on the

work by presenting it in more detail, a larger discussion and more experiments. We introduce

a new way to feed refinements back into the model based on the full patch instead of a single

pixel. We highlight trade-off between speed to convergence over accuracy gains.

Connor Clarkson, Michael Edwards, and Xianghua Xie. “Modelling on Types of Hierar-
chical Relationships”. (To be published)

We present a network architecture and training scheme to model hierarchical labelled datasets

in both classification and segmentation tasks. We define two types of hierarchical relationships.

The first is a break up of the physical or geometric structure of the object. The second is sub-

classification relationship which are semantic relations of labels providing domain knowledge

of what we are trying to capture in the dataset. We structure our network based on the labelling

system of the dataset where the root represents the full set, the leaf node represents a single

sample and the interconnecting nodes define the hierarchical labels. While learning the node

embeddings we also feed it into a chain of classifiers where each one targets a depth level.

Previous classifier heads are used to inform new predictions in subsequent classifiers forming

a chain of information flow.

1.4 Outline

The rest of this work is structured as follows:

Chapter 2 - Background: Deep Learning In this chapter we introduce and review deep

learning, different problem domains within the field and the types of training schemes.

The discussion then moves to limitations of conventional deep learning, to then motivate

the use of graph deep learning for irregular problems. Following on we introduce graph-

based tasks and convolution on graphs, discussing the many different architectures. We

show the key challenges of learning on graphs and how we can blend human decision
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making and more explicit training schemes to address these problems. The topics dis-

cussed in this chapter are the background knowledge required for how we address the

three aims of this thesis.

Chapter 3 - Active Deep Clustering: Exploratory Approach to Assist in Decision-Making
In this chapter we introduce an exploratory analysis framework and tool for use by

domain experts, with a focus on steal manufacturing. Many industrial settings build

datasets with fuzzy labels, manufacturing is no extension to this rule with many Region

of Interests (ROIs) containing more than one label, some going outside the bound,

and others which are not labelled. We form a multi-head reconstruction and dense

segmentation model around our framework to build off from our analysis on fuzzy

labels. We explore different dimensionality reduction methods and user interactions to

assist domain experts in labelling these datasets. Finally we form an active learning

experiment to improve performance of the targeted model.

Chapter 4 - Active Anchors: Similarity Based Learning for Dataset Refinement In this

chapter we propose a new acquisition function for active learning based on the similarity

of defects in steal manufacturing. Labelling datasets that need to be verified by domain

experts is time-consuming and a interaction-heavy task due to defect characteristics and

composite nature. We build a data refinement task based around the new acquisition

function where we start with no labelling and form a dense segmentation over time.

Chapter 5 - Modelling on Types of Hierarchical Relationships The topic of this chapter is

to model hierarchical labels in computer vision based tasks. We explore two different

types of labelling systems: encapsulation and sub-classification labels. This forms a

more explicit form of learning where we can embed expert domain knowledge into the

rich data structures such as in graph deep learning. We blend graph feature extraction

with classifier chains to predict a path from the root of the label hierarchy to a leaf node,

which represents a single instance of a dataset. We also explore how robust our approach

is with synthetically generated hierarchical datasets.

Chapter 6 - Conclusions and Future Work We conclude by reviewing the outcomes of this

work with the original aims and motivations. We then consider how to build from this

work with ideas from other fields.
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2.1. Learning Problems

We start our background on deep learning by introducing the main learning problems of the

field and the different problem domains that are associated with each. We focus this chapter

on deep learning but we do cover some aspects of machine learning, where it is relevant for

supporting work to the thesis of this doctoral work. We start the second section on the develop-

ment of neural computation with some initial remarks on the general formulation which then

leads to feed-forward neural networks and the background information needed for modern ap-

proaches. The third section introduces the Convolutional Neural Network (CNN) and how we

target different problem domains, with a focus on computer vision as this forms the majority

of the thesis. The final potion this thesis focuses using neural networks in irregular domains

for the use with hierarchical labelling systems, therefore we form the fourth and fifth sections

on graph deep learning and active learning for different domain-specific problems.

The author gives thanks and acknowledgement to several textbooks which aided in the theoret-

ical and practical development of deep learning, graph deep learning and active learning. The

statistics, mathematics and background on deep learning owes a great deal to Machine Learn-

ing and Pattern Recognition by Bishop (2006), The Elements of Statistical Learning by Hastie,

Tibshirani, and Friedman (2009), Deep Learning by Goodfellow, Bengio, and Courville (2016)

and Deep Learning: Foundations and Concepts by Bishop (2024). Many of the graph deep

learning concepts and general background information was aided by Deep Learning on Graphs

by Ma and Tang (2021), Graph Representation Learning by Hamilton (2020) and Graph Deep

Learning: State of the Art and Challenges by Georgousis, Kenning and Xie (2021). Finally,

some of the background information on active learning has also been supplemented by Human-

in-the-Loop Machine learning by Monarch and Active Learning Literature Survey by Settles

(2010).

2.1 Learning Problems

Deep learning is a specific kind of machine learning, where the difference is that neural compu-

tation approaches are only used in deep learning while machine learning includes any kind of

data-driven approach. The development and application of deep learning are bond by the chal-

lenges of the type of learning problem, the nature of the data by the problem domain and the

complexity of the task. For proposes of this thesis we define the following learning problems:
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• Supervised Learning, where the aim of such problems involves predicting an outcome

based on a set number of input measurements. We present the input measurements and

the mapped labels at training time, the learning algorithm then learns to map input to

output.

• Unsupervised Learning, where such problems do not have a output measurement, in-

stead we aim to find associations or patterns among the set of input measurements that

can minimise some measurable outcome. This results in not showing output measure-

ments (also known as targets) during training time.

• Semi-Supervised Learning, traditionally this is a mixture of both supervised and un-

supervised learning properties, therefore using both unlabelled and labelled inputs to

predict an outcome during training time. In deep learning, semi-supervised problems

usually refers to learning internal representations so that different sets of inputs with the

same label have a similar representation, this is because unsupervised properties allow

us to group inputs together in a representation space.

• Multi-Task Learning, where we use the same set of inputs to learn multiple tasks si-

multaneously. This leverages shared learnt knowledge and domain information across

many tasks. Within deep learning, this learning problem is often viewed as a type of

regularisation (see subsection 2.2.5 on regularisation) because a single task is restricted

and using additional input data from a related task can be used to help in learning the

mapping from input to output.

These learning problems are not a strict breakdown of categories, but such definitions help us

select what form a learning algorithm we should take, how we form a task and what measures

are required.

The objective of a learning algorithm is able to learn a task by mapping a set n inputs

X = {x0,x1, ...,xn→1}, where x ↑Rn, to a set of d outputs Y . A task is defined as how a learning

algorithm should process X , where we measure from some object or event. The learning forms

a optimisation process where we measure performance from an objective function or loss func-

tion. These functions measure how close the model’s output is to the answer we expect. The

further away from zero the loss is, the more incorrect the learning algorithm is and therefore

we use the loss as a measure of error. We call the correct output, the ground-truth, if our output

14



2.2. Neural Computation

predictions are wrong then adjusting the parameters of the learning algorithm is required. The

derivative of the loss function with respect to each parameter allows us to find the direction

in which a parameter should be changed, as well as the magnitude of its change. The space

of these parameters, known as the search space, often there are many local minima in which

we optimise to. The common problem with this process is that many of the local minima are

sub-optimal and the learning algorithm could become stuck. It is often very difficult to find the

global optimal due to the complexity of the search space.

2.2 Neural Computation
x0

x1

xd

...

ŷ
step

0 1z = x∀ +b

∀0

∀1

∀d→1

Figure 2.1: The perceptron takes in inputs x0,x1, ...,xd→1 weighted by parameters ∀0,∀1, ...,∀d→1 along
with a added bias term b. The result z is passed into a step function, determining if the perceptron should
activate or not.

The function f : X ↓ Y representing a mapping from input to output, where we view this as

a probability distribution p(Y | X). The aim is then to approximate this distribution given a

function f (X). In learning algorithms the function is parameterised with a set of variables ∀
such that it takes the form:

f (X ,∀) = p(Y | X)+ #, (2.1)

where # is the error of the estimation. A set of parameters that best approximates p(Y | X) is

denoted ∀ ↔. The learning algorithm then makes changes to ∀ to make the error as small as

possible, depending on the data, the type of learning algorithm and task used can make this a

challenge to find. This is pace the range of all possible values of ∀ is the search space, the more

parameters we have, the larger the search space is, resulting in a more complex function. The

changing of parameters happens during the training phase where we have a training dataset,

while we validate the current parameters on a test dataset. If the error on both datasets are
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similar then the learning algorithm generalised well to the test dataset, however it is often the

case that the errors are not similar resulting in a few potential problems. The first of these

problems is when the function f (X ,∀) underfits to the training data, meaning there is a large

error even through we provide the model with targets. The other problem that can happen is

that the model overfits to the training dataset, resulting in a low error on this set but a high error

on the test dataset. These problems are related to the capacity of the model as it is connected to

the number of parameters. By having more parameters which in turn is more capacity results

in a higher chance that the model overfits. However, if we have too few parameters the model

might not be able to estimate the distribution, meaning that we get a function that underfits to

the training dataset. Balancing between these problems is one of many challenges with learning

algorithms.

The original development of neural network models was inspired by studies of information

processing in the brain of humans and other mammals. This processing of information are

electrically active cells called neurons, which are the basic processing units in brains. Neurons

can be defined by a mathematical model called neural network, which forms the base for

computational approaches to learning [93]. The idea behind a neuron is an all-or-nothing

response, in which they are activated by enough electrical impulse. Many neurons connect to

each other creating a complex network, and if a neuron activates then this can result in other

neurons that are connected to activate creating a chain of activations. The extent to which one

neuron causes another to activate depends on the strength of the electrical impulse, the changes

in this strength is the key mechanism whereby the brain can store information and learn from

experience. The perceptron is a set of neurons, where each take a vector of inputs x ↑ Rc, they

are then transformed by a fixed linear transformation ∃(x)↑Rd , and bound to a set of trainable

weights w ↑ Rd . The weight vector w0 is the bias term which is also added. The formula for a

neuron is written as

z = y(x,w) = wT ∃(x). (2.2)

The result of neuron is passed through an activation function f (·), which was in the form of

the following step function:

f (z) =





0, z ↭ 0

1, z > 0.
(2.3)

This model simulates neuron activating (often referred as firing), if the total weighted input

exceeds a threshold of 0. The modern implementation and convention of the perceptron uses

16



2.2. Neural Computation

ti = {→1,+1} instead of {0,1} as allow for faster convergence on zero-centered data (see

section 2.2.3 for detail). The perceptron was introduced by Rosenbatt and is one of the most

important models in neural computing [115]. Rosenbatt also developed a training algorithm

which has the property that if there exists a set of weight values for which the perceptron can

achieve a perfect classification of the training data then the algorithm is guaranteed to find

the solution in a set number of steps [13]. The weights are trained on a target by a stochastic

gradient descent with respect to a classification error, measured by the loss function. The loss

function used by the perceptron is the sum of all z that are misclassified:

E(w) =→ !
i↑M

wT ∃(x)ti, (2.4)

where M is the set of indices of misclassified samples. Using a stochastic gradient descent

algorithm we update the weights at time % from the weights and the error at % →1 is:

w(%) = w(%→1)→&∀E(w) = w(%→1)→&∃(x)ti, (2.5)

where & is a suitably chosen learning rate parameter and we initialises the weights to some

starting vector. As the perceptron is a linear model it is limited to representing linear func-

tions, resulting in not being able to distinguish non-linear patterns in data. The properties of

perceptrons were analysed by Minsky and Papert, in which they gave formal proofs on the

limited capabilities of perceptron algorithms (single-layer networks) as well as speculating on

extending these networks to have multiple layers [95]. It would be latter shown that multiple

layers speculation was incorrect but this lead to a dampen of enthusiam for neural network re-

search during the 1970s and early 1980s. The main challenge researchers faced was the lack of

an effective algorithm for training multiple layers as the perceptron algorithm were specific to

single-layer models. The solution to training neural networks with more than one layer came

from the use of differential calculus and apply it to gradient-based optimisation, known as the

backprogagation algorithm. To distinguish between non-linear patterns, the step function was

replaced with a differentiable activation function which have a non-zero gradient.
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2.2.1 Feed-forward Neural Networks
x0

x1

xd
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Figure 2.2: A feed-forward neural network with 2 hidden layers. The input, hidden, and output neurons
are represented by nodes. The weight parameters are presented by links between nodes. The bias
parameter is denoted z0. Arrows show the direction of information flow through the network during
forward propagation.

The feed-forward neural network is often described in the form that each layer has a linear

transformation followed by an activation function. Each layer is often called a fully connected

or dense layer, which is to say that the neurons in a layer is connected to every neuron in the

next layer. We represent the first and last layers as input and output layers. Input layers contain

the input features while the output layer contains the prediction of each label in a supervised

task. Layers in between the input and output are termed hidden layers. The input features

x ↑ Rc are fed into the first hidden layer of neurons, where the ith neuron has a matrix of

weights #1,i ↑ Rc↗d . The output of the ith neuron in this first hidden layer is:

z(1)i = !(#T
1,ix). (2.6)

The superscript of z represents the index of the first layer, ! is a non-linear function and z(l) ↑
Rd . We can then define each new layer denoted as index l in terms of the previous layer l →1:

z(l)i = !(#T
l,iz

(l→1)). (2.7)

The resulting output layer is denoted ŷ = z(L) ↑Rd , where L is the final hidden layer before the

output, and d is the number of features in the output. d is task dependent and can be bounded

or normalised in many ways. For example, in supervised tasks, the error of the output ŷ is

measured against a target y with a loss function. The loss is used to adjust the parameters of

the model, see section 2.2.3 for details.
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We have shown that the output of a step function in a perceptron is determined by the input,

which is modelled by the weight parameters. The step function is one of many activation func-

tions, but we require one which is non-linear and differentiable. A neural network can have

many hidden layers in which we could give a different choice for each part of the network, in

practice we often use the same activation function. The simplest option is the identity function,

which means that all hidden neurons are linear, and therefore any network with this type of

activation function is equivalent to a network without hidden layers [13]. Therefore its repre-

sentational capability is no greater than that of a single linear layer. If we define a network with

a hidden layer that has a smaller amount of neurons than the input or the output, then the data

transformation after this hidden layer is not the most general possible linear transformation due

to information that is lost in the dimensionality reduction of that hidden layer. We refer to these

types of networks as bottlenecks which correspond to a technique called principal component

analysis and if we form non-linearly to this network we get a Autoencoder. One common

non-linear differentiable activation function is the logistic sigmoid:

!(z) =
1

1+ e→z . (2.8)

This was used widely in the early years of research on multi-layer neural networks and is

partly inspired by studies of properties of biological neurons [14]. Another common activation

function is tanh:

tanh(z) =
ez → e→z

ez + e→z . (2.9)

tanh differs from the sigmoid function by its linear transformation of its input and output values,

therefore for any network with sigmoid activations in hidden neurons there is a equivalent

network with tanh activation functions [13]. In practice however we often do not see equivalent

results due to the gradient-based optimisation of tuning weights. In modern deep learning it is

discouraged to use these two types of activation functions (expect in the final layer of a neural

network) due to risk of saturation [49]. saturation is when the gradients of these activation

functions go to zero when the inputs have either large positives or negative values. This has

lead to a sub-group of activation functions which have non-zero gradients. The softplus is one

such function:

h(z) = log(1+ ez). (2.10)

Softplus is a non-zero gradient activation function because if we have a large z then h(z) ↘ z,

and so the gradient remains non-zero [14]. Another common non-zero activation function and
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one of the best performing is Rectified Linear Unit (ReLU):

h(z) = max(0,z). (2.11)

Its worth noting that the derivative of ReLU when z = 0 is not defined, however in practice

this can be safely ignored because in floating-point arithmetic, the probability of getting an

input that is exactly 0.0 is extremely low. Most inputs will be very small positive or negative

numbers. If we do get an input of exactly 0.0 it has minimal impact on the overall training

process because it affects such a small portion of the data. In situations where we do get this

numerical instability, a machine epsilon (or another small constant) is used in practice. The

introduction of ReLU gave improvements in training efficiency over other activation functions,

allowing for deeper networks to be much less sensitive to random initialisation of the weights

[73].

In supervised tasks, the network aims to distinguish between two classes, refereed to as binary

classification. In practice we often label these as 0 and 1. The output layer would use a

single output neuron with a sigmod (2.8), this will bound the output to the interval (0,1). The

decision boundary is typically set at 0.5, where the outputs greater than 0.5 are classified as

positive (class 1) or negative (class 0). A more common task for neural networks is predicting

one of multiple classes given some input, that is to say that the target is not a single value z but

can be many values. We first normalise the output with a function called softmax. Just like the

binary case, this bounds the output to the interval [0,1). If the output vector is z ↑ Rc, then the

class output at ai:

ŷi = softmax(ai) =
eai

!c
j=0 ea j

. (2.12)

The sum of the outputs is !c
i=0 yi = 1. Due to this normalisation it reflects a probabilistic

interpretation which we call class probabilities for a multi-class output. Small differences in

the input get amplified which can lead to more decisive outputs, this problem is known as

exponential scaling. In practice this can lead to the softmax having numerical stability issues.

A common approach to addressing this is to subtract the maximum value from each input

before applying the function. This transformation does not alter the output but significantly

enahances numerical stability by preventing overflow in the exponential calculations. By using

the softmax function in the final layer as an activation function, each neural network layer learn

to transform the input into a representation that can be separated by this softmax layer.
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2.2.2 Universal Approximation Theorem

The universal approximation theorem states that any Borel measurable function from one finite-

dimensional space to another finite-dimensional space can approximate any continuous func-

tion to an arbitrary degree of error. As any continuous function on a closed subset of Rn is Borel

measurable, therefore a neural network can approximate any function [49]. There are two main

design choices for building a standard neural network architecture, the first is the breadth of

the network, which is the number of neurons in each layer. While the second is the depth of

the network, which is the number of hidden layers [56]. In theory, we could design a neural

network with one very large hidden layer and under the universal approximation theorem, it

should be sufficient to learn and represent a function. However, in practice such a model will

fail to learn and generalise correctly due to the optimisation technique, generalisation issues

and efficient representation of the function [49]. As a result in practice we build deeper neural

networks with more hidden layers and reduce the number of neurons in each. The success of

building deeper neural networks is what lead to the current deep learning era and calling the

neural network a universal approximator [13]. This is because a two-layer network (such as

figure 2.2) with the first hidden layer using a non-linear activation function, can approximate

a continuous function [13, 49]. Its worth noting that even through its possible to approximate

any function given enough capacity, it does not mean that will learn the given function. This

could be due generalisation issues such as overfitting, or could not give good approximation

on the test dataset due to errors in the training dataset, or simply not enough data. The neural

network has still become the tool of choice for approximation of functions over other statistical

methods due to how the neural network encodes a belief that a function we want to learn is a

composition of simple functions [49].

2.2.3 Gradient Descent

Neural networks are a board class of functions that in principle can approximate any desired

function given a sufficient number of hidden layers but this also depends on the weights of the

model. We choose these weights by optimising the loss function. One such way to adjust the

model parameters ∀ is maximum likelihood estimation:

∀ ↔ = argmax
∀

J(Ŷ ,Y ), (2.13)

where J(→,→) is the loss function measuring the prediction Ŷ with the target Y . Selecting

a good function J is determined by data scientist and requires knowledge about the data. A
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simple example is L1 norm, which is the sum of absolute differences between the prediction Ŷ

and the target Y :

J(Ŷ ,Y ) = |Ŷ →Y |. (2.14)

A challenge with L1 loss is that there is a break in a function, which results in it not being

continuous and smooth. This is refereed as discontinuity. In the case of L1 the discontinuity

is at the y-intersect, where the predictions exactly match the ground-truth. This is a problem

for gradient-based optimisation methods as they might overshoot the optimal point due to a

sudden change in the gradient. An alternative is the L2 norm, which is the Euclidean distance

between the predictions ŷ and the ground-truth target y:

J(Ŷ ,Y ) =
√
|Ŷ →Y |2 = |Ŷ →Y |22. (2.15)

Although in principle the error functions(2.14 and 2.15) can be minimised numerically through

a series of direct loss function evaluations, this is very inefficient. Instead we look into optimis-

ing the loss function by evaluating the derivatives of the loss with respect to the model weights,

this is a form of using gradient information to find a optimal solution.

The goal in the training stage is to find values for the weights w in the neural network that will

allow for a correct prediction. By adjusting w with respect to a loss function E we can make

small steps in weight space from w to w+∋w. This change in the loss function is given by:

∋E ↘ ∋wT ∀E(w), (2.16)

where ∀E(w) points in the direction of the greatest rate of increase of the loss function, as

a result the smallest value will be at the point in weight space such that the gradient of the

loss function is ∀E(w) = 0. If this is not the case we can make small steps in the direction of

→∀E(w) to further reduce the error. Points in weight space where the gradient vanishes are

called stationary points and are further sub-categorised as minima, maxima and saddle points.

Even through our goal is to find a w such that E(w) evaluates to the smallest value, many loss

functions typically have a highly non-linear dependence on the weights, and so there are many

stationary points in weight space where the gradient vanishes. The smallest value of the loss

function over the whole weight space is called global minimum, while any other minima that is

higher is called a local minima. In deep neural networks it is not uncommon to have many poor

local minima, and while it was thought that gradient-based optimisation approaches might get

trapped in one of these poor local minima, in practice this is not the case [14].
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Using gradients to update weights gradually is called gradient descent. The standard algorithm

is to compute the average error across the training dataset, then compute the gradients of the

parameters with respect to the error, the magnitudes of which is then used to update the weights.

Updates to the weights happen after one run-through of the train dataset, called a epoch. These

succession of updates forms:

w(%) = w(%→1) +∃w(%→1), (2.17)

where % states the epoch step. The different types of gradient descent algorithms involve

choices for updating the weight vector ∃w(%). A better approach to using this gradient infor-

mation is to update the weights based on a small step in the direction of the negative gradient:

w(%) = w(%→1)→&∃w(%→1), (2.18)

where the parameter & is called the learning rate, which determines the step size at each

iteration. Selecting a learning rate is dataset and task dependent, if we select a & that is too

small, gradient descent will converge slowly, while if & is too large then we may overshoot the

minimum, potentially leading to divergence or oscillation around the optimal point. Algorithms

that use the whole training dataset at one step is refereed to as batch methods. While deep

learning benefits greatly from large datasets these batch methods become inefficient with many

data points, because the gradient update uses the whole data to be processed. The solution to

this is a version of gradient descent called stochastic gradient descent where we update the

weights based on one data point at a time [16]. Advantages of this approach over batch methods

is that stochastic gradient descent can handle redundancy in the data much more efficiently and

there is a possibility of escaping a poor local minima, since a point with respect to the loss

function for the whole training dataset will usually not be a stationary point for each data point

individually. In practice however we do not update our weights ∀ for each data-point, instead

we build a small subset of the training set called a mini-batch and update on that. This is due to

single data points providing noisy estimates of the gradient of loss function. This approach is

called mini-batch stochastic gradient descent. In practice we also randomly shuffle of the data

before creating batches as there might be correlations between successive data points. We also

may shuffle the data between iterations as this can help escape a poor local minima.

Two situations which can create a challenge on complex deep learning functions is the sandle

point within the weight space or if the gradient has a large increase to then decrease further

into a better local minima. A sandle point is when the gradient vanishes ∀E(w) = 0. A simple
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technique for dealing with these problems is adding momentum term to the gradient descent

formula which adds inertia to the motion through weight space:

w(%→1) =→&∀E(w(%→1))+µ∃w(%→2), (2.19)

where µ is the momentum parameter. This creates a kind of velocity, allowing the optimisation

to build up speed in directions with consistent gradients. If gradient is changing frequently, the

momentum can help dampen the oscillations and stay on course towards the minimum.

2.2.4 Backpropagation through a Neural Network

In this section we discuss the process of discovering and evaluating the gradients of the loss

function. This is done by using a local message-passing scheme which information is sent

backwards through the neural network, known as backpropagation or backprop. In a standard

feed-forward neural network we have a set of neurons where we compute the weighted sum of

its inputs, these are then passed into an activation function to determine if the neuron should

fire. This set of neurons is one layer of the network, we may have many layers in which the

neurons would link to each of the neurons in the successive layer. This firing of neurons flows

through the network until we get to the output which is defined by the task. This process of

feeding in data and it flowing through the network is referred to as forward propagation. The

evaluation of the derivative of our loss function En with represent to a weight w ji where n is

a index of a data point, j is the index of a neuron in the current layer while i is the index of

a neuron in the previous layer, so w ji is the weight of the connection from i-th neuron to the

previous layer to the j-th neuron in the current layer. Note that En depends on the weight w ji

by the input x j to neuron j. We can then apply the chain rule for partial derivatives to give:

∋En

∋w ji
=

∋En

∋x j

∋x j

∋w ji
. (2.20)

We can then generalise this equation to a set of hidden neurons using the chain rule:

∋En

∋x j
= !

k

∋En

∋xk

∋xk

∋x j
, (2.21)

where the sum runs over all neurons k to which connects to neuron j. If we substitute part of

the formula in 2.20 with the formula 2.21 to obtain the backpropagation formula:

∋ j = h≃(x j)!
k

wk j
∋En

∋x j
, (2.22)

The backpropagation formula shows use that the value of ∋ for a neuron can be obtained by

propagating the ∋ backwards from neurons high up in the network.
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2.2.5 Regularization

In section 2.2 Neural Computation we discussed challenges of training a neural network can

include over-fitting, slow convergence and gradient-based issues like having very large or very

small gradients, which can cause instability of adjusting weights. Regularization is a technique

and a set of methods designed to prevent these challenges by introducing additional information

during the training process. This idea stems from classical statistical learning called the bias-

variance trade-off, which helps in understanding the estimate of how well the neural network

performs on the test dataset. In regards to neural networks, bias refers to the model’s inability

to capture true underlying function that describes the data. While the variance is the sensitivity

to small fluctuations in the training dataset. Both bias and variance are built into the design

of the network, as the depth increase we reduce bias by allowing the network to learn more

complex functions, but can be harder to optimise. In statistical learning it is believed that this

increase in depth also increases the variance, but as we will see later very deep neural networks

often exhibit lower variance in practice. Regularization allows us to not need to limiting the

number of weights according to the size of training dataset. It is considered unsatisfying in deep

learning to limit the number of weights in this way because the complexity of the problem

being solved does not necessarily correlate with the size of the training dataset, i.e. a small

dataset might represent a complex underlying function or group of functions, while a large

dataset could represent a simple one. It also ignores that modern deep learning architectures

and training techniques generalise well and limits the potential for transfer learning.

There are many choices to make when building neural networks in deep learning, this is be-

cause most tasks are examples of inverse problems, which is to infer an entire distribution given

only a finite number of data samples. This means that task is intrinsically ill-posed due to in-

finitely many distributions which could be responsible for generating the data, therefore having

potentially infinitely many samples. Our goal in these tasks is to make a good prediction for

an unseen value of x, therefore we need to choose a distribution from the infinitely many pos-

sibilities. Selecting a choice over others is called inductive bias (also called prior knowledge).

This inductive bias usually comes from domain knowledge of the task, data or even a solution.

In practice we want small changes in the input values to lead to small changes in the output

values, therefore we should bias our solution towards smooth varying functions. This can be

done by adding constraints or penalties to the learning process so that we can encourage the

weights to target this type of function. We should be careful when incorporating these con-

25



2.2. Neural Computation

straints that are inconsistent with the underplaying data generation process, as by making these

assumptions we could produce inaccurate results. One way we can add these penalties is with

the L1 regularization (also called Lasso regularization), where we add the absolute values of

the weights to our loss function:

E(w) = E(w)+( !
i=0

| wi |, (2.23)

where ( is the strength of the regularization. In practice we tend to see that the weights drive

exactly zero, leading to a sparse weight matrix, which is a form of feature selection as if

the weight is 0 for a connecting input then the influence of that input is removed. A similar

constraint is L2 regularization which is the sum of squared weights:

E(w) = E(w)+
(
2 !

i=0
w2

i , (2.24)

which encourages the network to use smaller weights by penalising larger weights resulting in

smaller functions. Unlike L1, L2 rarely sets the weights to exactly zero but still towards zero,

ensuring a more stable optimising process. By allowing L2 into the optimisation algorithm

rather than an explicit term in the loss function we get a technique called weight decay.

wi = wi →& ↔ ( ∋E(wi)

∋wi +(wi
) = (1→&( )wi →& ↔ ∋E(wi)

∋wi
, (2.25)

When L2 is used explicitly in the loss function or if it is used in the optimisation algorithm

both are mathematically equivalent when the learning rate is constant. However, when using

adaptive optimisation methods such as Adam the result is different in practice. This is because

L2 regularization term is part of the loss and the gradients are computed with respect to that

loss, while weight decay is applied directly to the weight update after gradient computation.

This means that when we having changing learning rates within adaptive optimisation methods

the gradient statistics used by Adam will be different. We should be careful not to use L2 in the

loss when using adaptive optimisation methods like Adam because this results in optimisation

not being scale invariant, meaning that if we do not use L2 in the loss and scale the weights

up by a constant factor then the algorithm will behave in the same way just in that new scale.

Weight decay does not have this affect on Adam.

Double descent is a phenomenon in deep learning that challenges the classical understanding

of the bias-variance trade-off [98, 106]. The trade-off is often shown as a U-shaped curve

where as the model capacity increases the bias decreases and the variance increases, therefore
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a optimal capacity for a given task is at the point where the bias and the variance is minimised.

In deep learning however it has been shown that initially the test error decreases as the model

capacity increases, in many double descent papers this is called first descent, following what

we know about statistical learning and the bias-variance trade-off. As we increase the model

capacity further, we begin to see over-fitting, what the double descent phenomenon shows is

even through the model becomes highly over parameterised, the test error will start to decrease

again, refereed to as the second decent. Nakkiran et al. introduced effective model complexity

which is the maximum size of training samples on which a model can achieve a loss of 0.0

on the training error, and so double descent is observed when the effective model complexity

exceeds the number of data points in the training dataset. This behaviour can be seen on

many different types of large deep learning models. As many of these large models will have

many possible solutions and stochastic gradient descent has a implicit bias for the simplest

solution, it is believed that any model trained on gradient descent will produce this phenomenon

[98]. Another consequence of these findings is that when increasing the size of the training

dataset can reduce performance, which is contrary to the conventional view of deep learning

that more data is better [98]. This is due to showing the model more samples that represent the

understanding function of the data generation process.

2.2.6 No Free Lunch Theorem

The no free lunch theorem was presented by Wolpert and it states that every learning algorithm

is as good as any other when averaged over all possible problems[149]. For our domain of deep

learning it is referring to the idea that if a particular model is better than average on some task,

it must be worse than average on other tasks [14]. This theorem is considered to be theoretical

in its notion due to the space of possible problems includes all types of tasks as it implies

relationship between input and output, i.e a image classification model might perform bad on

language generation task. In section 2.2.5 we discussed how it is useful for generalisation

purposes to have a degree of smoothness in the training of a model so that a small change in

the input has a small change in the output. Neural networks exhibit this in form of inductive

bias, which is one reason as to why they have a broad applicability. The importance of the no

free lunch theorem in regards to deep learning is that it shows how bias is used in determining

the performance of an algorithm, as if we do not use bias then learning purely from data can

be challenging, where some advocate it to be impossible [148]. In this school of thought many

argue for making all assumptions in deep learning model be explicit so that the appropriate
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choices can be made for inductive biases because stronger inductive biases that are specific

to an application tend to perform better in practice [14]. In Chapter 5 we explore using this

idea of explicit along with the standard implicit learning on graph neural networks, to being in

domain more stronger both in the structure of the data as well as the structure of the network.

2.3 Convolutional Neural Network

The standard feed-forward neural network assume that the observed data values are unstruc-

tured, that is to say each element of a data x = {x1, ...,xd} are treated as if we do not know

about how the elements might be related to each other a head of training a model. However,

many applications of deep learning involve some structured data where there is additional re-

lationships to the input variables. For example the pixels of an image have a well-defined

spatial relationship to each other in that the input is arraigned into a grid, and pixel neighbours

are highly correlated. In such cases hand-crafted features where fundamental to conventional

learning algorithms, where careful consideration of the task and the domain are needed before

being feed into a neural network. However this way of modelling data ito build accurate im-

age recognition systems by hand are impossible [75]. In this section we introduce the CNN

which directly works on raw input information and avoids the conventional approach to being

hand-crafted features [78].

2.3.1 Convolution

We motivate the idea of the CNN and the convolution kernel based on image data. If we

design a standard neural network with fully connected layers then we would require a large

number of parameters due to the high-dimensional nature. For example, if we have a colour

image of 103 ↗ 103 pixels, each with values for red, green and blue intensities. If we have

1000 neurons then the number of weights would be 3↗ 109. The network would also need

to learn the invariances and equivalences of the data, this would require a very large dataset.

If we can design a network that incorporates a inductive bias about the structure then we can

reduce the amount of data and also improve generalisation with respect to symmetries in the

image space [49, 14]. To create this design we introduce four interrelated concepts hierarchy,

locality, equivalence, and invariance. There is a natural hierarchical structure to all images, in

fact there is usually more than more natural hierarchical structure [127]. Consider the task of

detecting faces in images, one sample image may contain several faces, and each face includes
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image
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0.4 1.7 0.9

2.3 →2.1 4.0

→1.4 0.7 2.1

A B

Figure 2.3: A: a multi-dimensional filter that takes input from the red, green, and blue channels of an
image. The layer receives input from pixels in a 3↗ 3↗ 3 patch, the pixels in this patch are known as
the receptive field. B: The weight values associated with the hidden unit, known as a kernel.

sub-objects like eyes, each eye has a iris, which itself has a structure of edges. This forms a

hierarchy of objects where at the lowest level, a node in a neural network can detect this edge

using information that is local to the overall image. As a result this neuron would only need to

see a small subset of pixels to accurately detect it. As we move up the hierarchy, more complex

structures can be detected by composing multiple features from previous levels. This approach

of building hierarchical models fit naturally into the deep learning framework as it allows for

complex concepts to be extracted from raw data through the succession of layers, in a system

which is trained end-to-end.

CNNs are designed work on regular domains, which is to process data on a grid. The core

of this design is the convolution. The input to a single unit is a set of pixel values from a

small rectangular patch, which is referred as the receptive field of that unit and captures some

local information based on the associated weights. The output is comprising a weighted linear

combination of the input, which then gets transformed using a non-linear activation function:

z = ReLU(wT x+w0), (2.26)

where x is the vector of pixels. As there is one weight associated with each input pixel, the
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weights form a grid known as a filter (or kernel). This convolutional filter is shown in figure

2.3, where our input is a RGB image and we use a multi-dimensional filter of 3↗ 3↗ 3 over

that image to produce an output z. The largest output response for this filter will be when it

detects a patch of the image that looks like the kernel. Most image datasets have a hierarchical

structure at different locations, often with the same pixel values. If we use the face dataset

example, a patch represents an eye at a location in the image, then we will have the same set

of pixel values in a different part of the image as that represents the second eye. The neural

network needs to be able to generalise what it has learnt in one location and be able to apply

it to other locations of the image. It should be able to do this without having examples in the

training dataset for every possible location. This is done by replicating the same hidden-unit

weights at different locations across the image. These different units of the layer form a feature

map, in that all the units share the same weight. Locations that have a large output response

in one location then the same set of pixel values in a different location will produce the same

output, this will show in the feature map, this is referred to as translation equivariance. As we

will only get a large output response based on the kernel then the connections in the network

will mostly be sparse and the neurons in the layer will have a set of shared weights. As the

kernel slides over the image using these shared weights, this forms a convolution. We show the

convolution in the form of a 2D image I with pixel intensities I[ j,k], and the filter K with pixel

values K[l,m] and the output feature map O:

O[ j,k] = !
l

!
m

I[ j+ l,k+m]K[l,m], (2.27)

where we usually express the convolution as O = I ↔K. As shown in figure 2.4 the output is

smaller than the original input, if our image has a shape of J ↗K pixels and we convolve with

a kernel of shape M ↗M then the shape of the output will be (J →M + 1)↗ (K →M + 1). In

practice this is referred to as a valid convolution as we only apply the kernel to the complete

overlaps with the input. Depending on the task and the network architecture this can be issue

as information at the edges of the input is used less in the output. In these cases we want to

have an output that has the same shape as the original image, this can be done by padding

the input with additional pixels around the output. By padding with P pixels the shape of the

output is (J + 2P→M + 1)↗ (K + 2P→M + 1). To get the convolution to produce an output

that is the same shape as the input P must equal (M→1)
2 , which is called same convolution. Of

course, we can select any P giving us control over the output and allowing use to handle input

sizes that are varying in sizes within the dataset. In computer vision tasks we usually select

a odd value for kernel shape M, this allows the padding to be symmetric on all size of the
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input and that there is a well-defined central pixel at the location of the kernel. There are a few

different choices for what the value of the padded pixel should be, such as zero padding, this

is a typical choice for CNNs as we do not introduce new non-zero values that can be mistaken

for features. However zero padding can create artificial edges at the borders of the image and

is not suitable for data where zero has a specific meaning. Reflection padding can help reduce

boarder artefacts by reflecting the input pixel values at the edges, this means that the edges

of the image are smooth unlike other padding techniques. This is useful as there are no new

values added to the image and the gradients can flow smoothly from the padded region back to

the original input, which could improve learning at those boundaries. Padding is also applied

to feature maps for processing by subsequent layers. In many situations the images can be very
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Figure 2.4: A 3↗3 image (labelled I) convolved with a 2↗2 filter (labelled K) which results in a 2↗2
feature map (labelled O). This operation is called valid convolution as we restrict it to the boundaries
of the image, i.e. only valid pixels are used. We could also pad the image before performing the
convolution so we can keep the image dimensions, this is known as same convolution.

large and we often use small kernels, we may want to build a network where the feature maps

are significantly smaller than the input image that the convolutions we have explored so far

cannot do. We can achieve this by using strided convolutions, therefore, instead of stepping

the kernel over each pixxel in the image at a time, we can take larger steps of size S. These

skips over the image are called stride and is applied both horizontally and vertically. This

results in the shape of the feature map being:
⌊

J+2P→M
S

→1
⌋
↗
⌊

K +2P→M
S

→1
⌋
, (2.28)

where ⇐x⇒ denotes the floor function.
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↗ =

Image Kernel New image

Figure 2.5: A convolution with a stride of 2 will halve the dimensions of the output with regards to the
input. We show colour-coded convolved locations, where each colour of four pixels is multiplied with
the kernel to get the new image.

For a kernel that has a shape of M ↗M ↗C where C is the number of channels in the input,

we will have M2C weights in which they are shared to all points in a feature map. There is

also a bias parameter associated this operation, this means that the convolution is analogous

to a single hidden neuron in a fully connected layer of a neural network. Like a single hidden

neuron, this convolution unit can only learn one kind of feature. Therefore we can use multiple

kernels where each has its own independent set of weights and results in its own feature map.

We have shown that a convolutional layer encodes equivariance by using the receptive field

to move to different locations in the image, and the outputs of the feature map moves to that

location, useful in domains like object detection where we want to find an object in an image but

for domains like image classification we want the output to be invariant to translations between

groups of images that have similar features in different locations. We will now show that the

CNN can learn hierarchical structure of images from higher up complex features that are built

from simpler features at lower levels of the hierarchy, along with having this invariant to small

translations of features with an operation called pooling. A pooling layer is very similar to

that of a convolutional layer as our input is still arranged in a grid, we have a receptive field

and the choice of a kernel size along with a stride parameter. The difference is that in pooling

there is no learnable parameters where its purpose is to reduce the spatial shape of the feature

map and add some local translation invariance, this is why it is often referred to as down-
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sampling. Note that if we have a convolutional layer with a stride that is greater than 1, then

we will also get a down-sampling affect on the feature map. This first type of pooling we will

introduce is max-pooling by Zhou and Chellappa [171]. The operation of this type pooling

works by simply outputting the max value within the receptive field. Another type of pooling

is called average pooling which computes the average of the values in the receptive field. Both

of these operations introduce some degree of local translation invariance as well as allowing

the network to capture features at different scales.

2.3.2 Network Architectures

Since the introduction of LeNet-5 by Yann LeCun et al. in 1998 there has been many evolu-

tions to network architecture, both for varying tasks and domains but also in performance due

to how information flows through a network [75, 20]. In this section we discuss landscape

of CNN-based network architecture that have emerged over the years in the literature. Many

have achieved state-of-the-art, others have shown how we can capture information more effi-

ciently. In general these architectures have become fundamental in deep learning research and

applications.

AlexNet. The first architecture that we will discuss the AlexNet convolutional network archi-

tecture by Krzhevsky, Sutskever, and Hinton in 2012 [73]. This model won the 2012 ImageNet

competition with a top-5 error of 15.3%, it was the first deep network to win with only 8 layers.

The network introduced many of the concepts that we consider fundamental today, such as use

of the ReLU, dropout, data augmentation and GPUs to train the model in parallel. This archi-

tecture also introduced blocks of layers that usually repeat throughout the feature extraction

section of the network. In this case it was a convolutional layer, followed by a max-padding

layer, deeper in the network this changed to having 3 convolutional layers. Despite employing

regularization techniques like dropout and data augmentation, AlexNet still faced over-fitting

issues, particularly with smaller image sizes. This was partly due to its large capacity of 60

million parameters.

VGGNet. The Visual Geometry Group (VGG) model, a common backbone architecture,

comes in two main variants based on the number of layers: VGG-16 and VGG-19 [122].

VGG uses a simple design of convolutional blocks that create a uniform architecture. Like

other backbone architectures, it reduces the number of hyper-parameters, simplifying the net-
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work design process. The standard version takes in a 224 ↗ 224 ↗ 3 input, followed by a

set of convolutional blocks with down-sampling achieved through max-pooling layers. Each

convolutional layer is of type ’same’, has a kernel of shape 3↗ 3, a stride of 1, and ReLU

activation. One of the key innvolutions was the use of 3↗3 kernels over 5↗5. Three stacked

3↗ 3 convolutions have the same effective receptive field as one 5↗ 5, thereby reducing the

number of weights. This led to quicker convergence and less risk of over-fitting, despite the

increased number of layers compared to other architectures at the time. The authors demon-

strated that depth in the network architecture often leads to higher performance compared to

networks that focused more on width. VGG-16, with its 138 million weights, achieved state-

of-the-art results on ImageNet, demonstrating that highly hierarchical feature representations

can be learnt. However, the amount of weights meant for a computationally intensive task to

train. With in the field this network shifted the focus from complex, heterogeneous architec-

tures to ones with repeatable patterns, which influenced subsequent architectures to prioritise

simplicity and modularity such as with ResNet.

ResNet. Rich forms of feature representations can be learnt very well on deep networks,

this stems from the use of multiple layers of processing. Many architectures demonstrated

that increasing the number of layers in a network can increase the generalisation performance.

However, it becomes increasingly more difficult to train networks with a large number of layers.

Very deep networks that have an extremely small change in the weights in the early layers can

produce significant change in the gradient, this is referred to as shattered gradients [7]. A

modification that is now used in many architectures to help in training deep networks is that

of residual connections, which is a type of skip-layer connection [57]. A residual connection

adds the input back onto the output of a layer:

z1 = F1(x)+ x

z2 = F2(z1)+ z1

y = F3(z2)+ z2

(2.29)

where Fl(·) could be one or more layers of a neural network. The combination of a layer and

a residual connection is called a residual block and a residual network or ResNet consists of

multiple layers of these blocks in a sequence. This allowed for a smaller weight space as we

learn the difference between the identity and the descried output [82].
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2.3.3 Computer Vision Applications of CNNs

Computer vision is defined as the automatic analysis and interpretation of image data and has

become on of the largest areas of research in deep learning and machine learning [127]. Within

this field, CNNs have become the most common approach for many tasks. Before deep learning

computer vision was largely based on building hand-credited features to be used as input into

different learning algorithms [55]. Computer vision was one of the first areas to be transformed

by neural networks and brought into the domain of deep learning, most notably this was due

to a CNN called LeNet-5 [75]. Computer vision can roughly be broken up into the following

application areas (note that we are only discussing the areas that are relevant to this thesis):

• Classification: Given an image can it be classified from a set of labels. This is often

referred to as image recognition.

• Object Detection: The task is to locate and classify each object. This often results in a

ROI around every object as well as what is inside the ROI.

• Segmentation: The task involves individually classifying pixels, which divides the im-

age into regions sharing a common label.

Classification was the first task to show how the CNN architecture could be successfully de-

ployed to computer vision. One early example was the LeNet which would classify images

of handwritten digits called MNIST [77, 75]. The research accelerated with the introduction

of a large-scale benchmark dataset called ImageNet, which consists of 14 million images each

of which belong to 22,000 categories with a hierarchical labelling scheme called word-net

[34, 40]. This was one of the largest datasets of its time and showed the importance of using

large-amount of data in deep learning. A subset of ImageNet with 1000 categories formed

the competition called ImageNet Large Scale Visual Recognition Challenge which brought

many of the architectures shown in section 2.3.2. This many categories made the problem very

hard because if the classes were distributed uniformly, a random guess would have an error of

99.9% [14]. The dataset has around 1.28 million training images, 50000 validation images and

100000 test images. The metrics of this challenge was to produce a ranked list of predicted

output classes on test images, which is reported in terms of top-1 and top-5 error rates, which

means that if true class appears at the top of the list or if if it is in the top 5 then the image is cor-
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rectly classified. Since this challenge classification accuracy has continued to improve, driven

by deeper networks and better training algorithms [127]. For this task the community has

moved from recognising categories to the problem of fine-grained category recognition, where

differences between sub-categories are more sutible, often including grainlier labels with a hi-

erarchical relationship. As a result of having such detailed labels the number of samples are

quite low. Datasets that have these fine-grain labels include flowers [100], cats and dogs [104],

and cars [160]. The overall design to building a deep learning solution to fine-grained classi-

fication to use meta-data of the images such as sub species, colour of animal or the action the

object is performing in the image like the INaturalist system [133]. Extracting these attributes

from images can enable a model to predict these attributes given it has previously not seen a

category before, referred as zero-shot learning. Use of this meta-data in images for tagging

with computer vision algorithms has made it much easy find on the web, both from a dataset

building and a classification perspective. This has lead to application areas such as visual sim-

ilarity, where our aim is to find a group of images that a model predicts as being similar to

its input. Approaches usually use whole image descriptors such as Fisher kernels and Vector

of Locally Aggregated Descriptors (VLAD) [3], or pooled CNN activations [129] to represent

images used to measure similarity in large image-based databases [67].

In the task of object detection, there is two different tasks becoming completed, the first is

locating all objects in an image, and the second is classifying each object. The latter has the

aim of putting a ROI of that object which has challenges such as ensuring that the box is as

tight as possible and restricting the learning structured features even through most objects in

images have organic irregular structure. In the former you are replying on the position and

shape of the ROI to help in determining what the object is, this leads to challenges such as

other objects being in the ROI as well as the object not being fully in the ROI. In general this

task breaks down into two main research groups: two-stage and single-stage models.

One of the first two-stage object detection methods to use neural networks was the Region-

based Convolutional Network (R-CNN) [48], which selects 2000 region proposal using an

algorithm called selective search [131]. These proposes would be recalled to a 224 square im-

age so that they could be fed into AlexNet which would learn the features of the dataset. The

embeddings would then be fed into a Support Vector Machine (SVM) as the final classifier. The

follow up on this approach was Fast R-CNN which replaces the SVM with fully connected lay-
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ers that can compute the prediction and box refinement of the ROI [47]. This model was able

to do this due to having a shared backbone architecture with two separate heads. Each output

head would have a different loss function for the given task. The computation of the CNN lead

to much faster training and inference time with much better accuracy. The bottleneck of this ap-

proach was the selective search algorithm and so this was replaced with a convolutional-based

Region Proposal Network (RPN) to make Faster Region-based Convolutional Neural Network

(Faster R-CNN) [111]. An input image first goes through a series of convolutional layers, these

are pre-trained using one many backbone architectures, the feature maps are then feed into the

RPN. The model then slides over the feature maps and considers different predefined boxes of

scales and aspect ratios called anchor boxes. For each anchor box the RPN predicts if there is

an object or not, and adjusts the box coordinates for a tight fit around the object. The family

of R-CNN models up to this point in time operate on a single resolution convolutional feature

map, making detection challenging on objects of different sizes. A solution to this is to use the

different levels of feature maps as the data flows through the model, this represents different

resolutions of the image due to pooling and convolutions. Each of these layers have a top-down

connection to merge semantic information from the early layers with spatial information from

the later layers [86]. This approach is called a Feature Pyramid Network and it was inspired

by the human visual system as feedback connections throughout the visual cortex influence

lower-level visual perception from higher-level cognitive processes [45].

In two-stage object detection methods we first use a region proposal approach to select loca-

tions to be considered and then use a second approach to then classify them, an alternative to

this are single-stage object detection methods which uses a single neural network to output ROI

along with the classification. One such family of detection methods are called You Only Look

Once (YOLO) [109, 110, 108]. The idea of these approaches is to divide the input image into a

grad, each cell is treated like a regression problem where the model predict the shifting of the

centre coordinates as well as the height and width of the cell. The result is many cells that are

overlapping an object, we then use Intersection Over Unions (IOU) or Non-Max Suppression

(NMS) so that we keep only the most relevant boxes. Another is RetinaNet which is built on

a feature pyramid network discussed above, it uses a focal loss to focus the training on harder

samples in the dataset by down-weighting the loss on well-classified ones such as background

sections of the image [87]. This is mainly due to unbalancing of classes in the dataset and

therefore stops the more common classes from overwhelming the training. The focal loss also
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has many conceptual similarities to active learning, see section 2.6 for details.

The task of segmentation can roughly be broken up into semantic segmentation, instance seg-

mentation and panoptic segmentation, with the main goal of all of these approaches is to label

each pixel in an image with a class. Just like the other areas of computer vision the CNN helped

in enabling per-pixel semantic labelling with a single approach [90]. The challenge with these

early models is that accuracy around the boundaries of each segment is often poor. In section

2.3 we had seen that a CNN can use a number of levels of down-sampling so that the number

of channels increase and the size of the feature maps decrease, allowing the network to extract

semantically meaningful high-order features from the image [14, 49]. We can use this idea to

create semantic augmentations where we create a bottleneck in the middle of the architecture

so that we can learn low-dimensional internal representations before we transform it back up

to the original image resolution, known as deconvolutional upsamling [101]. With this type of

layer we can then build other architectures such as the Autoencder and UNet [114]. Most mod-

ern semantic segmentation approaches are built from the feature pyarmid network, where the

top-down connections can help with percolate semantic information down to higher-resolution

feature maps. Models like the pyramid scene parsing network with spatial pyramid pooling as

a way to aggregate features at different levels of resolution [168, 58], the unified perceptual

parsing network [153], and the HRNet are based on this type of network [141].

2.4 Deep Networks

In previous sections we have motivated the development of neural networks and CNNs, fol-

lowed by discussing different network architectures both from a state-of-the-art and efficient

use of capturing information prospective. As a result deep networks have introduced a few

concepts that are of particular use for computer vision. The first is how deep networks encode

a particular form of inductive bias such that the outputs are related to the input through a hi-

erarchical representation. Within computer vision the relationship between pixels of an image

and a high-level concept object (such as a car, cat or dog) is complex and very non-linear.

Deeper networks can detect low-level features like edges in the early layers, to then combine

them in later layers to make high-level features (such as car wheel, cat eyes or dog fur). This

in turn leads to the output layers which detect the full object. At each layer we are combining

different components which gives us gains in the number of possibilities as we increase the

depth of the network. Deep networks also take advantage of distributed representation, which
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is to say that each neuron is thought to represent a single feature at that hierarchical level of the

network [14]. However, a deep network learn different representations in which combinations

of neurons represent a single feature later in the layers of the network. We view these later

layers as performing transformations of the data into new spaces, so that it is easier to solve for

a task. This technique to discover non-linear transformations of the data is called representa-

tion learning [12]. The space at which the input data is transformed into is called embedding

space and is given by the output of a hidden layer of the network via forward-propagation.

This area of deep learning has become quite popular in the literature due to how we can exploit

unlabelled data. Learning from such data is called unsupervised learning. In this thesis we

use a modified version of is type of learning called semi-supervised learning, where some of

the data is labelled so that we can utilise the embeddings to find matching embeddings for the

associated unlabelled data (see chapters 3 and 4 for examples of this type of learning). transfer

learning is a techqiue that allows us to take advantage of some of these learnt embeddings.

Conceptually, it is the process of using the internal representation learnt from one task applied

to a different but related task. A typical scenario is to train a backbone model on a very large

dataset of common objects, we then take the classification head of the network and retrain it on

a smaller dataset for a more specific task. This often allows for higher accuracy to be achieved

then if we just used the smaller dataset, as we can exploit common features that are shared

by both datasets. We must ensure that the inputs are a similar type and there should be some

commonality between tasks, otherwise the low-level features learnt on the task with the large

dataset will not be useful the task with the smaller dataset. Transfer learning has become com-

monplace within computer vision due to how the CNN will see that most image processing

tasks require similar low-level features in the early layers of the network, while the later layers

are focused on the task.

The rest of the following subsections discuss important developments in deep learning from

the prospective of computer vision.

2.4.1 Attention-based Methods

The core concept that underpins the transformer is the attention mechanism which was origi-

nally designed to enhance Recurrent Neural Network (RNN) for the task of machine translation

in 2014 [6]. It was not until 2017 when Vaswani et al. showed that removing the recurrence

structure and instead focus on the attention mechanism we could get far better performance
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[134]. The input to a transformer is a set of vectors with some dimensionality, we refer to these

vectors as tokens which comes from domain of neural language processing but for our purpose

these could be patches of an image or learnt image embeddings from a CNN. The elements of

each of these vectors are the features, which makes for a useful property of the transformer, in

that we do not have to design a new architecture to handle a mix of different data types, we can

instead combine the data to make a token. At each step the input is split with a query key and

a value matrices. Each have there own independent linear transformation:

Q = XW q

K = XW k

V = XW v

(2.30)

where each of the learnable weight matrices W q, W k ↑ RD↗Dk and W v ↑ RD↗Dv . Dv,Dk is the

shape of the hidden layer output. If we use the same shape then we can stack many of these

transformation layers. Scaled dot-product attention is an operation that multiples the queries

and the keys with a scaling factor 1⇑
Dk

, to then multiply this result by the value matrix:

Y = attention(Q,K,V ) = softmax
(

QKT
⇑

Dk

)
V. (2.31)

The above attention layer allows the outputs to attend to data dependent patterns of the input,

called an attention head. There are many cases where multiple patterns of attention are useful

information at the same time. For these cases we may want to use multiple attention heads in

parallel, where each have independent weights:

Hh = attention(Qh,Kh,Vh) (2.32)

where we have H heads indexed by h = 1, ...,H. We also have separate queries, keys and value

matrices for each head of h. The output is given by first concatenating the heads into a single

matrix then feeding it into dense layer:

Y (X) = concat(H1, ...,HH)W o, (2.33)

where W o is the learnable weight. The multi-head attention layer is the core element of the

transformer network. We would like to stack many of these self-attention layers on top of

each other but to improve training a residual connection is often used to bypass the multi-head

structure. Layer normalisation is also used [5]. The result is written as:

Z = LayerNorm(Y (X)+X), (2.34)
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where Y is defined by 2.33. As there is no recursion in what we have discussed so far there is

no sense of order in the input. This is because the transformer architecture matrices W q
h , W k

h

and W v
h are shared across the tokens like a feed-forward neural network. This has a benefit in

that we can massively parallel the processing of the transformer during training, and it allows

the network to learn both long-range and short-range dependencies. In domains there we need

to consider sequential data like in natural language this can be a major limitation. To fix this

limitation Vaswani et al. introduce the positional encoding [134]. We construct a position

encoding vector rn that is associated with each input at position n. We then add the positron

to the input x̃n = xn + rn. This can be seen as corrupting the input, however in practice it

is not. This is because two uncorrelated vectors tend to be almost orthogonal in spaces of

high dimensionality, which indicates that a model can process input and position information

with some separately [49]. The positional encoding that Vaswani et al. introduced is given by

position n:

rni =





sin( n

Li/D ), if iis even,

cos n
L(i→1)/D , if iis odd.

(2.35)

where i is a dimension of the embedding space, D is the total number of dimensions and L

is a hyper-parameter which acts as a scaling factor to control how quickly the frequencies

of the sine and cosine function decrease as the dimension i increases, the authors suggest a

value of 10000. This formula alternates between sine and cosine functions for even and odd

dimensions creating a unique pattern for each position. The transformer layer has shown to be

a very flexible in many applications such as large language models with one being ChatGPT

[169].

2.4.2 Autoencoder-based Methods
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Figure 2.6: An autoencoder is built from 2 parts: encoder F1 and a decoder F2. Using F1 we map our
3 dimension data to an internal representation of shape 2. F2 takes this representation and maps it back
to the original shape of the input, where our goal is to generate the output to be as similar as possible to
the input.
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A common goal in deep learning is to learn internal representations of data so that it can be

used for other applications, one such way to do this is with a auto-associative neural network,

more commonly refereed to as a autoencoder. In such a model the shape of the output is the

same as the input and we train to generate a output to be as close to the input as possible. The

model as a internal middle layer which is the lowest form of the representation (i.e. layer with

fewest weights and smallest output) of the input. This results in a model with two sections, the

first is called an encoder that maps the input to this internal layer, and the second is the decoder

which maps the result of the internal layer to the output. Figure 2.6 demonstrates a geometrical

interpretation of this mapping, where we have an input with 3 dimensions that is mapped to a

layer with 2 neurons shown as F1. F2 takes the embedding from the internal layer and maps it

to some output space with the same dimensions as the input. If we have a feed-forward neural

network with one hidden layer with M neurons, an input and output of D neurons, we introduce

a constraint to M so that it must be less than D. Otherwise the network will just copy the input

values to the output. The targets y are the inputs x, so a autoencoder learns to map each input

onto itself, this kind of mapping is called auto-associative mapping. As the internal layer has a

constraint, a perfect reconstruction of all data is not possible, so we have to find a set of weights

that minimises a loss function capable of capturing the degree of mismatch between input and

reconstructions. A common choice is the sum-of-squares loss function:

E(w) =
1
2

N

!
n=1

|| y(xn,w)→ xn ||2 (2.36)

Bourlard and Kamp showed that if the hidden neurons have linear or non-linear activations then

the loss function has a unique global minimum and that at this minimum a network will project

the data onto the M-dimensioanl space that is spanned by the first M principal components [17].

Therefore no advantage is gained by using a two-layer neural network on such a task over

Principal Component Analysis (PCA), as PCA will give the same solution in quicker time.

However, if we build a deeper network with more non-linear activations then we can learn

complex non-linear relationships in the data by utilising hierarchical representation property

of neural networks. We have shown how we can use convolutional layers as a learnable down-

sample operation on the input in section 2.3. In the encoder we use these convolutional layers

just like a standard CNN. However, to get the internal embedding, a flatten layer is used, which

simply collapses the feature map into a vector. This then gets feed into a dense layer to produce

the internal embedding. The decoder then needs to generate the input from this embedding, we

could use a up-pooling or a resizing method but it is preferred to use a learnable operation to
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build the input. This can be performed with a transposed convolution. In a standard convolution

we slide the receptive field over a image performing the dot product of the current patch with

a weight matrix, resulting in a smaller output. In transposed convolutions does this same

operation in reverse, other in practice we implement by interleaving the input with zeros and

apply the standard convolution, where stride and padding manipulate the output size.

A common problem with autoencoders is that they tend to learn the identity mapping. To avoid

this and force the model to learn the internal structure of the data, a denoising autoencoder

was proposed [137]. The approach takes the input vector and corrupts it by adding noise.

We then train the model to reconstruct the noise-free version of the input given the one with

noise. There are many different options for the type of noise to use. A common approach is to

randomly select elements of the input to be zero. This approach learns aspects of the structure

in the data. If we applied this to images, pixel neighbours will have a correlated value to the

corrupted pixel, which is corrected by minimising the sum-of squares between the corrupted

image and the non-corrupted version.

2.4.3 Limitations on Irregular Domains

CNNs have shown to be very effective with data that forms to some regular structure. In images

we index based on a pixel location, this forms a gird structure allowing a kernel to slide over the

image, computing convolutions. We use the kernel as there is a regular relationship between

centre pixel and its neighbours. Another view to this is that the relationship between a pixel

and its neighbours are a constant distance apart. There are many domains that do not form

into this regular structure and if we do apply a CNN to such data, this would result in forcing

irregularly structured samples into some regular space. We then lose important information that

is embedded in the irregular structure, meaning the model would have difficulty learning this

irregular structure that is important for the task [121]. Examples of domains where no regular

relationship exists between data include the positional reading from points on the human body

[37], using the molecule structure to predict different properties of that structure [70], road

networks [64], hierarchical labelling systems [40, 170]. Motivation into using irregular data

has resulted in a new field of deep learning called Graph Deep Learning. The following section

gives discussion on this field.
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2.5 Graph Deep Learning

In all sections up to this point we have discussed structured data, mainly in the form of images.

We now explore the use of graph data as a way to describe complex relations between samples,

and later look into modelling these samples by introducing the graph neural network, where

the grid structure is relaxed, so that samples are not constrained to have a relationship to other

samples. This can be of use in many domains, for example a molecule has different types of

interconnecting atoms. Each atom can have a label such as carbon, trogen or hydrogen and then

the connection to that atom can also have different labels, like single bond or double bond. In

world wide web we can connect to different web pages, in this case the connection here has a

direction as a page A having a hyperlink to page B does not necessarily mean that B also has

a hyperlink back to A. All these examples can be represented as a graph, in fact a image is

simply a special instance of a graph [38]. In this section we describe graph deep learning, first

by introducing the graph and some common properties and notations, this then follows how we

can capture feature representations of the graph and the different types of tasks involved. We

end the section discussing common network architectures and some challenges in graph deep

learning.

2.5.1 Graph Properties

A graph G is a ordered pair of sets (V,E), where V is a set of nodes and E is a set of edges.

We index into the nodes like any vector n = 1, ...N, and write the edge from node n to m as

(n,m). If two nodes are connected by an edge then they are called neighbours and the set of

all neighbours for a node n is N (n). A sub-graph of G is a graph H = {W,F} where W ⇓ V

and F ⇓ E. A graph can also have weighted edges when the edge maps to a set of real values,

denoted wn,m, a weight from node n to m. Each node also has some associated data to it which

is represented as a D-dimensional vector xn for node n.

Both in practice and as a way of visualising a graph we use a adjacency matrix denoted as A to

specify the edges. We must follow a chosen order for V such as the index order as stated above.

The shape of the A is therefore N ↗N and if the cell contains a 1 at index location n,m then

there is an edge connecting n to m. All other cells are set to 0. For a graph that has underacted

edges A will be symmetric since it implies that An,m = Am,n. We often use A in some form as

input to a neural network, however as the nodes are ordered a neural network will simply learn
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this permutation. We could implement a permutation in-variance into the training scheme, but

this is infeasible as the number of permutations increase factorially with the number of nodes.

Instead we build a network architecture with this in-variance property. First we introduce a

permutation matrix P, which has the same shape as A. P defines a particular permutation of

node ordering. A row in P only has a cell given the value 1 while the rest are 0. This indicates

that 1 at position n,m is moving node n to the new position of m. The permutation matrix is

more commonly shown as the standard unit vector uT
n , where at element n equals to 1. We also

define the permutation as a function )(·) that maps n to m = )(n):

P =





uT
)(1)

uT
)(2)

...

uT
)(N)




(2.37)

Now we if want to reorder the nodes of a G and keep that order in our data X we can X̃ =

PXPT , where P is the permutation for the rows while PT is the permutation of the columns.

We now need to build a network architecture so that its predictions are invariant to the node

reordering y(X̃ ,Ỹ ) = y(X ,Y ). We also want to explicit deep networks for their hierarchical

representation via layers where each layer captures information about the graph. The layer

must also be non-linear and differentiable with respect to the weights. The architecture should

also be flexible enough to support graphs in various sizes, support different tasks like node

prediction or predicting some property at the graph level. As a result of these requirements a

fixed-length representation used by neural networks is not usable.

2.5.2 Convolutions on Graphs

i

i

i

Figure 2.7: A is a convolutional filter computed by node i in layer l+1, which is a function of activated
values in layer l over a patch. B In a graph we can express the same computation of node i by aggregating
its neighbours.
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CNNs make successive transformations of the input so that a pixel at a layer computes a func-

tion of pixels from the previous layer via a convolutional kernel. If we consider a single pixel

i at layer l +1 as shown by figure 2.7 the result is:

zl+1
i = ReLU(!

j
w jzl

j +b), (2.38)

where the sum over j is all pixels within the receptive field of layer l. The same operation is

applied as the receptive field slides over the image, so that the weights w j and bias b are shared

across all patches. The issue when applying this to graphs is that the weights are not invariant

under different permutations. If we view the receptive field as a sub-graph where we target

node i and get its neighbours N (i) we can then adapt equation 2.38 to the following:

zl+1
i = ReLU(wneighbour !

j↑N (i)
zl

j +wselfzl
i +b), (2.39)

where wneighbour is our weight shared across all neighbours and wself is the weight for node i.

In this case we are aggregating the neighbour nodes via a sum and then pass it through an ac-

tivation function. This can be viewed as passing messages from neighbours into node i, where

the message is an activation of other nodes. Like how we can select a size of kernel to deter-

mine how much information we gather in a patch on a image, we can also select the amount of

information to gather by defining N (·). The number of edges given by a node i is referred to

as the degree of i and it denoted d(i). We stated that the first set of neighbours is N (i), this

is, of course, equal to the degree of i. We can also define Ns(i) where we get all neighbours s

steps away from node i. This introduces one of the earliest graph frameworks Message-Passing

Neural Network (MPNN) [46]. Equation 2.39 is doing two steps, we first combine information

from neighbouring nodes, called aggregation then update the node as a function of the current

embedding creating a new embedding vector for the node. An aggregation function for all node

neighbours of n:

zl
n = Aggregate({hl

m : m ↑ Ns(n)}) = !
m↑Ns(n)

hl
m, (2.40)

where hl
n is a node embedding. We then update the embedding at node n to get hl+1

n :

hl+1
n = Update(hl

n,z
l
n) = ReLU(Wselfhl

n +Wneighbourzl
n +b). (2.41)

We then perform these two operations to every node on the graph. The problem with equation

2.40 is that a sum gives a stronger single over nodes that have more neighbours than those with

fewer, which leads to numerical stability issues in practice. We could normalise the sum to be
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a average over all neighbours but has been shown to be worse in performance than the sum

[54]. However, we if we take into account the number of neighbours for each neighbouring

node then nodes with many neighbours do not overly dominate the aggregation:

zl
n = Aggregate({hl

m : m ↑ Ns(n)}) = !
m↑Ns(n)

hl
m√

| Ns(n) || Ns(m) |
. (2.42)

We can now view a graph neural network as a set of layers each of which transform node

embedding of the same shape. The final layer determines the task for a given problem.

The first type of task we will discuss predicting the label for each node in a graph, called node

classification. Just like standard classification tasks we use the softmax function but on each

node over C classes:

yni =
exp(W T

i hL
n)

! j exp(wT
j hL

n)
, (2.43)

where i = 1, ...,C. We then use a loss function such as cross-entropy over all nodes and classes.

Another common task is being able to predictions about edges of the graph, called edge clas-

sification. This is often formulated as determines if an edge between two nodes should exist

or not. We can do this using logistic sigmoid on pairs of node embeddings n and m to form a

probability for an edge, p(n,m) = !(hT
n hm). The final type of classification we will discuss is

graph classification where our goal is to predict a label for a graph once trained a a dataset of

labelled graphs G1, ...,GN . One such approach is to take the sum of all node embeddings:

y = f (!
n↑V

hL
n), (2.44)

2.5.3 Spatial Graph Convolution

The methods of graph convolution is split into two approaches, spectral and spatial. Spectral

explores the frequency domain on graphs by applying graph fourier transformations, while in

spatial we focus directly on the graph structure. In this work we focus on the spatial domain.

We first introduced the MPNN framework as most modern spatial approaches are expressed as

instances of this framework. The following is a discussion on some of these approaches where

appropriate for our work.

MoNet. A general framework proposed by Monti, Bronstein and Bresson adjusts the convolu-

tional kernel to be a mixture of k normal distributions in a pseudo-coordinate space [97]. An
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initial set of coordinates for each node and its neighbours:

y = u(x,y) =


1√
d(x)

,
1√
d(y)

T

, (2.45)

where x and y are nodes and y is the neighbour of x. This is then transformed in a dense

layer with the tanh activation function, ũ(x,y) = tanh(Wu(x,y)+b). The authors restricted the

weights to be W ↑Rr↗2 where r is depended on the dataset. This results in pseudo-coordinates

to which they are then used in defining k weight functions, wi : Rr ↓R that the the distance of

the pseudo-coordinate of each distribution Gaussian kernel. These weight functions are defined

by:

wi(ũ) = exp
(
→1

2
(ũ→µi)

T %→1
i (ũ→µi)

)
, (2.46)

where µi ↑Rr and %i ↑Rr↗r are learnable weights representing the mean and covariance matrix

of the i-th Gaussian kernel. The convolution in MoNet is then defined as a weighted sum of

features:
1

|N (x)| !
y↑N (x)

k

!
i=1

wi(ũ(x,y)) · (Wi f (y)+bi), (2.47)

where N1(x) is the neighbours of node x, Wi ↑RFout↗Fin and bi ↑RFout are learnable parameters

for each Gaussian component, and Fin and Fout are the dimensions of the input and output

feature spaces.

GraphSAGE. Another type of general framework for generating node embeddings which was

proposed by Hamilton, Ying and Leskovec is Graph Sample and Aggregation (GraphSAGE)

[53]. Each layer has two operations: sampling and aggregation. In sampling stage we uni-

formly sample a subset of each nodes neighbours and at different layers a different set of

samples is used. The number of samples is a hyper-parameter. As there is a different sam-

pling for each layer then there are going to be overlapping nodes. As a result the authors

provide an additional mechanism where the nodes with degrees that are lower than the sample

size are over-sampled. One of the main contributions in this work was the aggregation-stage.

GraphSAGE learns a set of aggregator functions that collect and summarise information from

a node’s local neighbourhood. For each node v, GraphSAGE defines a representation at layer

k as:

hk
v = !


W k · concat


hk→1

v ,aggregatek


hk→1

u ,⇔u ↑ N (v)


, (2.48)

where hk
v is an embedding vector of node v at layer k, ! is a non-linear activation function, W k

is a matrix of learnt weights of layer k. In the original paper, three different types of aggregator
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functions where proposed. The first is the mean aggregator:

aggregate(hu,⇔u ↑ N (v)) =
1

|N (v)| !u ↑ N (v)hu (2.49)

The second is a LSTM based aggregator which uses a implicit assumption of order therefore

we use a random permutation of neighbours ):

aggregate(hu,⇔u ↑ N (v)) = LSTM(hu,⇔u ↑ )(N (v))) (2.50)

The third is the pooling aggregation which takes the maximum value for each channel:

aggregate(hu,⇔u ↑ N (v)) = max(!(Wpoolhu +b),⇔u ↑ N (v)) (2.51)

where max is an element-wise max operator, and Wpool and b are learnable weights. We then

minimise a loss function that encourages nearby nodes to have similar representations while

pushing apart embeddings for disparate nodes, a common choice is negative sampling loss.

Graph Attention Network. We introduced the attention mechanism in section 2.4.1 as a way

to perform selective focus on the most relevant parts of the input. It has also been shown that

we could use the attention mechanism in graph deep learning to make a aggregation function

that has the same selective focus but on neighbouring nodes [135]:

zl
n = aggregate({hl

m : m ↑ Ns(n)}) = !
m↑Ns(n)

Anmhl
m. (2.52)

where Anm is a attention coefficient used as a wight for hl
m. There are a few different ways to

construct these attention coefficients for example:

Anm =
exp(hT

n Whm)

!m↑N (n) exp(hT
n Whm)

, (2.53)

This allows the model to assign different importance to different neighbours, allowing it to

focus on the most informative nodes for a given task. The graph attention network is often

expanded to include multiple attention heads Ah
nm, where h is one of those heads. Just like in a

transformer we combine the different heads using concatenation and dense layer.

2.5.4 Limitations on Graph Deep Learning

By extending the properties of deep learning to irregular domains, graphs have emerged as a

potential way to model geometrical objects in many different tasks. However, they do not come
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without challenges. One that is common in practice is scalability of graph deep models due to

many tasks require processing of the entire graph at once, resulting most graph deep learning

problems needing high computational and memory requirements. We also cannot perform

parallelisation as updating one node can have an affect on others. Some solutions exist but

are problem dependent. For example we could perform a fixed sampling technique like with

GraphSAGE or we could extract graph into smaller sub-graphs like with gapthSAINT [165].

In both of these cases some information is discarded which can result in difficulty to capture

the global structure. Another common problem is when embeddings of nodes start to become

similar after interactions of training, this is called over-smoothing. This has been shown to

happen in deep networks which results in poor performance on node classification tasks [81].

The over-smoothing is a result of a small positive eigenvalue of the normalised Laplacian

matrix. This matrix is often used to represent a graph by encoding its structural properties. It is

defined as L = I →D(→1/2)AD(→1/2), where I is the identity matrix and D is the degree matrix.

As the shape and density of a graph grows the problem also gets worse [102]. Three solutions

currently exist to help mitigate over-smoothing: residual connections, normalisation and edge

sampling [44]. Residual connections allow the model to preserve information from earlier

layers by flowing information to later layers, allowing for deeper models [81]. Normalisation

methods like layer normalisation [5] or batch normalisation [65] can help regularise the model

to help mitigate over-smoothing. Another approach is to add a weight to the residual connection

which is a form of weight normalisation [102]. Edge sampling involves randomly dropping out

edges during the training process [113]. The propose of this is to reduce the propagation of

information between nodes and the adding some randomness has shown to focus the model

to lean diverse feature representations. The final challenge we will discuss is when the graph

structure evolves. Dynamic graphs which stems from sequence forecasting but applied to

irregular domains where nodes and edges can be added, removed or modified over time [69]

With such a well established being applied to irregular domains it is not surprising to see many

applications of graphs being applied to this temporal domain [71, 158, 164]. However most

work where the graph structure evolves such as predicting the appearance or disappearance

of a node or edge is not so commonly been explored [44]. This is due to the computational

complexity of training models on evolving graphs is every high [144]. One direction we could

tackle this challenge is the application of active learning strategies, which could potentially

allow models to selectively update and refine their knowledge based on the most informative

changes in the graph structure.
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2.6 Active Learning

Active learning is one of many types of training schemes used within deep learning where

the goal is to have users have some inference on smoothing the training of a function, this is

especially useful strategy when there is limited amounts of labelled data. This is accomplished

by intelligently selecting the most informative samples for learning during the training process.

Active learning forms the second significant proportion of this work in which it is used in

chapters 3 and 4. The following sections give discussion on this field.

2.6.1 Acquisition Functions

The general framework for an active learning task is given some unlabelled dataset U and

maximum number of samples to label M, we aim to select some subset of M samples from U

to be labelled so that they can result in the maximised improvement in model performance. In

essence we obtain as many performance gains as possible having the least amount of samples

labelled. This trade-off between labelled data and performance is defined by the task, the

complexity of the function and the type of data. In the context of active learning the acquisition

function is the scoring function which determines the expected performance gain from a sample

being labelled. The query strategy is the process of identifying the best samples to be labelled.

The field is usually split into the type of query strategy being used for a given task. Uncertainty

sampling is one of the classical approaches to this problem where we select samples which the

model produces the most uncertain predictions such as entropy:

→ !
yinY

P∀ (y | x)logP∀ (y | x) (2.54)

where Y is the set of classes, ∀ is the current weights of the neural network and P∀ (y | x) is

the softmax probability of some sample x and one of the classes y. Another strategy is to

find a group of samples that can best represent the entire data distribution, referred to as di-

versity sampling. The most common approach is quantifying the similarity between samples,

in deep learning this is called Contrastive learning and we use this in chapter 4 to find sam-

ples that labelled the same but are being represented in the embedding very differently. We

then use these samples as a acquisition function. Other approaches change the type of neu-

ral network such as what Gal et al. did with a Bayesian neural network, where instead of a

weight being a single value it is a probability distribution then using one of many inference

techniques to approximate better posterior than what softmax can give [42]. In the case of
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this work, they ensembled many samples with different dropout masks applied in the infer-

ence to estimate model uncertainty, referred to as Monte Carlo dropout. A common challenge

with these approaches is computational complexity as the deeper the network gets the more

intractable Bayesian inference becomes, as a result approximation methods is required such

as using Kullback-Leibler divergence between different weight distributions, however they of-

ten over-fit. Deep networks have successfully been applied to the Bayesian active learning

approach such as Gal and Ghahramani where they used a Bayesian-based CNN [41]. This

approach still requires careful consideration in choice of priors and the type of inference tech-

nique, otherwise over-fitting becomes quite common on large dataset. Some advocate for a 2

model solution and focus on the training scheme such as Yoo and Kweon where the first model

is a standard deep network and the second is a network that predicts the loss for unlabelled

input data, this is a way of estimating how good the first model is at prediction, called a loss

prediction module [163]. The task for this module is split a batch in pairs of samples xi and

x j and then predict which one is expected to correctly have the larger loss. We can then use

the one with the higher loss to be queried by the user for relabelling if needed. There has also

been adversarial examples to the 2 model approach such as variational adversarial active learn-

ing [123]. In this case the the proposed approach is to use a Generative Adversarial Network

(GAN) where the discriminator tries to distinguish unlabelled data from labelled ones. Large

datasets where used on these deep networks without over-fitting and they showed that robust

to different initial labelling pools, even when a bias is used for selection.

2.6.2 Measuring Training Effects

An application to active learning is to measure the model performance as new labelled data

is added to the training dataset. This can be in both online learning as well as the traditional

active learning approach where newly labelled data is added during the training process. Ei-

ther way measuring the training effects shows how effective the current method is. A study by

Mariya Toneva et al. designed an experiment to track the predictions of model for each sample

and count the transitions from being correctly classified to incorrectly [130]. The authors then

categorised samples by saying that if a label changes across epochs many times then the same

is forgettable. While if the label assignment is consistent then it is not forgetting the learnt fea-

tures, these are referred to as unforgettable samples. The experiment was performed on image

data where they found that many samples are never forgotten are ones that are common fea-

tures among the labels. They then removed these unforgettable samples without compromising

52



2.6. Active Learning

model performance. If a samples keep being forgotten then this can be used as a acquisition

function, as proposed by Bengar et al. [10]. We can also quantity model change by finding

samples that have the greatest update to the model if the label is known, called expected gradi-

ent length [120]. The gradient of the loss function with respect to the weights ∀E∀ , if we give

an unlabelled sample xi, we can calculate the gradient assuming the label y, ∀Ey
∀ . Expected

gradient length uses the current model belief to compute the expected gradient change as yi is

unknown:

EGL(xi) = !
yi↑Y

P(y = yi | x) || ∀Eyi
∀ || (2.55)

As well measuring training effects this approach can also be used as acquisition function as we

can use the label with the greatest update as the suggestion what the sample should be.

2.6.3 Challenges of Combining Deep Learning and Active Learning

We have shown that deep learning can learn complex functions for many different tasks and

domains by training on a large dataset to find patterns that form hierarchical feature represen-

tations on different layers of the network. One of the largest dependencies in achieving good

performance is the dataset. Active learning has shown significant potential in reducing the

need for high-quality labelled data and smoothing out the complexity of the learning on some

functions. Active learning also adds a level interoperability in exploring the feature represen-

tations of deep learning models, in which they can provide insight into samples of data that

has been forgetting and shows forms of detecting drifting. Therefore, the approach to combine

both fields was proposed by considering the advantages of both. Although there is high ex-

pectations on the results of this field and active learning has quite a rich literature, there is still

difficulty in applying directly to deep learning. As we discussed a common strategy for finding

training samples that are challenging the model to learn form is via measuring uncertainty. In

classification tasks the softmax layer is used to obtain the probability-like distribution of the la-

bels, which is then used to measure this uncertainty. The challenge is that softmax is often too

confident in its distribution, drastically skewing the certainty of the labels. In active learning

many advocate that the softmax response is unreliable as a measure of confidence [143], some

even saying that it is worse than random sampling [139]. Even through active learning reduces

the need for high-quality labelled data, there is still a need for it. As active learning relies on

this for initial patterns of the data, however, the bigger challenge is that deep learning is often

very greedy for the data [62]. Another alignment issue with the two fields is that most active

learning algorithms focus on training of classifiers by using a query strategy on fixed feature
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representations. In deep learning the feature representations and the classifier are optimised in

a joint training process, resulting in many divergent issues [143]. We address some of these

challenges in this thesis. In 4 we look into insufficient labelling of data and alignment issues by

formatting the problem as a data refinement task to improve steel defects in images captured at

different angles in the manufacturing pipeline. We explore using active learning as fine-tuning

to the deep learning model and compare it to one where active learning was part of the training

from the beginning. We also explore using psudo-labels of different complexities to expand the

labelled training dataset in a semi-supervised training scheme. In chapter 3 we also look into

the issue of insufficient data and pipeline alignment but additionally, we also look into model

uncertainty in deep learning by exploring clusters of samples with a interoperability tool of

different interactive visualisations. This allows to see how the affect of softmax responses has

on the query and the feature representations. We also look at how we can form a set of hierar-

chical labels with clusters of labels that are either maligning into one node or if they split, in

either class they become children of the current node.

2.7 Summary

At the start of this chapter we introduced deep learning by the different types of problems that

it could help solve that are directly related to this thesis. We explored the core concept of

deep learning, the feed-forward neural network and how all other approaches extend from this.

However, when applied to the domain of computer vision, the computational complexity is high

due to each pixel value having an associated weight. This motivated the idea to share a group

of weights over the whole image based getting patches called a convolution and the success it

brought to the field. These CNN concepts directly support our contribution in Chapters 4 and

5, where we leverage them for our acquisition function and hierarchical labelling systems.

The success of deep networks based on highly feature-rich representations based on a form of

hierarchy led to many different architectures. The drawback of this is that they are restricted to

regular domains and when applied to irregularly structured data. This motivated our discussion

towards graph deep learning, which forms the foundation for our contribution in chapters 5

and 3, where we develop approaches for hierarchical labelling systems and density-based deep

clustering.

Active learning was introduced in this chapter as a means to selectively update and refine
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model knowledge, which directly supports our contribution in chapters 4 and 3. This is where

we develop acquisition functions for feature representation positions and evolving graphs. The

limitation of traditional approaches on evolving graph and hierarchical structures, discussed in

this chapter, are specifically addressed by our contributions in the subsequent technical chap-

ters, providing a targeted solution to these identified challenges.
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3.1 Introduction

Deep learning has made significant strides in many domains including manufacturing, where

many processes are performed automatically [142]. In steel manufacturing however, quality

control remains an active challenge due to the complex nature of steel, how it gets produced for

different targeted purposes and the type of data that often gets produced in these manufacturing

plants. The composite nature of steel forms defects labelled into one class but contain many

shared features of other classes resulting in difficulty of optimising such functions [147]. Some

defects form into different types as the damage spreads throughout the coil of steel. Many have

approached these challenges from various directions. Some have framed the problem as a

sequence forecasting task by capturing a video of steel as it moves down on the conveyor belt

and predict how the steel defect forms into a new class [162]. Others treat it as a fine-grained

classification task, acknowledging that steel is often designed and manufactured for specific

customers, resulting in rare types of detects due to unique composite combinations [157].

In this chapter, we examine the performance of generative models for the task of deep cluster-

ing within the manufacturing domain. Our focus is twofold: first, we explore the effectiveness

of these models in detecting and categorising steel defects, and second, we present a series of

exploratory analysis approaches through a graphical user interface. This interface is designed

to allow domain experts to provide reasoning on how these models detect defects, forming a

bridge of interoperability between complex algorithms and practical application. We investi-

gate the user of an auto-encoder architecture with a clustering loss, an approach that has shown

promise in unsupervised learning tasks [2]. Additionally, we explore whether incorporating

supervisory information can benefit the embedding space, potentially improving the model’s

ability to distinguish between defects and artefacts that are not defects in the capturing process

[1]. Finally, we influence the training scheme with an active learning approach to enhance a

patch-based classification task on the learnt embeddings from the auto-encoder, effective in

scenarios with limited and error-prone labelled data [120]. By combining deep learning tech-

niques with interactive visualisation tools we contribute to providing tangible insight for the

manufacturing sector, potentially leading to more efficient and accurate quality control pro-

cesses.
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3.2 Background

Unsupervised learning is a set of problems where we have no target, instead we extract infor-

mation from the features of the dataset by minimising a loss function for a given task. Common

problems involve density estimation, learning to draw samples from a dataset, learning to de-

noise data, finding a manifold that the data lies near, or clustering data into groups [49]. This

is usually accomplished by a learning a representation of that data that can be best utilised for

the task, where the representation of the data is simpler or formed to be in a more accessible

way, while keeping as much information as possible. Once in this new representation it can be

more useful for different analytical tasks, creating a 2-step pipeline. Step 1 is therefore the pro-

cess of transforming data into a new, more useful representation called representation learning

[12]. The effectiveness of the pipeline is largely dependent on the quality and relevance of the

new representations. In step 2 is the downstream task such as learning to generate new data

samples [50], finding anomalies that deviate significantly from representations [103, 172], find

associations that have been uncovered via the new representation [66] or used as a form of ac-

quisition function within active learning by grouping of samples to name a few [31]. The rest

of this section discusses the alternative approaches and the necessary background knowledge

to motivate this work.

3.2.1 Low-dimensional representations

Many dataset have the property that each sample lie close to a manifold where the dimen-

sionality is much lower than the original feature space, meaning while the dataset has many

features in some high dimensional space, the meaningful variation that allows us to gain better

performance in a given task lies in a much lower-dimensional space. If we focus this discus-

sion to computer vision where we have a dataset of faces with 100s of pixels, this is of course,

a high-dimensional. However, the actual variations between faces might be described by just

a few factors like age, gender, expression. All of which from on a lower-dimensional mani-

fold within the same high-dimensional pixel space. In practice, we often do not have data that

are confined to a nicely-smooth manifold, especially when samples that are a large distance

away from the manifold. We define these hidden or unobserved variations within the images

as latent variables as they are inferred from other observed information in the data, in this case

pixel values. The process of finding these latent variables is a form of dimensionality reduction

where the high-dimensional observed space maps to a lower-dimensional latent space, that is
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more compact and meaningful representation of the data. This leads to a linear dimensionality

reduction technique called PCA, which finds the lower-dimensional linear manifold with the

most variance in the data. PCA finds orthogonal directions called principal components in

the feature space. If X is a some centred data matrix, PCA finds an eigenvalue solution for

the covariance matrix XT X . The eigenvectors form the principal components, and the asso-

ciated eigenvalues is the amount of variance explained by each component. If we select the

top k components and project our data into a k-dimensional subspace then we capture the most

variance in the original data. The result is k top latent continuous variables, where each is

a linear transformation of the features. The space spanned by the top principal components

forms a linear manifold in the original feature space. The main limitation with PCA is that it

is a linear method while most dataset have a complex, non-linear relationship that PCA would

struggle to capture. Autoencoders are non-linear alternatives which utilises the properties of

deep networks to find feature-rich representations of a hierarchical nature. Just other gener-

ative methods, these form a fundamental component of deep clustering. For a discussion on

autoencoders see 2.4.2.

3.2.2 Clustering Methods

Clustering is a widely used unsupervised learning technique which aims to define a groups

of similar samples based on similar features or representations. The goal is to have cluster

where the data is homogeneous with each other and dissimilar to other data clusters. This is

data-driven process where in convention the features or representation do provide any infor-

mation about the group the data should become to. Through this process we can learn useful

information about the structure such as how they are related. Clustering via partitioning is

the process of splitting data into K groups. These methods are categorised into if a sample

should become to more than one cluster, called fuzzy clustering, or if the same should only be-

come to one cluster, called hard clustering [68]. In this chapter we focus on a hard clustering

method called k-means clustering. K-means divides the training dataset into k different clusters

based on a distance metric of the input [92]. The method first initialises k different centroids

{µ1, ...,µk} around the feature or representation space then alternates between two different

steps until convergence. In step 1 each sample is assigned to a cluster i, where i is the index

of the nearest centroid µ i based on the selected distance metric. In the step 2 each centroid is

re-positioned to the mean of all samples assigned to the cluster i, this done for all centroids k

before moving back to step 1. Convergence in the context of k-means is when there is little
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to no change in position of each centroid. The distance metric of choice is usually Euclidean

distance. Pre-training clusters in this way makes it inherently ill-posed in such that domain

knowledge is required to use k-means effectively. Sensitivity to initial placement of centroids

determines performance to a significant degree. Measuring performance can also be challeng-

ing as there is no single way to know if the data generalises well to the real world. However,

we can measure properties of the current clustering such as intra-class cluster which shows

average euclidean distance between samples of a cluster. The smaller the intra-class distance

is the more similar the samples within the cluster are. Another form of measuring performance

is the inter-class distance which is the average euclidean distance between different clusters,

which determines the dissimilarity between the groups. One of the most common limitation

with clustering methods is that they are not holistic to properties of the world and thus do not

generalise well. This is due to the representation and how it is not changed in a learnable ap-

proach for the task. This has lead to using more meaningful representations in deep clustering

methods.

3.2.3 Deep Clustering Methods

Like many areas in the machine learning, deep networks have contributed to cluster analysis to

form deep clustering. Using rich feature representations that have a hierarchical inductive bias

have shown to be beneficial component in supporting traditional algorithms. Generative meth-

ods are of particular interest due to the constraint in focusing only the essential features of the

dataset instead of relying on the targets. In this section we focus on deep clustering approaches

where representations are used for the task of clustering. We do not use features of raw data

or traditional dimensionality reduction in these methods as it has been demonstrated that per-

formance is limited as the dimensionality increases, especially in computer vision. Therefore

many approaches use non-linear generative methods that propose a set of latent variables which

get used for clustering. A common network architecture family is that of the autoencoder. Ex-

isting work in deep clustering is then classified into 2 categories: separated clustering and

embedded clustering. Separated clustering involves learning a lower dimensional representa-

tion space of the training dataset then perform cluster analysis in a 2 step process [128, 63, 80].

Such schemes do take advantage of deep networks to map data into a representative feature

space but the learning of this space and the clustering are two separate processes, due to the

objectives not being optimised jointly. Embedding clustering takes the objective of clustering

into the training scheme, forming a deep clustering task and a new framework [124, 155, 51].
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Most approaches in embedding clustering form a closed-loop 2-step process where a deep net-

work maps the original data into a representative feature space then perform clustering on the

current embeddings. The approach alternates the steps in a loop until convergence by opti-

mising a Kullback Leibler Divergence (KL) loss to enforce a self-training target distribution.

The limitation with these approaches is that by using KL the distance between a sample A to

sample B is not necessarily the same as B to A. This results in directly influencing the quality

of the clusters being generated. The second approach within embedding clustering is using

deep networks with clustering on the embedding space simultaneously, by optimising the re-

construction and a clustering loss in a single step process [2, 1]. Forming cluster analysis as

a semi-supervised task by providing varying degrees of supervision has potential to enhancing

performance as a form of domain knowledge inference into the training scheme. This domain

knowledge could be from utilising labelled data or a form of human supervision via iterative

user feedback in an active learning task [33, 8, 105, 138, 1]. By incorporating supervision of

some form into the training scheme involves a great deal of time-consuming effort of labelling

such data, because in many situations if clustering is the proposed method of processing then

usually no labelling is given. This results in the potential direction of active learning, where

we may refine data over time or simply use it to enhance the performance of the clustering.

In this case a decision needs to be made by a human, in many domains where a higher form

of expertise is required then more information is needed to be given to the human in order to

make an accurate decision. In the following section we propose an exploratory approach to

assist the human in making that decision.

Our methodology is an iterative process to exploratory analysis where we first experiment with

deep clustering at varying levels of supervision and apply active learning by querying users,

which is discussed in section 3.3. Secondly, we focus on dataset refinement to form hierarchical

labelled datasets where we start with flat homogenous labels, which is discussed in section 3.4.

We then evaluate these hierarchical labelled datasets with a few different methods in chapter 5.

3.3 Exploratory Approach

We introduce an exploratory approach to assist in decision making by a human for an active

deep clustering task. For ease of use we build a graphical user interface with customisation

options for different views as well as different interaction techniques. This allows a human

to not only get some insight into what the selected model is deciding based on the current
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embedding space, but also to assist in making decisions by the human. In this section we

introduce a manufacturing dataset that our experiments are based around, the graphical user

interface and the active learning experiment.

Throughout the set of experiments we evaluate this work on two datasets. The first is MNIST,

which consists of handwritten digits between 0 and 9 in the form of a 28↗28 grayscale image

[76]. The numbers from labels of 10 classes. MNIST has 60,000 samples in the training dataset

and 10,000 samples in the testing dataset. The second is a steel data from quality control within

a steel manufacturing plant, which was captured during the cold rolling process. The dataset

consists of 5,000 grayscale images, with each containing between one and three defects. As

steel is produced for a different set of purposes and depending on what that is, will mean sets

of features are more common than others. This is due to the composite nature of steel and how

it is targeted for a given purpose. For this reason we use 4 different types of steel coils, where

each coil has 32 cameras capturing different angles and positions along the mill. Labelling is

provided as a ROI over the defect. These labels should be used only as a suggestion due to

the many errors, some defects do not have an ROI, while others have more than one defect in

the ROI. The variance in types of steel and the accuracy of the labels motivate the need for

semi-supervised approach to model such data.

The initial view of the graphical user interface can be shown in figure 3.1. Users can select

different models based on the amount of supervision is given as part of that experiment, some

models also do not include a clustering training scheme as a form of comparison. Users interact

with the scatter plot representing an embedding space from the model, note that the embeddings

have been reduced to 2-D from a selected dimensionality reduction technique. Each point in

this scatter plot is a patch from the dataset, where users can right-click to see extra information

such as which coil it it comes from, the segment of steel within that coil, patch location and

its current label if it has one. By selecting different points, users can then view location of

the patch in the image via section c of the figure. Within the scatter plot users can use a

lasso section on a group of points, individual selection of points or a multi selection of points.

Showing global context of patch location is important in domains like steel defect detection

due to the changing nature of defects as they move across the conveyor belt. By showing its

location, experts are able to examine if the defect morphs into a different one in a different

part of the image. This view gets updated as different labelling sessions are provided. After
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Figure 3.1: Explore current embedding space via a selected model in the user interface. This embedding
space changes over each session of labelling in an active learning experiment. a: the control panel of
this view where we can customise how we want to show the b and c. b: a selected dimensionality
reduction technique is performed on the embeddings to view in 2-D. Users can select different points
that represent patches of images and there location is then shown in c. c: segments of steel for different
clusters are shown. The dots hovering on the image are the locations of the selected points from b.

each labelling session training of the model is performed until convergence. This of course

changes the embedding space and therefore the user interface needs to respond accordingly.

As successive labelling sessions are performed more densely packed clusters can be seen in

this view. Sub-clusters can also be viewed in that different segments of the cluster will form

smaller groups, implying a hierarchical labelling structure.

The second view of the graphical interface are grouped into user interaction and exploring

different dimensionality reduction techniques, as shown in figure 3.2. In this view experts

can upload images to the interface or select segments from the dataset. The experts can then

perform inference on patches of the selected image based on the type of user interaction. The

first is shown in section a of the figure, where bounding box hovers on the image. Experts

move the box around the image where at each step a patch is taken from that box and it is

given placement within the scatter plot. As a result, we can see patch positioning as the box

moves closer to a defect in the image. By performing many of these actions the manifold
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Figure 3.2: a and b use different user interaction techniques to explore the embedding space. a is
a bounding box approach where we slide it over a selected image and for each slide step a patch is
captured and positioned in the embedding space. This is a mapping from bounding box, to embedding
space, to a 2-D plot. b used a drawn line by the user where points over that line become centre pixels
of patches. The patches are then shown in the embedding space like the bounding box interaction. c
allows for exploring different dimensionality reductions.

then starts to appear. Different forms of uncertainty are represented by an overlay on top of

the selected image. This functionally only works if a model with a supervised component is

selected. The second form of user interaction is via a line drawing on the image. Pixel samples

are taken over the line where each pixel becomes the centre of a patch. To which they are then

shown on the scatter plot in red and the newest point to be added is shown in green. Section

c of the figure shows different dimensionality reduction techniques that can be selected by the

expert. In this work the expert can select PCA, t-distributed stochastic neighbour embedding

(t-SNE) [61] and Uniform Manifold Approximation and Projection (UMAP) [94]. As there are

different hyper-parameters associated to each of the dimensionality reduction techniques, this

view allows the expert to change them and select the main technique which gets used in the

other views of the interface. Like the other views in the interface we can customise the scatter

plot to show different information, including if it is a training or testing sample, and current

prediction.

The final view of the interface forms the active learning experiments, where experts can relabel
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Figure 3.3: We perform an active deep clustering task where some supervision information is provided
as part of the training. a shows a segment of steel before it was relabelled by a human. The coloured box
in the corner represents level of uncertainty. The red bounding box is the current label. In b a human has
relabelled the segment. c is a image viewer of a selected dataset with its own control panel for different
ordering options, performing a forward pass, and re-training of the selected model.

different images of the dataset. This is shown in figure 3.3. When internally starting the main

interface is section c in the figure, which is the image viewer. A forward pass of the dataset

is performed and a colour is given to each image. The colour represents the average entropy

of the softmax predictions, its an average because we sample each image n times, creating n

patches. Red refers to the image being uncertain to the model, green means that the model is

confident in its prediction while yellow falls in the middle of these two options. Therefore,

samples that are indicated as red or yellow requires inspection by an expert. The image viewer

allows us to sort images, see the total number of each entropy group, as well as perform forward

pass or train the model until convergence. Any newly labelled samples gets added to the pool

of supervision sample. Experts can then fine-tune with this larger pool of samples. Once

complete the interface updates to the newest version of the model. Allowing experts to explore

the different views again. Section a and b show a relabelling of a selected sample from the

image viewer. Experts can remove labels, add new labels or change current shape of the label.
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3.4 Building Labelling Systems

Algorithm 1: Modified version of SSDBSCAN
Input: Dataset D, Labelled points DL, neighbourhood radius eps, min points minPts

Output: Cluster assignments for all points in D

1 begin
2 foreach labelled object P in dataset do
3 Find all P’s neighboring points based on eps Get the context class of P Label

P as C if length of core points < minPts then
4 Continue to next labelled P;

5 end
6 else
7 Grow_cluster(D, labels, P, core_points, C, eps, minPts);

8 end

9 end

10 end
11 Function Grow_cluster(D, labels, P, core_points, C, eps, minPts):
12 Create a queue and add all core_points to it;

13 while the queue is not empty do
14 Pop the queue, known as Pn as it is a neighbour of P;

15 if Pn is a labelled point and Pn label is not equal to P then
16 Continue to next point in queue;

17 end
18 else
19 if Pn has not been checked yet then
20 Label Pn as C;

21 Get neighbours of Pn based on eps;

22 if length of neighbours ↖ minPts then
23 Add all neighbour to queue;

24 end

25 end

26 end

27 end
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Figure 3.4: The graphical user interface for labelling generated samples based on the path between two
centroids. We detect colliding clusters using a semi-supervised extension to DBSCAN. Initial centroids
are labelled and we perform algorithm around these centroids. If a bridge can be made between different
centroids this forms a path and we sample in the middle of that path. The user can then label those
generated samples.

An application of clustering is building labelling systems that can then be utilised either in

an end-to-end or in a two stage approach to supervised problems. In this section we explore

the aim of identifying similar images based on different levels within the label hierarchy. We

cluster embeddings in a semi-supervised fashion and identifying the colliding clusters. A short-

est path is then generated between clusters, synthetic data is uniformly generated around the

middle point of that path. Users label this data, which is added to the supervision compo-

nent of clustering. This process is repeated by changing the shortest path to include one of

the newly labelled image samples from one of the clusters. Label hierarchies in deep learning

can improve accuracy but determining the appropriate level of granularity for the hierarchy is

challenging.

We utilise a semi-supervised density-based clustering algorithm which is an extension on

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) called SSDBSCAN

[79]. Labelled data points are treated as separate classes, and the algorithm tries to find the

optimal clustering of the remaining unlabelled data points. The labelled data points serve as

reference point to guide the clustering process. We loop over each labelled point perform-

ing DBSCAN to form clusters. Figure 3.4 displays the graphical user interface for this active

learning experiment. DBSCAN builds a graph based on the density. By clustering the samples

based on a labelled sample, we may hit another labelled sample that should be its own cluster.

This forms a bridge between the two centroids. We display this path to the user in the interface,

we then generate samples in the middle of the path. These generated samples are then shown
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Figure 3.5: Once a path has been made we generate samples. In this figure we perform a uniform
sampling approach to measure uncertainty in the predictions. We then select the most uncertain samples
within an area to be labelled by the user.

Figure 3.6: Adaptive Sampling: Given a starting # , a decay value and a minimum #min, the size of
the sample area gets smaller as we move further away from the current root node. This represents a
bridge of nodes where samples closer to the root are more related. Within the sample area, we take the
embedding vectors, decode them and ask the user to label.

to the user. In section 3.4.1 we demonstrate two different ways in generating these samples

to be shown to the user. Once the user has labelled the generated samples to either be part of

centroid one or centroid two, we then build a new path starting with the sample that is closes

to centroid two. Samples that have not been labelled by the user are ignored. By following this

loop over generating new paths to centroid 2 we can explore the boundary of that centroid.

3.4.1 Sampling Strategies

Sampling refers to the location of where we select our generated samples to be labelled by

experts. We explore two approaches: adaptive sampling and uncertainly-based sampling. In

adaptive sampling we have a # which is the initial size of the sample area the starting point after

centroid 1. It then decays after each jump to a new point. We also have a minimum sample
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Figure 3.7: We compute the uncertainly of a circle defined by the point of interest and the radius. This
is computed by generating synthetic samples via a generator and then compute the class probabilities.
We then select n samples and choose m most uncertain ones. These are then labelled by the user.

size size referred to as #min. As we get closer to the boarder of a new class the more uncertain

the model will generally become. By adjusting # we can start making more fine-grained labels.

Uncertainly-based sampling instead computes the uncertainly of a circle defined by the point

of interest. In this case that would be the middle point of the path between both centroids. We

accomplish this by generating synthetic samples via a generator model, and then compute the

class probabilities. We select n synthetic samples and choose m most uncertain ones. These

uncertain samples are then labelled by the user.

3.5 Implementation

In this section we discuss the implementation and design structure of our experiments. We

first explore our data generation pipeline which creates batches of local patches between the

different steel coils. This follows a discussion on learning representations with a clustering

training scheme. We also explore adding forms of supervision into the training to form better

representations. This supervision can be from the labels or a human in an active learning

setting.

A common challenge in datasets that have a ROI labelling system is balancing between back-

ground and the object inside the ROI, this becomes extra problematic when there are parts of

the object’s spatial structure leaking outside of the ROI, more than one object inside the ROI

and objects which are not labelled. The spatial nature of most objects also mean that there are

many areas within the ROI which is actually background. To help in learning better spatial

structure of the defect we uniformly sample pixel locations on steel segments between defects

and background. The pixels from the centre of a patch and the current label is given based on

if it is located within the ROI or not, forming a binary labelled dataset of images. As different

steel coils are targeted for a specific customer purpose, the defects and background features
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can change and as a result we split into training, testing and validating data over all segments

of steel.

3.5.1 Learning Representation

The training scheme involves using the k-means algorithm incorporated as part of a loss [2].

This forces the embeddings proposed by the autoencoder to form an embedding space where

the latent variables have a high signal if the samples are similar. We minimise the distance

between samples and a given assigned centroid in the embedding space

E2 = ( ↗ 1
2N

N

!
i=1

|| ht(xi)→ c↔i ||2 (3.1)

where N is the number of samples, ( is a clustering weight scaler to determine the amount of

contribution the clustering has on the overall loss function, ht(·) is the internal representation

of a sample at t iteration, and c↔n is the assigned cluster to the nth sample. The overall loss

function is then the combination of E2 and a reconstruction loss E1, which is mean squared

error for our experiments. At each epoch we minimise the reconstruction while keeping the

cluster centers fixed. After each epoch and we have obtained a new internal representation for

each sample, we assign each one to a new closest centroid:

c↔n = argmin
ci→1

m

|| ht(xn)→ ct→1
m ||2 (3.2)

where ct→1
m is the cluster center from the previous epoch. Like k-means we then update the

cluster centers using the sample assignment:

ct
m =

!xn↑ct
m→1 ht(xn)

!ct→1
m

(3.3)

where ct→1
m are all samples becoming to mth cluster, !ct→1

m is the number of samples that belong

to mth cluster. We also have the option to use some supervision into the training scheme then

we add a third loss E3 that we need to minimise, in our class we use the cross-entropy loss

function:

E3 =→! ti, jlog(pi, j) (3.4)

We use a modified version of the autoencoder architecture proposed by A. Alqahtani et al. [1].

We still target the clustering loss at the internal representation but to inject some supervision

we use the learnt features from the encoder by attaching classification head to it. The autoen-

coder architecture consists of three convolutional layers, followed by two dense layers which
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have k neurons, these are the hidden representations for each cluster during the training pro-

cess. The representations are fed into clustering loss. For supervision we have a dense layer

with a softmax activation attached to the layer before the internal representation layer. For

the decoder we use a dense layer so that we can reshape the representations, this then follows

three deconvolutional layers. ReLU is the activation function of choice throughout the net-

work. This forms an end-to-end training scheme where supervision knowledge either from the

labels or from a human are used across the learning process, this also creates a compact and

discriminative clusters using the k-means algorithm.

3.6 Results

We evaluate our results using the clustering accuracy, which measures the proportion of sam-

ples that are correctly assigned to their true clusters [150]:

accuracy =
!n

i=1 ∋ (yimap(ci))

n
(3.5)

where n is the number of samples, yi is the ground truth label of sample i, ci is a cluster, ∋ (Oy,c)

is a mapping function that equals one if y = c, else it is zero, map(ci) is the permutation

function that maps the cluster labels to the corresponding ground truth label. We loop over all

permutations to find the best match.

Table 3.1 is our list of results from the deep clustering experiments. We use MNIST as a

baseline, which is commonly used within deep clustering literature. We also use the patch-

based steel dataset provided by a steel manufacturer. For both datasets we use three different

amounts of labelled samples to form our supervision experiments, these are 20%, 50% and

100% of the training dataset. We also use the graphical user interface to form our active

learning experiments where if a sample of the MNIST or a patch of the steel dataset gets

labelled then this is added to the pool of labelled samples seen by the model during training.

The supervision experiments also include both convergence on reconstruction of the input as

well as clustering the internal representations. In general all experiments perform well when

using learnt feature representations to perform clustering compared without. The features of

MNIST are quite well defined even if we disregard the spatial aspect of the data and simply

flatten into a 1-D vector, we get good accuracy of 59.98%. By using a clustering loss within

the optimisation we get more compact clusters and this only improves with more supervision.

When running supervision via a human to label we get a slightly worse result, this is because
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some of the labels made by a human are incorrect, which also demonstrates a disadvantage with

active learning in that the inference from a human is very strong and if it is indeed incorrect

then it can have a large affect on the optimisation. This could have been solved with a majority

vote approach to labelling by humans. The steel dataset shows to be more of a challenge

than MNIST, this is because we sample patches based on selecting pixels in and out of the

ROI. There will be many samples which a lot of background within a patch that is labelled as a

defect. The spatial geometry of the defect also has an effect on the reconstruction in other ways

because many defects are relatively unique in its features. Adding more supervision helps in

general with the best being 73.23% but we get a much better score of 96.32% if we incorporate

samples labelled by a human. In this case we use all samples that have been labelled which

is why the table states 100% labelled. This is not all labelled samples of the data like it is for

MNIST.

MNIST Steel
k-means 59.98% 27.2%
Reconstruction 82.72% 36.98%
+ clustering 84.84% 58.5%
+ supervision (20%) 89.99% 54.21%
+ supervision (50%) 92.12% 63.08%
+ supervision (100%) 98.78% 73.23%
+ supervision via human 98.43% 96.32%

Table 3.1: Table of results for clustering quality with the clustering accuracy metric. For the supervision
results we converge with both incorporated reconstruction and clustering loss terms. Varying levels of
supervision is used as part of the training process. The only exception to this is when we perform an
active learning experiment, all labelled data from a human is used during the training process.

3.7 Discussion

Traditional active methods struggle in a few ways when used within deep networks, this is

because as we scale to higher dimensional spaces selecting the most informative sample be-

comes an issue due to uncertainly estimation on the predictions as well as the changing internal

representations. Inspired by the work on Refinement learning with Human Feedback (RLHF)

we could use more complex feedback from the human and then train a reward scheme to im-

prove deep clustering tasks [84]. This feedback can be in the form of continuous scale where

the human rates how much the patch looks like a defect or some other artefact like dirt on

the steel. Richer forms of feedback have generally shown to improve performance in many

tasks, stabilising the acquisition function. Clustering methods that form partitions within the
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embedding space require domain knowledge from both the task and the data perspective, such

as the number of clusters. This domain knowledge becomes more complex in domains like

manufacturing where huge amounts of learning about the discipline is required to make an

accurate choice. Model-based clustering approaches would have some benefit where we have

fewer hyper-parameters to influence to optimisation and instead explore the embedding space.

This could be in the form of a density-based or a bayesian approach. As there is a form of hier-

archical relationship between similar defects of varying features hierarchical clustering would

also be an option to explore. In chapter 5 we explore using hierarchical labels in the from of a

graph and use that to predict depth based classification. The same approach could also be used

to clustering where we build hierarchical clusters based on the graph structure.

3.8 Summary

In this chapter is explored the performance of generative models with the use of a clustering

loss within the training scheme to form a deep clustering model. We focus on the manufac-

turing domain by grouping steel defects together. This exploratory approach is twofold: first

we examine the effectiveness of these models in detecting and categorising steel defects with

varying forms of supervision both from labels of the dataset as well as being labelled by a

human using an interactive tool. In the second we use that tool to provide some interpretability

to the positioning of the defects within the embedding space as well as some interaction tech-

niques to explore the manifold. The domain expert can also customise many parts of the tool

such as using different dimensionality reduction techniques and changing the scatter plot. The

goal of this tool being that it bridge of interperability between complex algorithms and practi-

cal application in the form of decision-making during active learning experiments. Labelling

clearly showed to have a large impact for improvement of performance by creating more com-

pact clusters within that embedding space. The main challenge was with the steel dataset due

to the quality of labels. Another direction to influence the embedding space in a more direct

way is shifting the positions of the embeddings based on a distance metric, where we still use

patches of steel defects but if the distance is far away from a target then we can query a human

on it. This forms the next chapter of this work where we build an acquisition function based

distance of samples within an embedding space. This results in refining data over time while

also improving detection.
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4.1. Introduction

4.1 Introduction

Gathering large pools of data has become a relatively straightforward task, with many auto-

mated ways of obtaining various sources of data. The development of pattern mining and fea-

ture representation learning approaches which leverage large collections of observations has

resulted in data becoming a prized resource in recent years. Labelling such data has become

an exponential problem, being a time-consuming and interaction-heavy task that involves a

great amount of user effort. This development has led to the rise of active learning as a semi-

supervised alternative to data labelling, where a selection of samples is labelled to refine the

model’s behaviour. Many domains require skilled expert knowledge to label such data; in-

cluding medical image analysis [19], manufacturing quality control [126], and even genomics

research [167]. In the context of the manufacturing industry, steel is a diverse and heavily

used product with many different use cases. Variability in how steel is processed can result

in various types of defects such as lamination, heavy scales and edge damage. Often these

defects are highly variant in shape and characteristics, lighting issues in capturing the defect,

and other types of artefacts not considered defects, like soot or water [126]. These often re-

sult in a challenging environment within manufacturing, and therefore it is commonplace to

have visual inspection systems to help ensure a level of quality in the final product. The setup

and running of such systems are complex due to the many different ways we can manufacture

such products, and as such the deployment of such inspection systems will often be adapted

for their circumstances [99]. These systems will often have a classification component, which

attempts to recognise the different kinds of defects present on the surface of the material so

that suitable approaches can be taken later in the development pipeline to correct the issue,

whether this is cutting out defective regions or repurposing the product. Such systems often

rely on large datasets, with engineering domain experts providing ground truth labels for the

training of supervised approaches, with labelling often falling into two camps; dense labelling

of pixels within the images captured by the system, or sparse labelling using bounding boxes.

The dense labelling provides a fine resolution label of the defect but requires significant input

by the domain expert and so is often prohibitive. The bounding-box approach allows an ex-

pert to label the defect with less overhead but can introduce incorrectly labelled pixels to what

should be a ground-truth target for supervised approaches to utilise [156]. Defects that have

forms of curvature, such as lamination or scratches, can be a challenge for a region of interest

(ROI) based detection system, due to noise and artefacts around the defect. Other challenges

for ROI-based systems include the composite nature of some defects that can formalise from
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micro defects, resulting in regions that have multiple defects. This leads to predictions with

less than desired bounding boxes, and uncertainty in their location and classification. The na-

ture of a bounding box also means that labelling is often not pixel-perfect, resulting in sampled

observations which are incorrectly labelled.

In this work, we propose a data refinement strategy based on querying the similarity of em-

bedding vectors with a human-in-the-loop approach to fix mistakes in bounding-box labelled

datasets for steel defect detection. We uniformly sample patches of the labelled image and

learn an embedding space of patch clusters. Querying the embedding space allows us to create

a deep segmentation of the steel surface, which can then assist the inspection team.

4.2 Background

The following sections provide an overview on the concepts and related work that underpin

our approach. We begin by examining traditional image processing techniques that have been

employed in surface defect detection, including edge detection and texture analysis. These

methods from the basis for many automated inspection systems and continue to play a role

in many hybrid approaches. Moving on from this section, we explore applications of deep

learning in manufacturing. Various neural network architectures such as CNNs, the family of

R-CNN and single-stage detectors, have improved the performance of detecting and classifying

surface defects. We discuss these architectures and application to many domains. Our approach

focuses around similarity learning and how it can be used for a refinement task as well as an

active learning set of experiments. Techniques like FaceNet and triplet loss are critical for

creating embedding spaces where similar defects cluster together, which allows use to form

a defect classification approach and a refinement strategy to form a dense segmentation. We

discuss these principles and their relevance to our proposed approach. The efficacy of deep

learning models often depend on the quality and quantity of labelled data. As a result we

discuss a potential direction in mitigating this by employing human expertise in refining the

data for industrial applications.

4.2.1 Image Processing for Surface Defect Detection

Image processing plays an important role in surface defect detection in many manufacturing

industries. Often contributing to aspects of quality control - which ensures product reliability

77



4.2. Background

- and safety. The task of defect detection is to automatically locate and classify defects on the

surface of a material with a high level of precision and efficient complexity of the algorithm.

These two goals of the task are often trade-offs of each other due to the approximation requir-

ing more time and resources to compute [109]. In previous work, utilising image processing

methods have been used to dynamically define a threshold which detects the outliers, Wang et

al. developed a histogram of image patches to find differences between samples with classes

of defects [145]. A different threshold was learnt for each of the features via a random for-

est. A hard challenge of detection is the variability in scales and features, therefore effectively

distinguishing the diverse nature can result in less than desired results. Work into the spatial

domain by localising defects based on this variability have shown promising results. Choi et

al had such work that used filter-based methods to explore defects on different scales. Good

detection performance comes from this, however, the types of detection are restricted to one

type known as a hole-like defects, limiting the robustness [27].

4.2.2 Deep Learning for Surface Defect Detection

CNNs have become widely popular in many domains including defect detection, due to being

able to learn robust local image features during training. One of the first CNN-based ap-

proaches used for quality inspection was used to detect cracks based on image patches of con-

crete, followed by a sliding window approach to follow the crack during deployment [22]. This

work was added upon by Song et al, who proposed a method based on U-Net which showed

robustness to background noise while detecting cracks [125]. To deal with multiple types of

defects and get better localisation results work utilised from object detection have shown great

performance [89, 132]. In this new deep learning era two types of detection approaches have

been proposed but focus on different ends of the trade-off between speed and accuracy. Two-

stage detection uses a paradigm of high-level abstracts to fine-grained. This process attempts to

improve recall with the high-level abstracts, then refines localisation in the fine-grained stage

based on the high-level abstract learning. Within manufacturing a new structural visual inspec-

tion system uses this two-stage process with a method known as Faster R-CNN [23]. They

showed good average precision on different types of surface defects, including those on steel.

Test-time detection is another challenge in steel manufacturing due to the speed steel moves

through production [126]. As a result, test-time detection needs to be at least as fast as pro-

duction speeds as to not introduce a bottleneck. [83] proposed a real-time detection approach

based on You Only Look Once, which can reach speeds of up to 83 FPS on cold-rolled steel
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surfaces. These detection approaches are known as one-stage detectors due to completing in

one-step inference, however, performance is a challenge when dealing with objects that are

dense and small such as within defect detection. In general these different approaches have

achieved very good performance but assume that the dataset has a large amount of high-quality

labelled images, this is quite impracticable in an industrial manufacturing setting due to the

impact of labour-intensive labelling practices on domain experts [91].

4.2.3 Similarity Learning

Similarity methods are a possible alternative to conventional supervised learning techniques,

in which we train a model to learn what samples are similar and dissimilar based on a given

metric which describes the similarity between two observations, often this metric is a form of

distance. Distance is a useful way to measure similarity as the score is of continuous output

form, allowing for a more fine-grained understanding of relationships between observations

compared to discrete class labels. Since we focus on the relationships between our observations

rather than explicit labels its more robust to errors in the labelling system. For these reasons

similarity learning makes for a good use-case for training functional models or in cases where

we need to transfer to a new task, due to the learnt similar features being richly placed close

[154].

The most prominent approach in recent literature is FaceNet [118], which uses a CNN to learn

an embedding of pairs of faces. The work is based on the triplet loss, which optimises the

embedding space such that samples with the same label are closer to each other while those

with different labels are pushed further away [146]. To encourage faster convergence and better

generalisation, FaceNet proposes an online variant of mining observed triplets based on a large

batch size [118]. The mining strategy involves finding valid triplets given a batch of embedding

vectors based on selected anchors. We mine for useful positives and negatives from some

metric, where the goal is to move the positives closer to the anchor while moving the negatives

away. This creates clusters of similar features within the embedding space. [59] evaluated

different variants of the triplet loss, finding that sampling the hardest triplets within a batch

and applying a soft margin was the best for person re-identification. Using a suitable mining

strategy is task dependent problem as we may have observations that are all very similar and

we require an approach that finds nuance in the relationships of different observations. Using

a mining strategy that selects triplets where the negative sample is close to the anchor and the
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positive sample is further away would be more beneficial for learning as we want to find the

observations that are the currently considered the most dissimilar but are actually similar, thus

once corrected leads to bigger learning jumps between triplets.

Beyond person re-identification learning similarities naturally becomes useful in image re-

trieval domain such as in place recognition where given an image of a location we want to

retrieve images that are locally close to where this image was taken [3, 112]. A prominent

approach to this is NetVLAD, which proposes a trainable VLAD layer that can be used in a

deep visual place recognition pipeline for fine-tuning to a task [3, 4]. Utilising the triplet loss

in a pre-training scheme benefits from placing similar features close together in a more explicit

way, allowing quick return on similar but also dissimilar samples. In general similarity learning

gives the benefit of finding pairwise relations between unlabelled objects from the feature sim-

ilarities and providing a level of robustness due to the transitive property between the anchor

and positive pairs. The main challenge of similarity learning is the mining of triplets on large

datasets, due to the growth in complexity when mining triplets as the dataset grows in size.

4.2.4 Active Learning

Active refinement and analysis are widely explored domains that leverage user input to handle

low-confidence predictions and then feed the changed annotations made by the user back into

the model [18, 136]. The main principle of active learning involves finding the samples that

will gain the most new knowledge for the model, known as the acquisition function. Most

approaches involve finding k samples to relabel based on an uncertainty metric, followed by a

subsequent training session. This cycle of labelling and then training completes the framework

of active learning. By leveraging user input, active learning assists in model development by

providing insight into hard samples the model struggles with, allowing for better focus on

complex regions of the domain. This process can also be a two-way interaction between user

and model, with users benefiting from seeing which samples the model is having problems

with, which can be a way of interpreting the current version of the model during the refinement

cycle. The main driving force in active learning is through the acquisition function, identifying

samples that warrant further user insight, and measuring which samples the user should label

next is commonly categorised into three buckets; uncertainty [15, 43], sample representation

[119], and training effects [120]. Once a session of active refinement is complete, an update of

model weights incorporates the new knowledge. This is commonly done by updating labels of
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Figure 4.1: a: The control panel consists of the number of refinement sessions done, the number of
current refinements done within a session and a mask overlay and an option to show where the selected
patch is located within the image. Users can select either the anchor or any of the 10 patches in d and
the user will see where that selected patch is located in c. b: The selected anchor of this batch. The user
can update the anchor’s label and undo the actions performed. c: Displays the image of the currently
selected patch. d: Users select patches that they think have the same label as the anchor.

the whole dataset, but can also be achieved by populating a growing database of samples that

have been observed (and potentially refined) by the user. Both of these ideas are explored in

this work.

4.2.4.1 Human-Centred Perspective

Labelling complex and large datasets is an exponential problem due to time and heavy user-

interaction of completing the task. There is also the value of knowledge required to make a

good judgement on the uncertain samples. Depending on the dataset domain and the type of

problem that needs to be solved (i.e classification, segmentation, object detection) this level of

knowledge becomes critical to labelling. An effective interface needs to be carefully considered

as to extract the information from the expert but also in how that information should be fed back

into the model. A common data refinement problem exists in tasks like segmentation, in which

we should consider how much of the sample should be labelled by the user before moving onto

the next one, or the type of interaction the user has available to them like pixel selection or

brush strokes. In object detection the domain may allow simpler types of classes to be labelled

together while in others - such as in manufacturing - require very distant classes but does have

an underlining similarity based on the composite nature of steel manufacturing.
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As a result of considering these issues above, we propose a refinement process that uses more

efficient user interactions via a graphical user interface shown in figure 4.1. Our interaction is

a grouping task where experts are given an image and asked to select a group of images that

they feel is similar. We do not explicitly ask the expert to label these samples but just inform

the model these samples are similar to the one that was provided. The model then learns this

similarity before applying an explicit label to it. A goal of this interaction is to extract as much

of the knowledge from the expert while limiting the amount of interaction time. By utilising

the interaction as a grouping task instead of explicitly labelling pixels of the image, we reduce

the amount of interaction time while gaining good accuracy performance. We also add some

context to the reason why some of these images are shown and how well the refinement process

is going in this iterative process.

In the following section we discuss the methodology of doing this task so that the model can

learn effectively with a small amount of data that is not well refined. Leading to a refined

dataset and machine learning solution to the domain problem.

4.3 Methodology

Our framework consists of a new acquisition function based on embedded vectors, where we

use mined triplets of anchors, positives, and negatives to refine a pre-labelled dataset of images

containing surface defects on sheets of steel. During the labelling phase, the user updates

the labels of the top five hardest positive and negative samples via a graphical interface. We

explore three different types of initial mask labels, one using domain-expert labelled bounding

boxes (ROI), a dense segmentation provided by an off-the-shelf pre-trained U-Net architecture,

and the other being a uniformly random mask. User refinements are then incorporated into the

learning strategy by either updating the original label set, or by developing a new set of samples

which have been observed by the user during the active learning loop.

The following sections describe the triplet loss, the mining strategies, and finally how we refine

the labels within our dataset.

82



4.3. Methodology

Figure 4.2: Negative samples that are closer to the anchor than a positive are within the hardest negative
space. Semi-hard negatives are between the positive and a ∗ margin. Negative samples from this space
are easier than hardest negatives as they are not as close to the anchor so the triplet loss will not be as
great. We avoid easy negatives as they provide no new knowledge to the model and therefore return a
loss of 0.

4.3.1 Triplet Loss

Images are embedded in a d-dimensional Euclidean space, which is represented by f (x) ↑ Rd

where x is an image. A triplet consists of an anchor xa
i , a positive which has the same label

as an anchor xp
i and a negative which has a different label to the anchor xn

i . The goal of

this loss is to ensure that the distance between the anchor and the negative is greater than the

distance between the anchor and the positive over all possible triplets. Therefore the loss L

being minimised is as follows,

L =
N

!
i

d( f (xa
i ), f (xp

i ))→d( f (xa
i ), f (xn

i ))+∗ (4.1)

Here, d is a metric function, in our case, this is the Euclidean distance between the embedding

vectors of the anchor and either the positive or negative. N is the number of samples in a batch

and ∗ is a margin used to enforce a distance between positive and negative pairs. Generating

all possible triplets would result in some triplets that already satisfy our goal and therefore do

not add much to learning, it is becoming exponentially more expensive as the size of the dataset

increases. Therefore we deploy a strategy to mine different and useful triplets. The following

section discusses a few of these strategies.
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4.3.1.1 Active Online Mining

In online mining strategies, we compute meaningful triplets for each batch during the training

process. The benefits of this are threefold. Firstly, mining the dataset in a batch typically

leads to better generalisation and smoother learning [118], Secondly, if the dataset has some

mislabelled data, this would dominate the mining process. This is because if a sample was

labelled negative incorrectly then the model is correct in putting it close to its anchor, yet the

mining strategy would consider this a hard negative and thus the loss would try to push that

sample away from the anchor. We utilise this benefit in our acquisition function. Finally, due to

the change in embedding space as the model learns, the triplets would change between being

hardest to semi-hardest to easy triplets [59]. If xp
i is closer to xa

i plus some ∗ margin than

the distance between xa
i and xn

i , then this is considered an easy triplet as it already meets the

following condition,

|| f (xa
i )→ f (xp

i )||
2
2 +∗ < || f (xa

i )→ f (xn
i )||22 (4.2)

Easy triplets do not add much new knowledge to the model as they already meet the criteria and

therefore should be avoided. Instead, we focus on selecting triplets that break the condition in

(4.2). Given that we select positives such that argmaxxp
i
|| f (xa

i )→ f (xp
i )||22, we select negatives

that meet the following condition,

|| f (xa
i )→ f (xn

i )||22 < || f (xa
i )→ f (xp

i )||
2
2 (4.3)

These are known as the hardest triplets, as we select the closest negative to the anchor. Always

selecting the hardest possible images for the model to learn from is a complex task and leads

to a difficult learning environment, due to always having the largest possible loss per batch. To

ease this task we can select negatives such that,

|| f (xa
i )→ f (xp

i )||
2
2 <

|| f (xa
i )→ f (xn

i )||22 <

|| f (xa
i )→ f (xp

i )||
2
2 +∗

(4.4)

We consider these triplets semi-hard, as the negative is between a positive and the margin. They

are not hard negatives as the positive is closer to the anchor, yet they are also not easy negatives

as they are not beyond the margin. Throughout this mining process, for a given anchor we will

always select the hardest positive such that,

argmaxxp
i
|| f (xa

i )→ f (xp
i )||

2
2 (4.5)
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Figure 4.3: From right to left: Example raw steel that contains at least one defect. An ROI label of the
defects are represented as a mask. A pre-trained segmentation mask of input. A uniform random mask
which acts as our worst-case for refining. Masks allow us to uniformly sample pixel coordinates via the
label, which can then be used to extract patches.

Each of the strategies depends on how we select the negative relative to the anchor and the

positive. Figure 4.2 demonstrates the different mining strategies.

As we need to evaluate the distance between the anchor and every other patch within the batch,

we can then also order them to find the k-worst patches. These patches would be considered

those the model is struggling with the most, and therefore we query these patches to the user

with the graphical interface shown in Figure 4.1.

4.3.2 Dataset Label Refinement

Within our framework, we utilise an online patch-generation procedure that is based on three

different types of initial masks; expert-labelled ROI, a pre-trained segmentation and a uniform

random mask (Figure 4.3). The expert-labelled ROI masks consist one to three boxes that in-

teract the area where a defect could be. These masks have a large margin of error as more

than one type of defect can exist within the bounding box, some defects are not labelled, and

finally many bounding boxes do not cover the whole defect. The segmentation mask allows

for a pre-training scheme where given the expert-labelled ROIs find common the features -

such as similar types of defects - and group them together for labelling. This grouping creates

a segmentation, however uncommon defects are often labelled as background class. Uniform

random mask acts as our worst-case in which the most refinement is needed, this can also be

considered as observation with no labels. Each of these masks act as minor dataset differences
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seen in manufacturing. During the labelling phase, the user is shown an anchor patch selected

at random or based on model entropy. We then use a mining strategy, to find hard positives and

semi-hard negatives creating our triplets. The user interacts with the model via the graphical

interface shown in Figure 4.1. Users are shown a selected anchor patch and its corresponding 5

hardest positive and hardest negative patches per the similarity scoring in (4.2) and (4.3). The

user selects the candidate patches that they think have the same label as the anchor, effectively

either agreeing with the model’s prediction or correcting its labelling. After a batch of refine-

ments is carried out, and the underlying labels updated, the model goes into the subsequent

training phase. This cycle of labelling and then training defines our framework.

Entropy selection is one of the ways we address which samples require re-labelling over others

in a ranked form. Entropy refers to the uncertainty in the predictions made by the model.

The entropy calculation on the classification head (i.e. the output layer that produces class

probabilities), measures how uncertain the model is about its prediction for a particular sample.

The higher the entropy value the more uncertain the model is and therefore requires inspection

by the user. By utilising such a method, we can reduce the total number of manual labels

needed to achieve good model performance. As we are feeding the model only the samples

that will potentially provide the largest learning gains.

4.3.3 Expert Interactions with GUI

In designing an active learning experiment we require to define how experts should interact

with a system and how a system should use this new knowledge. The former is described in

this section. User interactions are preformed via the graphical interface shown in Figure 4.1.

The first type of interaction is a grouping task. An anchor patch is selected randomly within

the batch of patches or by the patch that the model is most uncertain about, via entropy. The

worst patches compared to the anchor are then shown. The user selects the patches they believe

are similar to the anchor, correcting the model. In the second interaction users still require to

group patches, however for the ones they believe are similar a shifting operation is performed.

Users shift the centre pixel of the patch with the aim of putting the defect in the middle of the

patch. If we train the model on user verified patches then this reduces spatial variability in the

dataset, allowing for a cleaner learning curve.
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Figure 4.4: Experts have two ways to interact with our framework to refine the data. The bottom
approach is a grouping task where the user compares the anchor patch to other patches that the current
iteration of the model is having trouble with. Users select patches they believe to be the same as the
anchor. In the top approach a user still needs to group similar patches together with the anchor patch but
then performs the extra step of shifting. This moves the centre position of the patch by middle clicking
a pixel.

4.4 Experimentation

As an evaluation case study, we apply our refinement approach to the domain of surface in-

spection within steel manufacturing, due to the labelling challenges this domain has; namely

non-defect artefacts, bounding-box-based labelling difficulties, and the domain expertise re-

quired. The following sections discuss the dataset used to evaluate our framework, followed

by how we implemented our approach and deployed our experiments.

4.4.1 Dataset

We evaluate our framework on grayscale images of steel, captured during the cold rolling

manufacturing process. The dataset consists of 5000 images, with each containing between

one and three defects. There are multiple different types of defects within this dataset, but in

this instance we categorise this as a binary classification problem, identifying defect/non-defect

on a per-pixel basis. Images are captured at various angles and positions along the mill, creating

variance in both scene illumination and placement of the steel sheet within the camera’s field

of view. For the initial labelling, we utilise both bounding box labelled regions of interest, a

U-Net architecture or a uniform random label. The bounding box labels are created by domain

experts from a live system. Due to the nature of the defect geometry, ROIs can often provide

sub-optimal labelling, with positives labelled as negative, and vice-versa. By contrast, the pre-
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trained segmentation model provides dense labelling which can handle the varying shapes of

the defect but is reliant on suitable generalisation and performance of the utilised model for the

specific application domain.

4.4.2 Implementation

For our implementation, we train a modified version of Residual Network (ResNet) with 15

layers [57] returning a predicted binary label and embedding vector of the input given. We

uniformly sample patches based on the selected mask type and then use hard mining to find

positives and semi-hard mining for negative patches to form our triplets. In refinement learning

is it more important to focus on the training than the validation loss as the training set is what

is being refined over time. We use a reasonably large batch of 128 triplets, allowing for more

available data to mine, and approach to assist in finding the hardest possible triplets which

leads to an increased inter-class embedding distance [35].

Once training has converged, we move to the labelling phase with the graphical interface.

The user is asked to select patches they think look similar to the anchor. These patches are

considered the worst due to their distance away from the anchor. Patches that the user selected

that have a different label to the anchor are updated via the mask. Patches that have the same

label but are not selected get updated as well. Users continue this process until 50 refinements

have been made, which then triggers the training phase. As part of the experiments, we explore

three different ways of showing the refined labels to the model. The first is via our patch

generation procedure, where we update the mask and then re-sample that mask during training.

The second is that we show only patches that have been refined by the user via the selection

of similar patches to the anchor, similar to online incremental learning. Our third approach is

based on correcting the patches of defects by selecting a defect pixel and we shift the patch to

the new centre, which will then get added as a refinement.

We deploy our experiments to explore how the model should be shown the refined labels with

the three different initial masks, these are via mask updates and only refined patches. Each set

of experiments also looks into anchor selection as these patches are what define a mined posi-

tive and negative sample, therefore we explore anchors that the model finds uncertain as well

as randomly selected. The following section discusses what we found during our experiments.
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4.5 Results

In this section we present our results by evaluating on the steel dataset (which was discussed

in section 4.4.1). We organise the results into two subsections: quantitative and qualitative

analysis. We specifically focus on using f1-score, recall and precision as they allow us to view

the models ability to correctly classify defects while minimising false positives and negatives

in a very imbalanced dataset.

4.5.1 Quantitative Analysis

Quantitatively evaluating refinements in a semi-supervised setting is challenging as we have

no way of confirming if the refinement is correct and how good it is without expert domain

knowledge. Our only way to measure these results is based on the initial sparse masks within

our test set due to the refinement only being performed and saved on the train set. To generate

our test set we use 1113 images of steel and select 128 patches uniformly per image, we then

compare the mask label from the patch coordinate with the prediction from the final version

of the model. This results in allowing us to compute the F1, Recall and Precision for each

experiment.

In each experiment the user is shown patches to refine based on the selected anchor. In table

4.1 the user selects patches similar to the anchor and the update is applied to the central pixel,

but in table 4.2 the user corrects the labelling by selecting the centre of the defect if one exists

in the presented patch. In table 4.3 we perform the same labelling interaction as in table 4.1 but

instead of the centre pixel being refined we refine each pixel within the patch. Each contains

two ways of feeding the model new information by updating the underlying mask that samples

are drawn from, or only using refined samples to build a dataset of user-verified samples. Our

results show that updating the mask (table 4.2) provides the highest quantitative metric scores

against the pre-refinement labelling; however the pre-refinement labels can be either over- or

under-approximations of the actual ground truth, reinforcing the need for qualitative analysis

to inspect the impact of refinement on the labelling of the underlying data. Generally, user

refinement provides low recall while having a higher precision, we theorise that this is because

the model is not shown the global context of the dataset which mask update provides. As we

uniformly sample defects from all over the image during training. With this global context

from the mask update, we see that recall is normally higher than precision. Generally, our
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Table 4.1: Mask update refers to refinements made to the mask over time. During training, we uniformly
sample coordinates from the mask that relate to the centre pixel of our patches. User Refined refers to
the labels of patches that the user changed in the graphical interface, while observed are labels of patches
that the user agrees with.

Initial Mask
ROI Pre-trained Segmentation Uniform Noise

Method F1 Recall Precision F1 Recall Precision F1 Recall Precision

Mask Update 0.91 0.96 0.86 0.96 0.95 0.97 0.14 0.18 0.12
+ Entropy Selection 0.97 0.97 0.98 0.95 0.93 0.98 0.18 0.22 0.15
User Refined 0.96 0.93 0.99 0.72 0.96 0.58 0.64 0.80 0.54
+ Entropy Selection 0.90 0.82 0.99 0.27 0.21 0.39 0.67 0.98 0.51
+ Mask Update 0.79 0.88 0.72 0.69 0.74 0.65 0.35 0.63 0.24
All 0.83 0.89 0.77 0.74 0.78 0.70 0.41 0.64 0.30

approaches work better with the initial segmentation from the U-Net, this is presumably due to

the start being more faithful to the geometry of the defect in comparison to the bounding box

approach. Using uniform random labels as our initial mask is the most challenging of our ex-

periments as we do not provide any knowledge to the framework as the labels are meaningless

and thus can be considered as if we are refining the label from the ground up. Refinement in

this experiment to a suitable performance is possible but it takes a very long time to complete

as many of the initial refinements progress is very small due to many background patches la-

belled as defects. As a result some iterations of the model can over-fit to background either by

only training on user patches or on mask sampling strategy. Updating the mask via a whole

patch refinement as shown in table 4.3 generally performs well but refining a single pixel of

the patch is better. We also found that labelling whole patches converges to this worse per-

formance compared to single pixel refinement a lot quicker. This is because labelling a single

pixel provides less information to the model than a whole patch and secondly, a single pixel

refinement allows for more granular knowledge to the model that is often more valuable to the

learning process. Providing this nuance knowledge shows the model that there is more to learn

and that is impacted in the loss metrics.

4.5.2 Qualitative Analysis

To meaningfully show the quality of the refinement process we need some qualitative analysis

as shown in Figures 4.5 and 4.6. We use a single image of steel along with its initial ROI

mask, each row then contains a refinement session, until we get to the last row which is the
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Table 4.2: Labels in these experiments get updated by the user shifting the centre of the patch to the
defect via a graphical interface, where the user is shown the 5 hardest negatives and positives based on
the anchor. We then compare patch prediction with an initial mask to compute quantitative results.

Initial Mask
ROI Pre-trained Segmentation Uniform Noise

Method F1 Recall Precision F1 Recall Precision F1 Recall Precision

Mask Update 0.97 0.95 0.98 0.68 0.90 0.55 0.10 0.12 0.09
+ Entropy Selection 0.91 0.96 0.87 0.91 0.92 0.90 0.29 0.34 0.25
User Refined 0.83 0.72 0.99 0.89 0.81 0.99 0.68 0.78 0.61
+ Entropy Selection 0.86 0.77 0.99 0.89 0.82 0.97 0.72 0.81 0.64
+ Mask Update 0.96 0.96 0.97 0.94 0.90 0.99 0.46 0.69 0.34
All 0.96 0.95 0.97 0.83 0.81 0.85 0.49 0.72 0.37

Table 4.3: Labels in these experiments get updated via every pixel within a patch. During training these
newly updated masks are uniformly sampled to get coordinates that are then used to extract patches.

Initial Mask
ROI Pre-trained Segmentation Uniform Noise

Method F1 Recall Precision F1 Recall Precision F1 Recall Precision

Mask Update 0.70 0.98 0.54 0.96 0.96 0.97 0.25 0.32 0.20
+ Entropy Selection 0.74 0.98 0.59 0.80 0.89 0.72 0.24 0.31 0.19
+ User Refined 0.79 0.84 0.75 0.57 0.62 0.52 0.32 0.47 0.24
Both 0.80 0.89 0.72 0.72 0.71 0.73 0.32 0.36 0.29

final version of the model for that experiment. We see that the model does refine better for

experiments where we just feed refined examples. Often if we uniformly sample from the

mask we get a circular segmentation around and filling the ROI, which is why we often see

higher precision in these experiments. Selecting the anchor based on the highest entropy often

leads to worst results, we believe this is due to the task for the model to learn being harder. This

is because we mine the hardest negatives and positives from the hardest anchor in a batch. Our

approach is also able to find defects that have not been labelled while also ignoring non-defect

artefacts like luminance. We can also see that area within the ROI also gets refined such as in

figure 4.5 (right) where we have two defects labelled as one.

In figure 4.6 we show that by adding more user interaction into the training our refinement will

get better, this has the caveat that more time from domain experts is needed. Each of these

patches are shown with an overlay displaying the pixel confidence of a defect, with ROI based

approaches we see that there is a level of uncertainly around the box due to many of the pixels
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labelled as positive are actually negative. We find that the best way to deal with this uncertainly

is to perform pixel labelling and shifting patches so that the defect is in the centre, this results

in better ROIs and dense segmentations.

Figure 4.5: We show a forward pass of a single image of steel producing a dense segmentation over
refinement sessions with three different experiments. This is accomplished via the graphical interface
where the user is given the 5 worst negatives and positives based on an anchor, then selects new centre
pixel for that patch. Row one displays the image and the initial ROI mask. Column one is based on user
refinement, column two is mask updates, and column three is user refined with entropy anchor selection.
Each row shows a subsequent refinement after a session.

Figure 4.6: Zoomed in crop of the dense segmentation over refinement sessions when users select
defect centres from within presented samples. Red box indicates initial ROI labelling, heatmap shows
confidence of model output for positive defect detection. From top to bottom: steel image and initial
ROI mask, refinement passes 1-4. From left to right: update of label mask only, user verified dataset,
and user verified dataset with entropy based anchor selection.

4.6 Summary

In this chapter we proposed a data refinement strategy based on querying the similarity of em-

bedding vectors with a human-in-the-loop approach to fix mistakes in bounding-box labelled

datasets. Within this work we focused on manufacturing where quality control is a challenge

due to the varying composite nature of steel and the types of defects that get produced. We
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uniformly sampled patches of the labelled image, learn an embedding space, then query sam-

ples to a domain expert that have been labelled as similar to others but the model finds them to

be different. This similarity score is based on the distance between 3 different samples. Our

approach takes an bounding-box labelled datasets and refines them to be a deep segmentation,

which in the domain of manufacturing can assist the inspection team in finding defects more

accurately. We refine our methodology as a data refinement task due to leveraging large col-

lections of labelled observations being a prized resource. This is because labelling such data

is a exponential problem, as it is time-consuming and an interaction-heavy task. However, this

cannot be a completely automated task and hence the need of a user to help direct the opti-

misation. In this work we explore binary problems but defects are naturally formed from a

hierarchical nature as they can evolve into others as the steel moves on the conveyor belt. This

forming from one defect to another is a type of hierarchy in the labelling system. In the next

chapter we explore modelling this hierarchy in a classification task where a graph forms the

labelling structure and we learn node embeddings based on samples that represent that node.

This then feeds into hierarchical classification heads where earlier heads are more abstract and

as the data follows through the network, more descriptive labels are used.
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5.1 Introduction

Complex class labelling systems refer to when the target of a supervised learning problem

has multiple, intricate, and abstract relationships between categories. In which our aim is to

model such relationships in both an abstraction and fine-grained level of data. We usually rep-

resent different depth levels of granularity, from low-level, fine-grained features to high-level

abstraction in the form of a tree data structure. These systems are highly inspired by structure

of human cognition and perception where we recognise patterns of various levels of abstraction

to define an object[74]. Most machine learning approaches attempt to mimic this process by

having different layers to extract features at different levels of complexity. This hierarchical

structure allows for learning progressively more abstract representations of input as data flows

deeper into the model [78]. This process is almost always implicit in nature because the model

can learn some form of hierarchical representation from training data without explicitly guid-

ing how to form these abstractions and output to some flat space. Due to this implicit nature

new research fields attempt to use data to understand reasoning of models, bias and fairness

of predictions, adapting to drifting and data efficiency[36]. By utilising a tree data structure to

represent labels at different levels of granularity we can invoke explicitly defined relationships

and dependencies to form a more structured and interpretable representation of data [52]. This

is especially useful in tasks which exhibit complex and interconnected characteristics such as

in manufacturing of composite materials or comorbidity analysis of patients in the healthcare

domain[85, 151].

In this work we utilise the hierarchical relationship often provided but not used in many datasets

as a method to solve classification problems. These relationships are modelled via graph-based

machine learning approaches where the leaf nodes are individual samples and intermediate

nodes are an aggregation of their children. These nodes from a more generalised label and as

we move down the tree, the labels become more specialised. We use these labels to form a

classification task and thus our input samples x has many labels associated to it based on the

structure of the tree. We define a multi-label classification task where we chain the predictions

from one depth level to the next, as to allow the prediction of the depth level to flow into the

next. To truly test our methodology we use both syntactic and commonly used vision-based

datasets. We build our own syntactic-hierarchical generator to construct many different datasets

as to allow us to test class boundary within the input embedding of the model, it also allows

us to perform analysis on edges between intermediate nodes, look into the aggregation of the
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data in the node and how loss normalisation affects on the different classifiers. We perform this

analysis as the prediction of our input higher up in the tree has a huge effect later down the tree

as that is used to make predictions in that depth level (or sub tree), this can cause cascading

error. We also explore the methodology on MNIST, CIFAR-100 and ADE-20k [76, 72, 170].

In the following section we discuss the literature behind how we define different types of rela-

tionships, how these relationships can be modelled into a multi-label problem within machine

learning.

5.2 Background

5.2.1 Types of Hierarchical Relationships

Human cognition and perception recognise patterns at various levels of abstraction to define

an object, forming a hierarchical structure of labels with different granularities [60]. In our

work, we focus on encapsulation and sub-classification relationships within these hierarchies.

The concept of encapsulation is inspired by how humans actively sample visual information

through rapid eye movements known as saccades [161].

Saccades allow the visual system to sequentially focus on different parts of a scene, build-

ing a hierarchical representation of the visual input. This process does not just apply to face

perception but to general visual cognition. The brain integrates information from these se-

quential fixations into a coherent, hierarchical understanding of the scene [161]. Each fixation

contributes to a tree-like structure of visual features, where lower levels represent fine-grained

details and higher levels capture more abstract and holistic information. This hierarchical pro-

cessing in human vision motivates our approach to incorporate tree-like structures of labels

into a machine learning training scheme, capturing both fine-grained details and high-level ab-

straction. This approach aligns with recent developments in attention mechanisms within the

field, where a model learns to focus on relevant parts of the input sequentially, similar to how

saccades direct human visual attention [88]. The encapsulation relationship in our models re-

flect how individual elements are integrated into higher-level concepts, while sub-classification

relationships capture the way humans categorise visual information at different levels of speci-

ficity. This rich form of information is due to well defined semantic relations from experts in

the targeted domain. The most common form of this sub-classification relationships are dense
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in their categorisation, such as canines can be split into wild and domestic, wild branches off

into different categories of wolfs while domestic would branch off into different types of re-

trievers. Categorisation that is spare is less strict in its relationship, this can be objects like

paintings belong on a wall in a living room not on the floor. This type of categorisation is often

used in robotics where this positional representation of objects within different rooms is used

to learn the space being explored [152].

5.2.2 Explicit VS Implicit Learning of Knowledge

Many in the computer vision community have built datasets that have some form of hierarchi-

cal relationship. This can form into a physical structure such as in ShapeNet (encapsulation/

part off relationship) or based on semantic relations of labels as in ImageNet or CIFAR100

(sub-classification) [72, 34, 24]. Even with this rich form of information provided as part of

the dataset it is rarely used as a form of learning these relationships based on image data,

though some attempts have been made to address this gap [159]. With the design of neural

networks having different layers of neurons to process information at different levels of ab-

straction, we can extract features at different levels of complexity. This hierarchical structure

allows for learning progressively more abstract representation of input as data flows deeper

into the network [78]. This implicit learning of knowledge aims to take single-label and flows

into a multi-label without explicitly informing the network. The flow of learnt abstraction is

what has led to many fields not using the multi-label structure of datasets, however this does

come with many problems from the learning of these structures to the need of having labelled

interconnected characteristics in many domains.

When explicit machine learning techniques are used, they are often referred to as a constraint

form of learning due to limiting the search space in which the model can learn from [96]. This

has lead to literature in fields like semi-supervised, unsupervised and self-supervised learning.

These use an implicit learning of knowledge due to limits in providing labels, this could be

generated as part of the training process or a mixture of providing labels. With the lack of

ground truth examples it can be hard to evaluate performance and adjust the learning process.

This can lead to other challenges like extra difficulty in interpretability, risk of overfitting. As

a result most machine learning areas use a some form of explicit learning, such as direct input-

output pair training phase in supervised learning to graph machine learning which uses a rich

amount of information to form a graph data structure [54].
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The trade-off between explicit and implicit learning approaches should be considered in model

design as well as the training scheme given the data and the task to be completed. Explicit

learning, while potentially more constrained, often leads to more interpretable models and can

leverage domain knowledge effectively [116]. It allows for more richer unstructured forms of

data as well as hierarchical structures, however, this approach may limit the model’s ability

to discover novel patterns or relationships not explicitly encoded in the data. Implicit learn-

ing approaches, such as those used in deep learning, offers greater flexibility and the potential

to uncover complex, non-linear relationships in the data [11]. This allows for adaption of a

wide range of tasks without requiring extensive hand-engineered features or explicit encoding

of hierarchical relationships. In general, this often requires larger datasets, are more compu-

tationally intensive, and can be less interpretable. The choice between explicit and implicit

learning often depends on the specific requirements of the task, domain knowledge, and the

need for interpretability or flexibility. By utilising a hybrid approach that combines elements

of both explicit and implicit learning, we can offer the strengths of each approach while miti-

gating a few of the respective weaknesses [117].

Using hierarchical labelling structure naturally leads to the domain of multi-label classification,

where each instance can be associated with a set of linked labels rather than a single class. In

the following section, we discuss the formulation of multi-label classification and how we can

adapt neural networks to handle the complexities of hierarchical, multi-label data in computer

vision and graph-based tasks.

5.2.3 Multi-Label Classification

In situations where samples have many associated labels concurrently, then such problems are

known as multi-label learning [107]. This approach extends from the standard single label,

where we typically have a set of finite labels that can be applied to samples of multi-label data.

The usual goal is then to predict all the relevant labels to the single input but this could also

involve ranking of those labels. The traditional approaches for solving multi-label problems are

algorithm adaptation or problem transformation. Where the former aims to extend method to

handle multi-labels such as Multi-Label K-Nearest Neighbours (ML-kNN) [166], multi-label

decision trees [28], and adaptations of support vector machines [39]. In the domain of computer

vision, CNNs have been adapted for multi-label image classification tasks, such as the CNN-

RNN framework which combines CNNs as the feature extraction with RNNs to capture label
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dependencies [140]. These adaptations typically involve modifying the network architecture

and loss functions to handle multiple labels simultaneously. Problem transformations involves

taking the multi-label dataset and convert it to be either one or multiple label classification

tasks. The most common methods within problem transformation are label power-set, binary

relevance and classifier chains [107]. In our work we use classifier chains in which we have

multiple interconnecting classifiers in a sequential chain, where the predictions of the preceding

classifiers can serve as features for subsequent classifiers. We can then leverage the learnt

hierarchical information to help in the prediction of the sub-labels. The challenges with this

approach is there is a high computation cost when the dataset has a large number of labels,

models are often sensitive to the order and structure of chains which results in difficulty of

capturing complex label dependencies [107]. Traditional classifier chains also have limited

ability to capture the higher order correlations between linked labels; therefore, graph deep

learning has been employed to address some of these problems [25].
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5.3 Methodology

xi = [G(nL0),G(nL1),

G(nL2),G(nL3),

G(nL4)]

yi = [‘root’, ‘123457’,
‘1247’, ‘27’, ‘2’]

xi+1 = [G(nL0),G(nL1),

G(nL2),G(nL3),

→1)]

yi+1 = [‘root’, ‘123457’,
‘35’, ‘3’, ‘-1’]

xi+2 = [G(nL0),G(nL1),

G(nL2),G(nL3),

→1)]

yi+2 = [‘root’, ‘0689’,
‘08’, ‘0’, ‘-1’]

i+1 i+2

Figure 5.1: Each xi represents a path to the root, where we sample every node representation within
that path based on a function G. This means that the largest path is depth of the tree and therefore
we pad the xi if the current i is an intermediate node. We use a multi-label y based on this path,
starting from the root to the current node. In this figure we are using a tree built for MNIST and so
the root represents all digits and we split them up as we move down the tree.

Our methodology is based around different variations of classifier chains to model the relation-

ship between nodes of a label tree, where each chain targets a depth level of the tree. Different

variations of classifier chains define how predicted information should flow to the next. We use

a classifier for each depth level excluding the root and the leaf node, as the root represents the

entire dataset in a single label resulting in no change as each experiment uses a single dataset.

The leaf node contains an individual instance of the dataset and as such has a unique label for

that sample, if utilised this results in a single-instance classification problem and challenges

like good generalisation and evaluation comparisons arise. We choose to focus on modelling

of relationships between groups but single-instance problems forms part of section 5.6. By

using classifiers to target different depth levels of the tree we form a path from a given node

to the root, where the node could be either a leaf, intermediate or a root node. Each model is

broken up into a graph-based feature extraction section followed by and the classifier chains.

Graph Convolutions allow us to form a low-dimensional embedding of nodes while leveraging
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hierarchical structure of the data within the representation.

Our input is of shape n↗n where n is the number of nodes in our tree. A row, referred to as a

feature vector, is defined as:

xi = [G(nL0),G(nL1), ...,G(nLd )], (5.1)

where xi is a instance of the data, n is the node representation of the dataset labels, Ld is

the node at depth level d. As a node can represent many data instances, G is an aggregation

function which results in a vector of the same size as a single instance of the dataset, this

ensures that each G(nLd ) have the same length. We build the shortest path from any node in

the tree nLd to the root nL0 . We start with the root because the labels become more specific as

we move down the tree, therefore as we pass this data through the model, the deeper classifier

chains get more specific and map to the deeper nodes of xi.

Graph Neural Networks (GNNs) have emerged as a powerful framework for learning on irreg-

ular data, in which they extend on the concept of CNNs to non-euclidean domains, allowing

for processing of data with complex relational structures [44]. As our data forms a hierarchical

tree we use spatial graph convolutions to directly operate on it within the node domain, this

allows us to model neighbourhoods of each node with either a filter or an aggregation func-

tion. Spatial graph convolutions also easily translate to domain-specific tasks than spectral due

to domain-specific knowledge often involving local patterns or rules, which spatial convolu-

tions inherently capture [44]. This is particularly relevant for our hierarchical label structure,

where relationships such as sub-classification or encapsulation relationships is the aim of our

modelling. The local structure of each node xi’s immediate neighbours is &1(xi), representing

one-step, however, we often use a larger number of steps away from the focal node, as to allow

for learning of greater spatial relationships, like a convolutional kernel. By changing the steps

away from the focal node we capture relationships between different levels of the hierarchy.

The framework of choice within the spatial graph domain is GraphSAGE as it considers all

nodes in the graph to become a focal node and therefore generates embeddings for each one

[53]. Each GraphSAGE layer consists of two procedures: sampling and aggregation. In the

sampling stage a subset of each node’s neighbours are uniformly sampled and at each layer

a different sampling is made, the number of samples is a hyper-parameter that can be tuned

based on the depth and breadth of the tree. The aggregation stage then follows by aggregating
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the sampled nodes,

hl,&(x) = aggregatel({hl→1,y⇔y ↑ &(x)}) ↑ Rc, (5.2)

where hl,&(x) is the aggregated feature vector for node x at layer l, and c is the dimension of the

output feature vector. We then perform the concatenation of hl,&(x) with the focal nodes own

features from the previous layer, hl→1,x in a dense layer:

hi,x = !((hl→1,x ↙ hl,&(x))Wl), (5.3)

where Wl ↑ R2c↗d is a matrix of learned weights for the lth layer and ! is a non-linear

activation function. In our experiments we use the mean aggregator, one of three that was

suggested by the authors as a way to flatten out contributions from over-sampled nodes. As

we predict the path from root to a leaf node, GraphSAGE’s node embedding process cap-

tures the relationship between different levels of the hierarchy. Each node’s embedding is

influenced by both its parent and child nodes, reflecting the hierarchical nature in the data.

GraphSAGE1 GraphSAGE2

Feature Extractor

X

A

Classifier1 Classifier2 ... Classifiern

Classifier Chains

A

B

Ŷ1 Ŷ2 Ŷn
C

Figure 5.2: This figure expresses the full pipeline of our methodology. A: We first build our tree that
forms our input X , Y and A. The root of the tree represents all labels within the data and each leaf node
represents an individual data sample, intermediate nodes define the hierarchical structure of labels. Each
vector of X is a path starting from the root to a node within the tree. Aggregation of data within each
node is used to ensure that there is a fixed size. B: We pass our X and A into the feature extractor part
of the model, we use GraphSAGE to learn node embeddings which captures the relationships between
different levels of the hierarchy. C: The embeddings, X̂ , are passed into the classifier chain section of
the model, allowing us to predict different depth levels of the tree.
To leverage the hierarchical structure learned by the GraphSAGE layers for a multi-label classi-
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fication task, we integrate the use of classifier chains. Figure 5.2 summarises our methodology,

where we first structure our data so that each vector of X is a path from the root to a node, this

can be a leaf or an intermediate node. The root of our tree represents all data within the dataset

while a leaf node is a single sample. The intermediate nodes define the hierarchical labelling

structure of the dataset. We use a sampling followed by an aggregation function at each node to

allow for a fixed size vector, as different nodes contain any number of samples. Once built we

pass the X and the adjacency matrix A into feature extractor section of the model. The embed-

dings from GraphSAGE for each node in the tree serve a hierarchical features for the classifier

chains. The embeddings encapsulate not only the individual characteristics of each label but

also its relationship within the labels’ children and parents. By feeding the embeddings into

the classifier chains, we aim to capture label dependencies from the sequential path of the pre-

diction process. In the following section, we discuss specific configurations of classifier chains

in our experiments.
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5.3.1 Classifier Chain Configurations
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Figure 5.3: A: Classifier Chain Type A is the first of the experiments that build up to different classifier
chain experiments. This type is more related to a naïve approach where we do not chain any of our
predictions and therefore different dense layers may learn similar properties. Each dense layer connects
to a classification head that refers to a depth level of a given tree. B: Classifier Chain Type B chains
the predictions from each classification head into a following dense layer. This then feeds into another
classification head. We continue this process of building the model until we reach the max depth level
of the tree. C: Classifier Chain Type C is similar to type B but we concatenate the predictions from the
classification head with the previous dense layer, allowing us to share more of the learnt features. Given
the chosen classifier chain configuration, FC j

i is fully connected layer where i refers to the ith classifier
head and j is the jth layer.

The formalisation of classifier chains in a probabilistic setting was first proposed in [26], h j

denotes the j-th classifier,

h j(x) = argmax
y j↑{y1↗...↗yn}

P(y j | x,y1, ...,y j→1), (5.4)

where we find the probability of the y j given x and all the previous labels in the chain and each

y j represents the set of possible values for a given depth of the tree. This formalisation cap-

tures the interdependencies between labels, allowing us to model the relationships as each label
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prediction on all previous labels in the chain. Depending on the chain structure, we can then

inherently models a form of conditional label dependence. As a result of this the general ques-

tion of how to specifically order and structure the chains around the associated labels within

the dataset becomes crucial for optimising model performance. For our methodology we focus

on three types of classifier chains referred as A, C and D, shown in figure 5.3. Classifier Chain

Type A is our initial approach and serves as a naïve baseline. This configuration is not a true

classifier chain but rather a multi-head model where each classification head corresponds to a

specific depth of the tree, excluding root and leaf nodes. If a branch of the tree has leaf node

but other branches have greater depth then that leaf node is not used in the classification for

the particular instance of x. In this setup, each classifier head operates independently, making

predictions based solely on the graph based feature extractor. While simple, this approach ig-

nores potential interdependencies between labels but some implicit capturing of hierarchical

information is learnt via the feature extractor. Building upon the limitations of configuration

A, a true classifier chain is built with Type C. In this case, each classifier in the chain takes

into account the predictions of the previous classifier, resulting in modelling conditional label

dependencies. However, the flow between classifiers is limited to the raw prediction, resulting

in an extremely small shape for the features to be fed into the next classifier. Resulting in not

fully exploiting the learned representations. Type C extends on the chain structure of B by

introducing a dense layer that concatenates the previous classifier’s output with its learned rep-

resentations. The progression from A to B, and then to C represents an incremental approach to

capturing and utilising label dependencies in multi-label classification tasks. Type A serves as

a baseline, highlighting the potential shortcomings of treating each label independently. Type

B introduces the basic chain structure, allowing for sequential label predictions that consider

previous outputs. Finally, type C incorporates the learnt representation of the previous dense

layers with the information of the prediction, leading to a richer form of explicit learning of

hierarchical relationships.
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5.3.2 Building Hierarchical Labelling Systems

root
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Figure 5.4: The synthetic hierarchical dataset process consists of first generating the super-classes,
that is the depth row below the root in this figure. We define a vector size, number of samples and
! which represents a cluster overlap parameter. The samples are then uniformly generated for each
class. Building the tree consists of providing the maximum depth and children a parent can have. The
parent samples are split based on k-means where k is a random amount of children between 0 and the
maximum amount of children. We generate new depths until we have either reached the maximum
depth or randomly stop. The tree in this figure consists of one version of a synthetic dataset which 3000
samples, 3 super-classes, a ! of 0.3, maximum depth and children of 3.

While our experiments utilises existing datasets that have some hierarchical labelling, we also

developed a synthetic dataset to test the edge cases of the methodology. Having a dataset

like ours serves multiple purposes in an experimental framework. Firstly, a synthetic dataset

can examine specific aspects of our current experiments’ performance. Even through we use

GraphSAGE for feature extraction and classifier chains for predictions at each depth level of

the tree, uncertainties can arise regarding whether performance issues stem from the model

architecture or the structure of the labels. A synthetic dataset enables us to disambiguate these

factors via multiple generations of datasets. Secondly, we built a synthetic dataset process

that mirrors the hierarchical nature of classification problems, via starting with the generating

of super-classes, defining parameters such as shape of input, the amount of samples, and the

degree of overlap between class clusters. Changing such parameters allows us to control the
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complexity and provide some characteristics to the hierarchical structure.

The samples of our data are then uniformly generated building labelled clusters. We then

construct the tree based on the originally generated data with flat labels. We define parameters

for the maximum depth and maximum number of children, with branches built randomly within

these constraints. For each parent node, we randomly select a number of children and split the

data representing that parent node accordingly. This process is repeated for each node at a

current depth level before moving down. We continue until we reach the maximum depth

level, padding the xi vector for branches where no children were generated. Our aim with the

synthetic dataset experiments is to test varying hierarchical structures with a focus on shallow

and dense hierarchies, and create scenarios with different levels of class separability. This is

so we can explore areas of the tree that have well-defined labels as well as more ambiguous

class boundaries. Figure 5.5 demonstrates a scatter-plot matrix of two parameters in the data

generation process. As the rows increase we show different numbers of super-classes while as

the columns increase we show different values of degree overlap ! . This value can be between

0 and 1, where 0 has no overlap, showing well-defined classes, while 1 is a complete overlap

of the classes, showing extremely ambiguous class boundaries. The colours represent different

super-classes in this figure.

5.4 Experimentation

We designed the experiment framework around the different structures of classifier chains,

using both image based and synthetic datasets. Most of these would have hierarchical labels

with the exception of MNIST. We modified this dataset by building two different sets of trees,

referred to as type 1 and type 2 in the results. We use variations of the same basic model,

including the graph-based feature extraction so that we can evaluate the proposed approach to

classification tasks. We build these models based around the dataset but the structure of the

classifier chains are the same across all experiments. In chapter we do not explore changing of

the graph during the training process. As they are fixed, they need to be specified before the

start of the experiment.

We use categorical entropy as a loss function for each of the classification heads. Different loss

normalisation techniques was explored but we ultimately ended designing the experiments with

a depth based normalisation. This is because as we move down the tree, our samples become
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Figure 5.5: We demonstrate two of the parameters of the synthetic data generation process: number of
super-classes and degree of overlap ! . The overlap is a value between 0 and 1, where 0 has no overlap
and therefore well-defined classes, while 1 is complete overlap of classes, demonstrating extremely
ambiguous class boundaries. Each colour is a different class in this figure.

more defined, the information from those representations are more important than that above.

This results in a harder training scheme to converge as the model could learn that a branch

decision is not as important as below. We trained our models based on an early stopping

criteria to ensure that each converged. We use a 5-fold cross validation for each experiment,

recording accuracy, recall, precision and F1 scores for each fold, allowing us to see stability

in model performance. After each epoch we shuffle our data as well as select a new batch

of aggregated nodes with a sample rate of 60% for each node. The Adam optimiser with a

learning rate 1↗ e→2.

The experiments described where performed in the summer of 2024. Implementation was

created in Python version 3.11.9 and the models implemented in TensorFlow version 2.13.

Each model was trained on 1 NVIDIA 3070 GPU and a Intel i7 CPU. The following section

displays the table of results for each dataset and type of chain used. Note that we are not aiming
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for state-of-the-art results in our analysis; rather if we can use explicit labelling structures

within the graph deep learning to learn different types relationships among the labels.

In the experiments where we use our synthetic data generation process, we want to explore

the difficulty in labels that have data overlapping. This is so we can explore the non-linear

separation generalising well under this constrained form of training. To accomplish this, we

define two types based on the degree of overlap ! : E for Easy and H for Hard. E has a ! of

0.33 while H is 0.67.

5.5 Results

For each dataset we present a table of results, with the exception for the synthetic datasets.

Due to the amount of experiments performed on synthetic data, we split the table up into 3 for

each classifier chain. These are tables 5.1, 5.2 and 5.3. Each table describes the performance

of the models based on accuracy, recall, precision and f1 scores. Each table also displays some

configuration for each experiment. The synthetic dataset experiments display depth of tree,

number of super classes and type of tree difficulty used. Difficulty in this case defines how

much of an overlap the class clusters should have, easy refers an overlap of 0.2 and hard is

a overlap of 0.67, we display these two values in figure 5.5. Table 5.4 displays the results of

using MNIST formed with the two types of hierarchical trees. Within each table we separate

based on the number of super classes within the trees. Results in bold are the best of that group

while the underlined refers to the second best. Table 5.5 displays results on CIFAR-100 and

ADE-20K datasets. The ADE experiments form a segmentation task where the leaf nodes are

individual pixels and the parent is that group part of an object. As we move up the tree the

parts of the object form into a full object where the super classes form all objects within the

images.

5.6 Discussion

In our experiments we use relatively small hierarchical trees, approximately between 3 and

10 in depth and width. We based the structure of the classifier chains on the depth level of

the tree, even with these small trees computation is still a challenge both in terms of time and

space complexity. Scaling to larger trees will only make this problem more challenging. Bal-

ancing the depth of GraphSAGE with the width of sampling is crucial. Having many layers

110



5.6. Discussion

Table 5.1: Results using synthetically generated data with hierarchical labels. The classifier chain of
choice in this table is referred as type A in this chapter. Each classifier head is independent of each other
with no shared features for separating different depth levels of a given tree.

Depth Super
Class

Type Accuracy Recall Precision F1

3 3 E 0.99 ± 0.004 0.92 ± 0.05 0.46±0.03 0.92 ± 0.05
3 3 H 0.74±0.002 0.33±0.004 0.36±0.01 0.17±0.003
7 3 E 0.81 ± 0.002 0.50±0.02 0.73 ± 0.01 0.3±0.007
7 3 H 0.75±0.01 0.38±0.03 0.56 ± 0.04 0.22±0.016
10 3 E 0.73±0.003 0.51 ± 0.05 0.58±0.04 0.27 ± 0.02
10 3 H 0.69±0.003 0.34±0.0004 0.51±0.07 0.20±0.01

3 5 E 0.78 ± 0.001 0.34 ± 0.002 0.6 ± 0.05 0.21±0.01
3 5 H 0.79 ± 0.002 0.35 ± 0.002 0.58±0.04 0.22±0.01
7 5 E 0.67±0.0004 0.29±0.01 0.63 ± 0.07 0.39 ± 0.02
7 5 H 0.63±0.01 0.14±0.01 0.34±0.03 0.20±0.01
10 5 E 0.60±0.02 0.31±0.06 0.39±0.002 0.35 ± 0.017
10 5 H 0.63±0.003 0.16±0.05 0.25±0.01 0.2±0.16

3 7 E 0.75 ± 0.002 0.32 ± 0.001 0.63 ± 0.002 0.42 ± 0.002
3 7 H 0.71 ± 0.01 0.26 ± 0.03 0.31 ± 0.01 0.28 ± 0.02
7 7 E 0.64±0.054 0.14±0.02 0.22±0.01 0.17±0.04
7 7 H 0.59±0.01 0.18±0.01 0.23±0.04 0.2±0.03
10 7 E 0.55±0.04 0.19±0.004 0.24±0.003 0.21±0.004
10 7 H 0.59±0.06 0.13±0.01 0.19±0.01 0.15±0.02

Figure 5.6: Using the synthetic data generator we perform a 10-fold for each increase in depth of the
tree. As the depth increases we see an initial decent in accuracy then goes back up, which is similar to
the double decent phenomenon seen in deep learning.
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Table 5.2: Results using synthetically generated data with hierarchical labels. The classifier chain of
choice in this table is referred as type B in this chapter. We feed in the predictions from a previous chain
into a dense layer before going into the next chain. This allows us to utilise learnt features targeted from
more general depth layers of the tree

Depth Super
Class

Type Accuracy Recall Precision F1

3 3 E 0.79±0.025 0.3±0.047 0.32±0.031 0.31±0.039
3 3 H 0.90 ± 0.016 0.39±0.004 0.43±0.018 0.41±0.01
7 3 E 0.82±0.02 0.72 ± 0.01 0.7±0.02 0.71 ± 0.01
7 3 H 0.89 ± 0.014 0.66 ± 0.012 0.66 ± 0.016 0.66 ± 0.01
10 3 E 0.83±0.021 0.48±0.026 0.5 ± 0.01 0.49±0.02
10 3 H 0.71±0.02 0.26±0.018 0.35±0.024 0.3±0.02

3 5 E 0.89 ± 0.017 0.61 ± 0.02 0.64 ± 0.02 0.63 ± 0.02
3 5 H 0.8 ± 0.04 0.31 ± 0.02 0.35±0.02 0.33±0.02
7 5 E 0.6±0.03 0.15±0.01 0.25±0.05 0.19±0.02
7 5 H 0.7±0.02 0.27±0.05 0.30±0.04 0.29±0.04
10 5 E 0.60±0.004 0.14±0.005 0.17±0.01 0.15±0.008
10 5 H 0.71±0.02 0.33±0.01 0.38 ± 0.04 0.35 ± 0.02

3 7 E 0.93 ± 0.01 0.53 ± 0.05 0.56 ± 0.04 0.55 ± 0.05
3 7 H 0.85 ± 0.02 0.29 ± 0.02 0.31 ± 0.04 0.30 ± 0.03
7 7 E 0.59±0.01 0.13±0.01 0.18±0.05 0.15±0.03
7 7 H 0.69±0.01 0.16±0.01 0.29±0.05 0.21±0.02
10 7 E 0.51±0.039 0.16±0.02 0.27±0.39 0.2±0.02
10 7 H 0.56±0.003 0.12±0.01 0.21±0.02 0.16±0.01

results in over-smoothing, while too few does not capture the full depth of the hierarchy. As

the depth increase capturing the dependency becomes a problem between distant nodes. Fig-

ure 5.6 displays a 10-fold for each instance of depth. We start at a depth of 1 (a flat dataset)

and increase the depth on the x axis, displaying the accuracy on the y axis. As depth increase

we see a decrease in accuracy but increasing again in a similar way to the double decent phe-

nomenon. This approach is clearly more explicit then that of the double decent appearance

seen in deep networks. In these cases as the layers of neural networks increase we often see

this phenomenon, we believe that the learnt depths of the tree are matching the implicit training

schemes of neural networks.

The synthetic dataset lays the groundwork for future explorations into dataset refinement

through active learning, where we can potentially adjust the hierarchical structure on emerging

data patterns. While we do not delve into this aspect in this work, its worth noting that such

refinements could involve merging classes that show significant overlap or splitting classes that

112



5.6. Discussion

Table 5.3: Results using synthetically generated data with hierarchical labels. The classifier chain of
choice in this table is referred as type C in this chapter. We feed in predictions and the embeddings from
the previous chain into a dense layer before going into the next chain. This is because the layer from
just using the prediction (such as in table 5.2) will result in limiting the representation capacity and even
result in a vanishing gradient problems.

Depth Super
Class

Type Accuracy Recall Precision F1

3 3 E 0.81 ± 0.002 0.32±0.03 0.57±0.07 0.41±0.04
3 3 H 0.86 ± 0.03 0.49±0.03 0.62±0.06 0.55±0.04
7 3 E 0.78±0.004 0.67 ± 0.002 0.69 ± 0.02 0.68 ± 0.01
7 3 H 0.68±0.01 0.65 ± 0.04 0.61±0.01 0.63 ± 0.02
10 3 E 0.67±0.002 0.25±0.02 0.54±0.05 0.34±0.01
10 3 H 0.67±0.02 0.25±0.01 0.63 ± 0.03 0.36±0.01

3 5 E 0.78 ± 0.017 0.52 ± 0.05 0.6±0.07 0.56 ± 0.06
3 5 H 0.84 ± 0.03 0.57 ± 0.02 0.7 ± 0.02 0.63 ± 0.02
7 5 E 0.72±0.002 0.43±0.01 0.67 ± 0.03 0.52±0.02
7 5 H 0.43±0.06 0.18±0.01 0.28±0.05 0.22±0.01
10 5 E 0.69±0.01 0.19±0.02 0.31±0.02 0.24±0.03
10 5 H 0.65±0.02 0.14±0.02 0.29±0.01 0.19±0.01

3 7 E 0.95 ± 0.01 0.64 ± 0.02 0.68 ± 0.01 0.66 ± 0.01
3 7 H 0.86 ± 0.02 0.45 ± 0.01 0.58 ± 0.02 0.51 ± 0.01
7 7 E 0.63±0.04 0.34±0.04 0.49±0.02 0.4±0.01
7 7 H 0.61±0.2 0.36±0.02 0.41±0.01 0.39±0.02
10 7 E 0.57±0.03 0.27±0.01 0.36±0.04 0.31±0.02
10 7 H 0.67±0.01 0.26±0.02 0.37±0.01 0.31±0.02

Table 5.4: This set of results displays experiments for each type of chain and each type of tree used with
the MNIST dataset.

Chain
Type

Tree
Type

Accuracy Recall Precision F1

A 2 0.73±0.02 0.74±0.03 0.35±0.04 0.47±0.04
C 2 0.79±0.034 0.61±0.06 0.37±0.01 0.46±0.02
D 2 0.72±0.1 0.67±0.1 0.32±0.06 0.43±0.07

A 1 0.80 ± 0.01 0.77 ± 0.06 0.67±0.02 0.73±0.01
C 1 0.84 ± 0.01 0.75±0.01 0.75 ± 0.002 0.75 ± 0.004
D 1 0.80 ± 0.06 0.76 ± 0.04 0.73 ± 0.03 0.74 ± 0.03
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Table 5.5: Two sets of expriemnts where one is a classification task with CIFAR-100 while the other is
a segmentation task with ADE-20K. The segmentation tasks froms a part-of relationship while classifi-
cation is a semantic relationship based on domain knowledge provided by a human.

Dataset Chain
Type

Accuracy Recall Precision F1

CIFAR-100 A 0.46 ± 0.11 0.52 ± 0.09 0.46 ± 0.11 0.24 ± 0.05
CIFAR-100 C 0.37±0.03 0.39±0.03 0.37±0.03 0.19±0.01
CIFAR-100 D 0.68 ± 0.29 0.71 ± 0.28 0.68 ± 0.29 0.35 ± 0.14
ADE-20K A 0.43 ± 0.34 0.49 ± 0.21 0.57 ± 0.29 0.53 ± 0.25
ADE-20K C 0.31±0.24 0.27±0.39 0.37±0.21 0.31±0.27
ADE-20K D 0.69 ± 0.21 0.7 ± 0.23 0.65 ± 0.19 0.67 ± 0.18

demonstrate clear sub-clusters.

5.7 Summary

Hierarchical labels form a relationship in both an abstraction and fine-grained level of the

data. We represented different depth levels of these labels that form a type of granularity in a

tree structure. This form of supervision is highly inspired by human cognition and perception

where we recognise patterns of various levels of abstraction to define an object. Many machine

learning approaches attempt to mimic this process with different layers of a neural network.

We explore providing more explicit and richer forms of supervision in two ways. The first is

a break up of the physical or geometric structure of the object, referred to as encapsulation

relationships (or part off relationships). The second is sub-classification relationships which

are semantic relation of labels provided by domain knowledge of what we are trying to capture

in the dataset. Capturing this information in a more explicit form of deep learning is especially

useful in tasks which have complex and interconnected characteristics such as in manufacturing

of composite materials or comorbidity analysis of patients in healthcare domains. This work

utilises these two types of relationships to solve both classification and segmentation tasks. We

base our approaches on graph deep learning as a form of feature extraction on the tree of nodes

where each node is a hierarchical label and the features form samples in the dataset. The root

of a tree represents the full dataset while a leaf node is a individual sample or pixel depending

on the task, then the interconnecting nodes form the hierarchical relationship. To form our

predictions we explore different types of classifier chains. Different structures of these chains
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defines the flow of information between classifiers. Each classifier targets a different depth

level of the tree. Predictions from previous classifiers are fed into subsequent ones allowing

us to capture different depths of the hierarchy and use that information in making a prediction.

We evaluated our approach synthetic and real-world datasets and also explored the complexity

of increasing the tree in depth and in width. All our experiments involve a 5-fold split of the

data, displaying the level of stability and confidence in each performance metric.
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6.1 Conclusions

We started off building this work by setting out 3 goals with input from both external and

internal stakeholders. The design of the doctoral project had an application focus of quality

control in the domain of steel manufacturing. The first goal was the improved detection, lo-

calisation and classification of features observed by imaging systems. In this thesis we present

a refinement strategy that converts bounding-box datasets to dense segmentation. There are

many common mistakes in these bounding-box datasets such as more than one defect is within

the ROI, some defects do not have an ROI, and defects can also leak out of the ROI. Due

to the geometric structure of defects many of the pixels within the ROI are actually negative.

By providing richer forms of supervision to deep learning models we can gain performance

in detection, localisation and classification. The second goal was the improved labelling and

analysis of complex classes via a semi-supervised approach. While our refinement strategy is

related we also utilise a form of complex classes by using hierarchical labelling system. We

model this by presenting a network architecture via a graph-based deep learning approach. The

leaf nodes of the structure represent individual samples, the root node represents the full dataset

and the interconnecting nodes form the hierarchy. Nodes that contain more than one sample

are aggregation of their children. As a result the nodes further up the hierarchical tree are more

generalised labels and as we move down they become more specialised. These node embed-

dings then feed into one of three types of classifier chains which target different depth levels.

We structure the different classifier chains based on the amount of information flow between

these depth levels. As part of this work we utilise two types of hierarchical relationships to

solve classification and segmentation tasks. The first is a break up of the physical or geometric

structure of the object, called encapsulation relationships. The second is sub-classification re-

lationships which are semantic relations of labels provided by domain knowledge of what we

are trying to capture in the dataset. The third goal is the improved integration and use of data

visualisation within a user-guided approach to improve understanding of the model inference.

Throughout this thesis we utilise different forms of supervision to allow for stronger signals of

inductive bias. Goal three refers to the use of applying this inductive bias towards the train-

ing scheme where we go in the direction of active learning. We present different acquisition

functions for embedding expert knowledge into the training with the help of a human. In order

for someone to make an accurate design we provide varying degrees of exploratory approaches

with graphical user interfaces. Experts are able to customise these interfaces, select different

algorithms for visualisation and see how their feedback into the model has an influence on the
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task at hand.

6.2 Contributions

The contributions of this thesis are the following:

An acquisition function based on current feature representation positions. We present a

new acquisition function for finding a set of samples within the dataset that gets labelled by

an expert will result in the most informative update to the model within an active learning

setting. This utilises the current embedding space of generative models and the triplet loss. We

use mining strategies based on an anchor, a sample with the sample label as the anchor and a

negative which is close to the anchor. The mining strategies are based on the distance between

samples. We request the help of an expert to relabel or reinforce correct labels of negatives,

which focuses training to create dense clusters of related samples.

Refinement strategy for fuzzy-labelled datasets. We present a refinement strategy within

an active learning setting to fix mistakes in bounding-box labelled datasets. By uniformly

sampling pixels to form patches of images, we then mine this pool to get a set of the most

informative ones that would better improve the classification and generative models. We use

the classification head of these models to predict a dense segmentation overtime.

Incorporating explicit domain knowledge into a data-driven approach via a hierarchical
labelling system. We present a network architecture to model hierarchical labelled datasets.

These hierarchical labels are modelled via a graph-based deep learning approach where the

leaf nodes are individual samples and the root is the full dataset. Interconnecting nodes are

the aggregation of their children which forms a hierarchical relationship. As a result the nodes

further up the hierarchical structure are more generalised labels and as we move down they

become more specialised. These node embeddings then feed into a one of three types of clas-

sifier chains which target different depth levels. Previous classifier heads are used to inform

new predictions in subsequent classifiers forming a chain of information flow. We evaluate our

approach with a 5-fold of MNIST, CIFAR-100, ADE-20k datasets. We also build a synthetic

data generator for building hierarchical datasets so that we can test edge cases of our method-

ology. This work also utilises two types of hierarchical relationships to solve classification and

segmentation tasks. The first is a break up of the physical or geometric structure of the object,
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referred to as encapsulation relationships. The second is sub-classification relationships which

are semantic relations of labels provided by domain knowledge of what we are trying to capture

in the dataset.

Detecting label collisions during the training process. We explore the use of density-based

deep clustering where it forms a graph. Each node represents a sample and the edges form the

clusters. As clusters of samples merge this forms a collision to which we reform the labelling

system. Clusters builds a hierarchical dataset where if they do form then this becomes a parent

node of the two children which are colliding. If a cluster starts to separate then this forms a set

of children where the cluster is the parent instead.

An acquisition function for evolving graphs. This contribution expands on the density based

deep clustering approach by applying an active training scheme. This is where each node of the

graph is a sample and the edges form the clusters. If clusters of nodes start to merge during the

training process we request an expert to inform the model if the clusters should join together

or not. If that merging does happen then this forms a hierarchical set of labels as the joining

clusters form a single node while its children will represent the two clusters.

6.3 Future Work

Traditional active learning methods struggle in a few ways when being used within an deep net-

work, this is because as we scale to higher dimensional spaces selecting the most informative

sample becomes an issue. Selecting samples in general is a challenge due to the uncertainly

estimation on the predictions and the changing internal representations. Another challenge is

that although active learning reduces the need for high-quality labelled data, there is still a need

for it. This is because deep learning is often very greedy for the data. Another alignment issue

with both areas is that most active learning algorithms focus on training of classifiers by using

a query strategy on fixed representations while deep learning the representations and the clas-

sifiers are optimised in a joint training process. Inspired by the work on refinement learning

with human feedback, we could use more complex feedback from the human and then train

a reward scheme to improve the smoothness of the optimisation task. This feedback can be

one or more continuous scales. This feedback would feed into a dense layer allowing a more

direct information flow of tuning the network. Generally richer forms of feedback have shown

to improve performance in many tasks, which stabilises the acquisition function. Active learn-

120



6.3. Future Work

ing has shown significant potential in reducing the need for high-quality data but can also be

used for other tasks such as data refinement and providing insight as a form of interoperability.

Measuring the affect that feedback has on the training or even how some samples have greater

affect could be explored more. This is especially useful in online machine learning systems

or simply deployed models, as we can use acquisition functions to find samples that are being

forgotten over others that are not. The application of such work involve around exploring the

affects of drifting in machine learning models.

Another significant proportion of this thesis was exploring the use of more explicit training

schemes via the structure of the labelling within datatsets, creating a form of constraint op-

timisation technique within deep learning. Stability becomes more of a problem the greater

the constraint we make on the optimisation as shown in chapter 5. Careful discussion needs

to be made on network architecture, the task, the loss function and how we present the data

to the model. Active learning can stabilise this issue but forming the training scheme seems

more desirable as it then becomes fully automated in an end-to-end system. Work on including

attention mechanisms into the hierarchy is a promising direction to stabilise the training as we

then focus at different depth levels that are more important than others. The design needs to

be carefully considered as I suspect the attention would ultimately focus more on the root of

the structure as this includes all data in the dataset under a single label. The work we have

presented in thesis could also be used as knowledge graph which is queried under a large lan-

guage model. In applications like robotic planning, having varying forms of symbolic AI can

help in decision making, such as informing the model that a painting belongs on a wall or a

cooker belongs in a kitchen. Hierarchical information like this forms itself in many applica-

tions and domains and trying to capture that remains a challenge. In graph deep learning we

structure our data in an irregular way but our embeddings are still trained within euclidean

space. Exploring the use of different spaces that more explicitly take advantage of hierarchical

nature is preferred in this context. Hyperbolic deep learning is one direction we could explore.

Hyperbolic representations form a distance that is almost exponential as we move up the tree

structure while sibling nodes are close together. This allows use to capture these relationships

with fewer dimensions but it is quite computationally expensive and applying to graphs which

in itself is already expensive is a complex challenge.

121





Bibliography

[1] Ali Alqahtani, X. Xie, J. Deng, and Mark Jones. “Learning Discriminatory Deep Clus-

tering Models”. In: International Conference of Computer Analysis of Images and Pat-

terns (CAIP) (Aug. 2019), pp. 224–233. DOI: 10.1007/978-3-030-29888-
3_18.

[2] Ali Alqahtani, Xianghua Xie, Jingjing Deng, and Mark W. Jones. “A Deep Convolu-

tional Auto-Encoder with Embedded Clustering”. In: 2018 25th IEEE International

Conference on Image Processing (ICIP) (2018), pp. 4058–4062.

[3] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

“NetVLAD: CNN architecture for weakly supervised place recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 5297–5307.

[4] Relja Arandjelovic and Andrew Zisserman. “All About VLAD”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2013.

[5] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”. In:

ArXiv abs/1607.06450 (2016).

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Transla-

tion by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473 (2014).

[7] David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and

Brian McWilliams. “The Shattered Gradients Problem: If resnets are the answer, then

what is the question?” In: Proceedings of the 34th International Conference on Ma-

chine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of

Machine Learning Research. PMLR, 2017, pp. 342–350.

123

https://doi.org/10.1007/978-3-030-29888-3_18
https://doi.org/10.1007/978-3-030-29888-3_18


Bibliography

[8] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. “Semi-supervised Cluster-

ing by Seeding”. In: Proceedings of the Nineteenth International Conference on Ma-

chine Learning. ICML ’02. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2002, pp. 27–34. ISBN: 1558608737.

[9] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vini-

cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,

Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George

E. Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Jayne Langston, Chris

Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,

Yujia Li, and Razvan Pascanu. “Relational inductive biases, deep learning, and graph

networks”. In: arXiv (2018).

[10] Javad Zolfaghari Bengar, Bogdan Raducanu, and Joost van de Weijer. “When

Deep Learners Change Their Mind: Learning Dynamics for Active Learning”. In:

Computer Analysis of Images and Patterns. Ed. by Nicolas Tsapatsoulis, Andreas

Panayides, Theo Theocharides, Andreas Lanitis, Constantinos Pattichis, and Mario

Vento. Springer International Publishing, 2021, pp. 403–413. ISBN: 978-3-030-89128-

2.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A

Review and New Perspectives”. In: IEEE Trans. Pattern Anal. Mach. Intell. 35.8 (Aug.

2013), pp. 1798–1828. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2013.50.

[12] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. “Representation Learning: A

Review and New Perspectives”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 35 (2012), pp. 1798–1828.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag, 2006. ISBN: 0387310738.

[14] Christopher M. Bishop and Hugh Bishop. Deep Learning: Foundations and Concepts.

Springer, 2024.

[15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. “Weight

uncertainty in neural network”. In: International Conference on Machine Learning.

2015, pp. 1613–1622.

124

https://doi.org/10.1109/TPAMI.2013.50


Bibliography

[16] Léon Bottou. “Large-Scale Machine Learning with Stochastic Gradient Descent”. In:

Proceedings of COMPSTAT’2010. Physica-Verlag HD, 2010, pp. 177–186. ISBN: 978-

3-7908-2604-3.

[17] H. Bourlard and Y. Kamp. “Auto-association by multilayer perceptrons and singular

value decomposition”. In: Biological Cybernetics 59.4 (1988), pp. 291–294. DOI: 10.
1007/BF00332918.

[18] Steve Branson, Grant Van Horn, Catherine Wah, Pietro Perona, and Serge Belongie.

“The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-

Grained Categorization”. In: International Journal of Computer Vision (Jan. 1, 2014).

[19] Samuel Budd, Emma C Robinson, and Bernhard Kainz. “A survey on active learning

and human-in-the-loop deep learning for medical image analysis”. In: Medical Image

Analysis 71 (2021), p. 102062.

[20] A. Canziani, Adam Paszke, and Eugenio Culurciello. “An Analysis of Deep Neural

Network Models for Practical Applications”. In: ArXiv abs/1605.07678 (2016).

[21] Stuart Card, Jock Mackinlay, and Ben Shneiderman. Readings in Information Visual-

ization: Using Vision To Think. Academic Press, Jan. 1999. ISBN: 978-1-55860-533-6.

[22] Young-Jin Cha, Wooram Choi, and Oral Büyüköztürk. “Deep Learning-Based Crack

Damage Detection Using Convolutional Neural Networks”. In: Computer-Aided Civil

and Infrastructure Engineering 32.5 (2017), pp. 361–378. DOI: https://doi.
org/10.1111/mice.12263.

[23] Young-Jin Cha, Wooram Choi, Gahyun Suh, Sadegh Mahmoudkhani, and Oral

Büyüköztürk. “Autonomous Structural Visual Inspection Using Region-Based Deep

Learning for Detecting Multiple Damage Types”. In: Computer-Aided Civil and In-

frastructure Engineering 33.9 (2018), pp. 731–747. DOI: https://doi.org/10.
1111/mice.12334.

[24] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. “ShapeNet: An Information-Rich 3D Model Repository”.

In: CoRR abs/1512.03012 (2015).

125

https://doi.org/10.1007/BF00332918
https://doi.org/10.1007/BF00332918
https://doi.org/https://doi.org/10.1111/mice.12263
https://doi.org/https://doi.org/10.1111/mice.12263
https://doi.org/https://doi.org/10.1111/mice.12334
https://doi.org/https://doi.org/10.1111/mice.12334


Bibliography

[25] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. “Multi-Label Image

Recognition With Graph Convolutional Networks”. In: 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 5172–5181. DOI: 10.
1109/CVPR.2019.00532.

[26] Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J Dembczynski. “Bayes optimal mul-

tilabel classification via probabilistic classifier chains”. In: Proceedings of the 27th

international conference on machine learning (ICML-10). 2010, pp. 279–286.

[27] Doo-chul Choi, Yong-Ju Jeon, Seung Hun Kim, Seokbae Moon, Jong Pil Yun, and

Sang Woo Kim. “Detection of pinholes in steel slabs using Gabor filter combination

and morphological features”. In: Isij International 57.6 (2017), pp. 1045–1053.

[28] Amanda Clare and Ross D. King. “Knowledge Discovery in Multi-label Phenotype

Data”. In: European Conference on Principles of Data Mining and Knowledge Discov-

ery. 2001.

[29] Connor Clarkson, Michael Edwards, and Xianghua Xie. “Active Anchors”. In: Com-

panion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive

Computing Systems. EICS ’23 Companion. Swansea, United Kingdom: Association

for Computing Machinery, 2023, pp. 68–69. ISBN: 9798400702068. DOI: 10.1145/
3596454.3597185.

[30] Connor Clarkson, Michael Edwards, and Xianghua Xie. “Active Anchors: Similarity

Based Refinement Learning”. In: Proceedings of the International Conference on Ap-

plied Computing. 2023, pp. 47–57. ISBN: 978-989-8704-53-5.

[31] Connor Clarkson, Michael Edwards, and Xianghua Xie. “Dense Semantic Refinement

Using Active Similarity Learning”. In: IADIS International Journal on Computer Sci-

ence and Information Systems. 2024, pp. 15–30. ISBN: 1646-3692.

[32] Connor Clarkson, Michael Edwards, and Xianghua Xie. “Modelling on Types of Hier-

archical Relationships”. (To be published).

[33] D. Cohn, R. Caruana, and A. McCallum. “Semi-supervised clustering with user feed-

back”. In: Constrained Clustering: Advances in Algorithms, Theory, and Applications

(Jan. 2008), pp. 17–31.

126

https://doi.org/10.1109/CVPR.2019.00532
https://doi.org/10.1109/CVPR.2019.00532
https://doi.org/10.1145/3596454.3597185
https://doi.org/10.1145/3596454.3597185


Bibliography

[34] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet:

A large-scale hierarchical image database”. In: 2009 IEEE Conference on Computer

Vision and Pattern Recognition. 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.
5206848.

[35] Xingping Dong and Jianbing Shen. “Triplet loss in siamese network for object track-

ing”. In: European Conference on Computer Vision. 2018, pp. 459–474.

[36] Finale Doshi-Velez and Been Kim. “Towards A Rigorous Science of Interpretable Ma-

chine Learning”. In: arXiv: Machine Learning (2017).

[37] Michael Edwards, Jingjing Deng, and Xianghua Xie. “Labeling subtle conversational

interactions within the CONVERSE dataset”. In: 2017 IEEE International Conference

on Pervasive Computing and Communications Workshops (PerCom Workshops). 2017,

pp. 140–145. DOI: 10.1109/PERCOMW.2017.7917547.

[38] Michael Edwards and Xianghua Xie. “Graph Based Convolutional Neural Network”.

In: ArXiv abs/1609.08965 (2016).

[39] André Elisseeff and Jason Weston. “A kernel method for multi-labelled classifica-

tion”. In: Advances in Neural Information Processing Systems. Ed. by T. Dietterich,

S. Becker, and Z. Ghahramani. Vol. 14. MIT Press, 2001.

[40] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,

1998.

[41] Yarin Gal and Zoubin Ghahramani. “Bayesian Convolutional Neural Networks with

Bernoulli Approximate Variational Inference”. In: ArXiv abs/1506.02158 (2015).

[42] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep Bayesian active learning

with image data”. In: Proceedings of the 34th International Conference on Machine

Learning - Volume 70. ICML’17. JMLR.org, 2017, pp. 1183–1192.

[43] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep bayesian active learning with

image data”. In: International Conference on Machine Learning. 2017, pp. 1183–1192.

[44] Stavros Georgousis, Michael P. Kenning, and Xianghua Xie. “Graph Deep Learning:

State of the Art and Challenges”. In: IEEE Access 9 (2021), pp. 22106–22140. DOI:

10.1109/ACCESS.2021.3055280.

[45] Charles D. Gilbert and Wu Li. “Top-down influences on visual processing”. In: Nature

Reviews Neuroscience 14.5 (2013), pp. 350–363. DOI: 10.1038/nrn3476.

127

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/PERCOMW.2017.7917547
https://doi.org/10.1109/ACCESS.2021.3055280
https://doi.org/10.1038/nrn3476


Bibliography

[46] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. “Neural message passing for Quantum chemistry”. In: Proceedings of the 34th

International Conference on Machine Learning - Volume 70. ICML’17. JMLR.org,

2017, pp. 1263–1272.

[47] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer

Vision (ICCV). 2015, pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

[48] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Feature Hi-

erarchies for Accurate Object Detection and Semantic Segmentation”. In: 2014 IEEE

Conference on Computer Vision and Pattern Recognition. 2014, pp. 580–587. DOI:

10.1109/CVPR.2014.81.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

[50] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.

In: Advances in Neural Information Processing Systems. Ed. by Z. Ghahramani, M.

Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger. Vol. 27. Curran Associates,

Inc., 2014.

[51] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. “Deep Clustering with Convolu-

tional Autoencoders”. In: International Conference on Neural Information Processing.

2017.

[52] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation Learning

on Large Graphs”. In: Advances in Neural Information Processing Systems. Ed. by I.

Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

Garnett. Vol. 30. Curran Associates, Inc., 2017.

[53] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learn-

ing on large graphs”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran As-

sociates Inc., 2017, pp. 1025–1035.

[54] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning on

Graphs: Methods and Applications”. In: IEEE Data Eng. Bull. 40 (2017), pp. 52–74.

[55] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.

2nd ed. Cambridge University Press, 2004.

128

https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81


Bibliography

[56] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009. ISBN:

9780387848846.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning

for Image Recognition”. In: IEEE/CVF Conference on Computer Vision and Pattern

Recognition. June 2016.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Spatial Pyramid Pooling

in Deep Convolutional Networks for Visual Recognition”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 37.9 (2015), pp. 1904–1916. DOI: 10.
1109/TPAMI.2015.2389824.

[59] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In Defense of the Triplet Loss

for Person Re-Identification”. In: CoRR abs/1703.07737 (2017).

[60] Geoffrey Hinton. “Some demonstrations of the effects of structural descriptions in

mental imagery”. In: Cognitive Science 3.3 (1979), pp. 231–250. ISSN: 0364-0213.

DOI: https://doi.org/10.1016/S0364-0213(79)80008-7.

[61] Geoffrey Hinton and Sam Roweis. “Stochastic neighbor embedding”. In: Proceed-

ings of the 15th International Conference on Neural Information Processing Systems.

NIPS’02. Cambridge, MA, USA: MIT Press, 2002, pp. 857–864.

[62] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. “Improving neural networks by preventing co-adaptation of feature de-

tectors”. In: ArXiv abs/1207.0580 (2012).

[63] Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. “Deep Embedding Net-

work for Clustering”. In: 2014 22nd International Conference on Pattern Recognition

(2014), pp. 1532–1537.

[64] Yujun Huang, Yunpeng Weng, Shuai Yu, and Xu Chen. “Diffusion Convolutional Re-

current Neural Network with Rank Influence Learning for Traffic Forecasting”. In:

2019 18th IEEE International Conference On Trust, Security And Privacy In Com-

puting And Communications/13th IEEE International Conference On Big Data Sci-

ence And Engineering (TrustCom/BigDataSE). 2019, pp. 678–685. DOI: 10.1109/
TrustCom/BigDataSE.2019.00096.

129

https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/https://doi.org/10.1016/S0364-0213(79)80008-7
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00096
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00096


Bibliography

[65] Sergey Ioffe and Christian Szegedy. “Batch normalization: accelerating deep network

training by reducing internal covariate shift”. In: Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37. ICML’15.

Lille, France: JMLR.org, 2015, pp. 448–456.

[66] Fredrik D. Johansson, Uri Shalit, and David Sontag. “Learning representations for

counterfactual inference”. In: Proceedings of the 33rd International Conference on In-

ternational Conference on Machine Learning - Volume 48. ICML’16. New York, NY,

USA: JMLR.org, 2016, pp. 3020–3029.

[67] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity Search with

GPUs”. In: IEEE Transactions on Big Data 7.3 (2021), pp. 535–547. DOI: 10.1109/
TBDATA.2019.2921572.

[68] Leonard Kaufman and Peter Rousseeuw. Finding Groups in Data: An Introduction To

Cluster Analysis. Wiley, Jan. 1990. ISBN: 0-471-87876-6. DOI: 10.2307/2532178.

[69] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter

Forsyth, and Pascal Poupart. “Representation Learning for Dynamic Graphs: A Sur-

vey”. In: Journal of Machine Learning Research 21.70 (2020), pp. 1–73.

[70] Filip Ekström Kelvinius, Dimitar Georgiev, Artur Toshev, and Johannes Gasteiger.

“Accelerating Molecular Graph Neural Networks via Knowledge Distillation”. In: The

Second Learning on Graphs Conference. 2023.

[71] Mahdi Khodayar and Jianhui Wang. “Spatio-Temporal Graph Deep Neural Network

for Short-Term Wind Speed Forecasting”. In: IEEE Transactions on Sustainable En-

ergy 10.2 (2019), pp. 670–681. DOI: 10.1109/TSTE.2018.2844102.

[72] A. Krizhevsky and G. Hinton. “Learning multiple layers of features from tiny images”.

In: Master’s thesis, Department of Computer Science, University of Toronto (2009).

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger.

Vol. 25. Curran Associates, Inc., 2012.

[74] Norbert Krüger, Peter Janssen, Sinan Kalkan, Markus Lappe, Alevs. Leonardis, Justus

H. Piater, Antonio Jose Rodríguez-Sánchez, and Laurenz Wiskott. “Deep Hierarchies

in the Primate Visual Cortex: What Can We Learn for Computer Vision?” In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 35 (2013), pp. 1847–1871.

130

https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.2307/2532178
https://doi.org/10.1109/TSTE.2018.2844102


Bibliography

[75] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to

document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

DOI: 10.1109/5.726791.

[76] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to

document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

DOI: 10.1109/5.726791.

[77] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.

com/exdb/mnist/ (1998).

[78] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature

521.7553 (2015), pp. 436–444. DOI: 10.1038/nature14539.

[79] Levi Lelis and Jörg Sander. “Semi-supervised Density-Based Clustering”. In: 2009

Ninth IEEE International Conference on Data Mining. 2009, pp. 842–847. DOI: 10.
1109/ICDM.2009.143.

[80] Fengfu Li, Hong Qiao, and Bo Zhang. “Discriminatively boosted image clustering with

fully convolutional auto-encoders”. In: Pattern Recognition 83 (2018), pp. 161–173.

ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2018.05.
019.

[81] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. “DeepGCNs: Can

GCNs Go As Deep As CNNs?” In: 2019 IEEE/CVF International Conference on Com-

puter Vision (ICCV). 2019, pp. 9266–9275. DOI: 10.1109/ICCV.2019.00936.

[82] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing

the loss landscape of neural nets”. In: Proceedings of the 32nd International Con-

ference on Neural Information Processing Systems. NIPS’18. Curran Associates Inc.,

2018, pp. 6391–6401.

[83] Jiangyun Li, Zhenfeng Su, Jiahui Geng, and Yixin Yin. “Real-time Detection of Steel

Strip Surface Defects Based on Improved YOLO Detection Network”. In: IFAC Work-

shop on Mining, Mineral and Metal Processing 51.21 (2018), pp. 76–81. ISSN: 2405-

8963. DOI: https://doi.org/10.1016/j.ifacol.2018.09.412.

[84] Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Car-

olan, Jiao Sun, Jordi Pont-Tuset, Sarah Young, Feng Yang, Junjie Ke, Krishnamurthy

Dj Dvijotham, Katherine M. Collins, Yiwen Luo, Yang Li, Kai J Kohlhoff, Deepak

131

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICDM.2009.143
https://doi.org/10.1109/ICDM.2009.143
https://doi.org/https://doi.org/10.1016/j.patcog.2018.05.019
https://doi.org/https://doi.org/10.1016/j.patcog.2018.05.019
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.412


Bibliography

Ramachandran, and Vidhya Navalpakkam. “Rich Human Feedback for Text-to-Image

Generation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). June 2024, pp. 19401–19411.

[85] Maxwell W. Libbrecht and William Stafford Noble. “Machine learning applications in

genetics and genomics”. In: Nature Reviews Genetics 16.6 (2015), pp. 321–332. DOI:

10.1038/nrg3920.

[86] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. “Focal Loss

for Dense Object Detection”. In: 2017 IEEE International Conference on Computer

Vision (ICCV). 2017, pp. 2999–3007. DOI: 10.1109/ICCV.2017.324.

[87] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. “Focal

Loss for Dense Object Detection”. In: 2017 IEEE International Conference on Com-

puter Vision (ICCV) (2017), pp. 2999–3007.

[88] Grace W. Lindsay. “Attention in Psychology, Neuroscience, and Machine Learning”.

In: Frontiers in Computational Neuroscience 14 (2020). ISSN: 1662-5188. DOI: 10.
3389/fncom.2020.00029.

[89] Yajiao Liu, Jiang Wang, Haitao Yu, Fulong Li, Lifeng Yu, and Chunhui Zhang. “Sur-

face Defect Detection of Steel Products Based on Improved YOLOv5”. In: 2022 41st

Chinese Control Conference (CCC). IEEE. 2022, pp. 5794–5799.

[90] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for

semantic segmentation”. In: 2015 IEEE International Conference on Computer Vision

and Pattern Recognition (CVPR). June 2015, pp. 3431–3440. DOI: 10.1109/CVPR.
2015.7298965.

[91] Qiwu Luo, Xiaoxin Fang, Li Liu, Chunhua Yang, and Yichuang Sun. “Automated vi-

sual defect detection for flat steel surface: A survey”. In: IEEE Transactions on Instru-

mentation and Measurement 69.3 (2020), pp. 626–644.

[92] J. MacQueen. “Some methods for classification and analysis of multivariate obser-

vations”. In: Proceedings of the Berkeley Symposium on Mathematical Statistics and

Probability. 1967.

[93] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in

nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

DOI: 10.1007/BF02478259.

132

https://doi.org/10.1038/nrg3920
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.3389/fncom.2020.00029
https://doi.org/10.3389/fncom.2020.00029
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1007/BF02478259


Bibliography

[94] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. “UMAP: Uni-

form Manifold Approximation and Projection”. In: Journal of Open Source Software

3.29 (2018), p. 861. DOI: 10.21105/joss.00861.

[95] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational

Geometry. Cambridge, MA, USA: MIT Press, 1969.

[96] Tom M. Mitchell. The Need for Biases in Learning Generalizations. Tech. rep. New

Brunswick, NJ: Rutgers University, 1980.

[97] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,

and Michael Bronstein. “Geometric Deep Learning on Graphs and Manifolds Using

Mixture Model CNNs”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). July 2017, pp. 5425–5434. DOI: 10.1109/CVPR.2017.576.

[98] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya

Sutskever. Deep Double Descent: Where Bigger Models and More Data Hurt. 2019.

arXiv: 1912.02292.

[99] Nirbhar Neogi, Dusmanta K Mohanta, and Pranab K Dutta. “Review of vision-based

steel surface inspection systems”. In: EURASIP Journal on Image and Video Process-

ing 2014.1 (2014), pp. 1–19.

[100] M.-E. Nilsback and A. Zisserman. “A Visual Vocabulary for Flower Classification”. In:

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’06). Vol. 2. 2006, pp. 1447–1454. DOI: 10.1109/CVPR.2006.42.

[101] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning Deconvolution Net-

work for Semantic Segmentation”. In: 2015 IEEE International Conference on Com-

puter Vision (ICCV) (2015), pp. 1520–1528.

[102] Kenta Oono and Taiji Suzuki. “Optimization and Generalization Analysis of Trans-

duction through Gradient Boosting and Application to Multi-scale Graph Neural Net-

works”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle,

M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,

2020, pp. 18917–18930.

[103] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. “Deep

Learning for Anomaly Detection: A Review”. In: ACM Comput. Surv. 54.2 (Mar.

2021). ISSN: 0360-0300. DOI: 10.1145/3439950.

133

https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/CVPR.2017.576
https://arxiv.org/abs/1912.02292
https://doi.org/10.1109/CVPR.2006.42
https://doi.org/10.1145/3439950


Bibliography

[104] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. “Cats and

dogs”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (2012),

pp. 3498–3505.

[105] W. Pedrycz and J. Waletzky. “Fuzzy clustering with partial supervision”. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 27.5 (1997),

pp. 787–795. DOI: 10.1109/3477.623232.

[106] Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra.

“Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets”. In:

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021

abs/2201.02177 (2022).

[107] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. “Classifier chains

for multi-label classification”. In: Machine Learning 85.3 (2011), pp. 333–359. DOI:

10.1007/s10994-011-5256-5.

[108] Joseph Redmon. “Yolov3: An incremental improvement”. In: arXiv (2018).

[109] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look

once: Unified, real-time object detection”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 779–788.

[110] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6517–

6525. DOI: 10.1109/CVPR.2017.690.

[111] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 39.6 (2017), pp. 1137–1149. DOI: 10.
1109/TPAMI.2016.2577031.

[112] Pedro O. C. S. Ribeiro, Matheus M. dos Santos, Paulo L. J. Drews, Silvia S. C. Botelho,

Lucas M. Longaray, Giovanni G. Giacomo, and Marcelo R. Pias. “Underwater Place

Recognition in Unknown Environments with Triplet Based Acoustic Image Retrieval”.

In: 2018 17th IEEE International Conference on Machine Learning and Applications

(ICMLA). 2018, pp. 524–529. DOI: 10.1109/ICMLA.2018.00084.

[113] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. “DropEdge: Towards

Deep Graph Convolutional Networks on Node Classification”. In: International Con-

ference on Learning Representations. 2019.

134

https://doi.org/10.1109/3477.623232
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICMLA.2018.00084


Bibliography

[114] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-

works for Biomedical Image Segmentation”. In: Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab, Joachim

Hornegger, William M. Wells, and Alejandro F. Frangi. Springer International Pub-

lishing, 2015, pp. 234–241.

[115] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and

organization in the brain.” In: Psychological review 65 6 (1958), pp. 386–408.

[116] Cynthia Rudin. “Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead”. In: Nature Machine Intelligence 1.5

(2019), pp. 206–215. DOI: 10.1038/s42256-019-0048-x.

[117] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Gies-

selbach, Raoul Heese, Birgit Kirsch, Michal Walczak, Julius Pfrommer, Annika Pick,

Rajkumar Ramamurthy, Jochen Garcke, Christian Bauckhage, and Jannis Schuecker.

“Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowl-

edge into Learning Systems”. In: IEEE Transactions on Knowledge and Data Engi-

neering PP (May 2021), pp. 1–1. DOI: 10.1109/TKDE.2021.3079836.

[118] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified em-

bedding for face recognition and clustering”. In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2015, pp. 815–823. DOI: 10.1109/CVPR.2015.
7298682.

[119] Ozan Sener and Silvio Savarese. “Active learning for convolutional neural networks:

A core-set approach”. In: arXiv preprint arXiv:1708.00489 (2017).

[120] Burr Settles, Mark Craven, and Soumya Ray. “Multiple-Instance Active Learning”.

In: Advances in Neural Information Processing Systems. Ed. by J. Platt, D. Koller, Y.

Singer, and S. Roweis. Vol. 20. Curran Associates, Inc., 2007.

[121] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-

dergheynst. “The emerging field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irregular domains”. In: IEEE Sig-

nal Processing Magazine 30.3 (2013), pp. 83–98. DOI: 10.1109/MSP.2012.
2235192.

135

https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192


Bibliography

[122] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: International Conference on Learning Represen-

tations. 2015.

[123] Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. “Variational Adversarial Active

Learning”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)

(2019), pp. 5971–5980.

[124] Chunfeng Song, Feng Liu, Yongzhen Huang, Liang Wang, and Tieniu Tan. “Auto-

encoder Based Data Clustering”. In: Progress in Pattern Recognition, Image Analysis,

Computer Vision, and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 117–124. ISBN: 978-3-642-41822-8.

[125] Limei Song, Wenwei Lin, Yan-Gang Yang, Xinjun Zhu, Qinghua Guo, and Jiangtao

Xi. “Weak Micro-Scratch Detection Based on Deep Convolutional Neural Network”.

In: IEEE Access 7 (2019), pp. 27547–27554. DOI: 10.1109/ACCESS.2019.
2894863.

[126] Xiaohong Sun, Jinan Gu, Shixi Tang, and Jing Li. “Research Progress of Visual Inspec-

tion Technology of Steel Products—A Review”. In: Applied Sciences 8 (Nov. 2018),

p. 2195. DOI: 10.3390/app8112195.

[127] Richard Szeliski. Computer Vision : Algorithms and Applications. eng. 2nd ed.

2022. Texts in Computer Science. Springer International Publishing, 2022. ISBN:

9783030343729.

[128] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. “Learning deep represen-

tations for graph clustering”. In: Proceedings of the Twenty-Eighth AAAI Conference

on Artificial Intelligence. AAAI’14. Québec City, Québec, Canada: AAAI Press, 2014,

pp. 1293–1299.

[129] Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. “Learning and Aggregating Deep
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