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Abstract

Since the introduction of next generation sequencing (NGS) there has been

demand for sophisticated methods to classify proteins based on sequence

data. Protein sequences have traditionally been performed in the lab by bi-

ologists, however open source genetic datasets have grown exponentially since

the inception of NGS, and multiple sequence alignment can yield statistical

information about a group of proteins that may not be found in traditional

analyses. The motivation behind this thesis is to investigate different ap-

proaches to protein classification through machine learning processes.

Two main approaches for this task are to use the raw sequence data and

align them against other sequences, or to extract discrete high level features

from the protein sequences and compare the features. Multiple sequence

alignment of proteins within a known family has been a popular way to

extract statistical information about a protein family that would not oth-

erwise be observed to the human eye, and thus many algorithms focus on

this method of protein classification. A more generative process would be to

extract known biological features as a basis for classification.

Profile Hidden Markov Models are built from multiple alignment of raw

sequence data and Random Forests are used to discriminate between two sets

of proteins based on features such as functional amino acid groups properties

extracted from the raw sequences. HMM’s show that sequence alignment

approaches determine small differences between similar proteins well, and

Random Forest specializes in classifying proteins that do not share high se-

quence homology within the family as biological features are the basis for

classification.

The conclusions of this thesis is to recognize the high classification ac-

curacy of two relatively unused machine learning techniques in comparison

to older techniques such as Artificial Neural Networks and Support Vector

Machines. It is important to note that particular techniques are suited to

particular problems, and it is important to use the right technique.
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Introduction

Given the complexity and gigantic volume of biological data, the traditional

computer science techniques and algorithms fail to solve complex biological

problems of the real world. However, modern computational approaches such

as machine learning can address the limitations of the traditional techniques.

Machine learning is an adaptive process that enables computers to learn from

experience, learn by example, and learn by analogy and their capabilities are

essential tools to help us make sense of the biological data existing in expo-

nentially expanding open source databanks. Analyzing protein data is the

most comprehensive way to study an organism, and as such it is important

to be able to classify individual proteins in an organisms’ proteome. This

thesis aims to give an overview of how it is possible to use machine learning

techniques to classify proteins into known families by means of two different

approaches - performing pattern recognition on raw protein sequences (Hid-

den Markov Models), and extracting high dimensional meta-features from

protein data (Random Forest) to classify proteins.

Motivation

Machine learning has played a major role in establishing Bioinformatics as a

field in it’s own right over the last 30 years. A myriad of techniques ranging

from randomized decision trees to neural networks, support vector machines

and hidden Markov models have been applied successfully to solve problems

in novel gene finding, evolutionary analysis, drug and agricultural research

and protein classification. The motivation of this thesis is to show how suc-

cessful machine learning can be when applied to biological data, as well as

pointing out it’s limitations and what technique is appropriate for a certain

problem or dataset. The motivation behind this thesis was to learn how to

apply machine learning techniques to biological data, whilst gaining knowl-

edge of Bioinformatics and genetics. As such, the most important element
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of the work carried out in this thesis was to learn what machine learning

techniques work best for certain problems, rather than score different tech-

niques against each other for the sake of competition. The particular focus

is on protein classification - a discipline that guides many important aspects

of drug discovery, agricultural solutions and assessing the effects of protein

mutations on disease phenotypes. In the last 25 years, neural networks have

been a popular choice in Bioinformatics solutions because of their simple

implementation, protein classification is no different. The work in this the-

sis therefore focusses on two newer and less known techniques : randomized

decision trees and hidden Markov models. Recent research has shown these

two techniques, particularly hidden Markov models to achieve similar clas-

sification results, if not better than more traditional techniques and provide

a powerful statistical approach to protein classification that can solve prob-

lems that other techniques either can’t, or the implementation is not suited

to the problem to be a desirable solution. By using these two techniques

and comparing to others in the literature, the strengths and weaknesses of

randomized decision trees and hidden Markov models are explored.

Overview

There are several biological domains where machine learning techniques are

applied for knowledge extraction from data. The main areas of interest can be

split into six different domains: genomics, proteomics, micro-arrays, systems

biology, evolution and text mining. The greatest success stories have come

mainly from supervised learning techniques. Artificial Neural Networks have

been the leading and most popular technique to be used since the 70’s, where

Markov models were also used to a lesser degree. It was only from 2000

onwards that support vector machines found great popularity and saw the

usage of AN-N’s decrease by 21% since 2007.

In the late 90’s Markov models were transformed into profile hidden
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http://www.ncbi.nlm.nih.gov/guide/data-software/databases

Figure 1: Machine learning techniques used in bioinformatics and biology papers.
Artificial Neural Networks have been a popular choice for Bioinformatics solutions
as well as protein classification
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Markov models [18] [27]. Using statistical information of aligning multiple

sequences together, profile HMMs provide a unique classification and seg-

mentation solution that is tailored to the data provided during training. The

flexibility of such models became very popular and are used almost as much

as support vector machines. As well as SVM’s, another ensemble method us-

ing randomized decision trees called random forests [8], have gained a modest

amount of popularity since 2003. Often random forest methods, when com-

pared to other ensemble methods like SVM’s equal or achieve higher classi-

fication accuracy. This thesis will study protein classification using profile

Hidden Markov models and Random Forests.

Thesis layout

The thesis is set out as follows:

Chapter 1 - Background: A brief history of bioinformatics and biological

data is presented, as well as the problems faced when the sheer size and depth

of the data limits calls for sophisticated methods of analyzing the data. A

literature review of popular machine learning techniques is presented.

Chapter 2 - Randomized Decision Trees - An ensemble based machine

learning method that makes use of randomized decision trees is presented -

forming the implementation of the random forest algorithm. The background

and theory is explored, ending with an experiment to classify to very different

types of protein families - transmembrane and antifreeze proteins.

Chapter 3 - Hidden Markov Models - A stochastic probalabistic model

that utlizies statistical information from aligning multiples protein sequences

together. Hidden Markov models are formulated from Markov chains and a

unique implementation, profile Hidden Markov Models is explored to classify

transmembrane and antifreeze proteins

Chapter 4 - Discussion - The last chapter of this thesis is a final dis-

cussion about what has been learned in the undertaking of the work in this

14



thesis.
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Chapter 1

Background

In 1953 Watson and Crick first described the structure of DNA. 22 years later

in 1975 F.Sanger, A.Maxam and W.Gilbert took the next step and described

methods to sequence the DNA of organisms. Over the next 20 years their

methods were used to sequence entire genomes such as the fruit fly, yeast,

roundworm and the influenza virus, leading to a race to sequence the human

genome in it’s entirety. On 26th June, 2000, President of the United States

Bill Clinton and UK Prime Minister Tony Blair held a press conference to

announce the completion of the first sequenced human genome. 3 billion base

pairs of DNA collected over a decade, thanks to the efforts of the Human

Genome Project. It was a landmark of scientific achievement that changed

the face of biology and medicine. The efforts of the Sanger Institute, Celera,

the National Human Genome Genome Research Institute and other organi-

sations declared a tie, and the human genome was published. A new window

had been opened to gene hunting,gene therapy and drug discovery, but had

also provided a beacon for funding an effort to commercialize the sequenc-

ing of the human genome. This landmark ranked among the technological

achievements that put man in space.
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Landmarks in the Human Genome Project

1953 Watson-Crick publish DNA structure

1975 F.Sanger, A.Maxam and W.Gilbert develop methods for sequencing

DNA

1977 Bacteriophage ΦX − 174 sequenced: first complete genome se-

quenced

1980 US Supreme court rules genetically modified bacteria are patentable

1981 Human mitochondrial DNA sequenced: 16569 base pairs

1984 Epstein-Barr virus genome sequenced: 172,281 base pairs

1990 International Human Genome Project launched

1991 J. Craig Venter identifies sequences of DNA complementary to mes-

senger RNA

1992 Complete low resolution linkage map of the human genome

1992 Caenorhabditis sequencing project begins

1992 J. Craig Venter forms the Institute for Genome Research (TIGR)

1992 Wellcome Trust and UK Medical Research Council establish The

Sanger Center for large-scale genomic sequencing

1995 First complete sequence of bacterial genome, Haemophilus influen-

zae by TIGR

1996 High resolution map of human genome

1996 Completion of yeast genome, first eukaryotic genome sequence

1996 Celera claims to finish sequencing human genome by 2001, Well-

come Trust respond by increasing funding to the Sanger Center

1998 Caenorhabdtis elegans genome published

1998 Drosophila melanogaster genome published

1999 Human Genome project says it will sequence human genome with

2 years

1999 Sequence of first human chromosome published

2000 Joint announcement of complete sequence of human genome

Up until the genome sequencing methods were successfully implemented
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biology had been an observational science, relying mainly on the powers of

deduction and came with varying degrees of precision, but genome sequenc-

ing has provided biologists with discrete data to determine th structure of

an organism’s DNA both completely and entirely. As such the precision of

findings from genome sequenced data are staggeringly high. With data of

this quality, the scope of biology and molecular genetics is vast:

• Understanding organisms on a macroscopic and microscopic scale through

their DNA and amino acid sequences

• Inserting cell structure and function from DNA/protein sequences T

• Using data in an organism to deduce evolutionary relationships between

other organisms D

• Supporting applications to medicine,agriculture and technology

• Curating databases and web servers that store and allow access to

genes,proteins and nucleotide sequences found when new organisms are

sequenced

1.1 The role of computer science in bioinfor-

matics

Since the first human genome was published in June 2000, the last decade or

so has seen the sharp rise of a field that merges biology,genetics and computer

science: Bioinformatics. Bioinformatics is a discipline that has grown from

the methods described back in 1975, but it’s a discipline that would not be

possible without both the expertise of biologists and without the advances in

computer software and computer hardware. Bioinformatics can be thought

of as an area that tackles two main issues that arose from whole genome

sequencing.
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1.2 Data - size,complexity and structure

The human genome spans 3 billion base pairs of nucleotides which amounts

to roughly 3 Gb of data. Needless to say the data in genomes are huge,

in fact so huge that the equivalent amounts of data that comprise human

genomes are called huges . Storing such data, quality checking and ensuring

they can be accessed freely are truly mammoth tasks, yet there are many

bioinformatics organizations that dedicate their work to doing just this. As

of July 2013 only 189 non-bacterial genomes and 3762 bacterial have been

sequenced, where databanks that store these nucleotides such as Genbank

and The European Molecular Biology Laboratory (EMBL) databank [5],[47]

have already surpassed 1 × 1012 base pair sequences. Given that current

estimates of the amount of species there are on earth are at around 8.7 million

[30], to sequence all of them appears to be incomprehensible. Nevertheless the

bioinformatics community response has been rapid development of sequence

databanks that store high precision data, and grow exponentially year by

year.

Figure 1.1: The growth of Gen-
bank. Since the inception of the
National Center for Biotechnology
Information, over 100 billion base
pairs of DNA have been sequenced.
http://www.ncbi.nlm.nih.gov

Many databanks are curated and maintained by the open source commu-
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nity, and as most things open source they reach a high degree of convergence

and standards. Most databanks will generally include archives of structured

information such as the raw nucleotide sequence and meta-data like gene

locus location. Databanks also need to provide tools to access their data,

usually via websites or ftp servers. The data also go further than just stor-

ing nucleotide sequences - proteins, secondary/tertiary structures, expression

patterns and metabolic pathways all have their place in their dedicated data-

banks. Data curation across databanks maintain standards, beginning with

the way in which raw sequences are stored ; usually in the FASTA file format

(as well as other similar variations).

>gi |142864| gb|M10040 .1| BACDNAE B.subtilis dnaE gene encoding DNA primase

GTACGACGGAGTGTTATAAGATGGGAAATCGGATACCAGATGAAATTGTGGATCAGGTGCAAAAGTCGGC

AGATATCGTTGAAGTCATAGGTGATTATGTTCAATTAAAGAAGCAAGGCCGAAACTACTTTGGACTCTGT

CCTTTTCATGGAGAAAGCACACCTTCGTTTTCCGTATCGCCCGACAAACAGATTTTTCATTGCTTTGGCT

GCGGAGCGGGCGGCAATGTTTTCTCTTTTTTAAGGCAGATGGAAGGCTATTCTTTTGCCGAGTCGGTTTC

TCACCTTGCTGACAAATACCAAATTGATTTTCCAGATGATATAACAGTCCATTCCGGAGCCCGGCCAGAG

TCTTCTGGAGAACAAAAAATGGCTGAGGCACATGAGCTCCTGAAGAAATTTTACCATCATTTGTTAATAA

ATACAAAAGAAGGTCAAGAGGCACTGGATTATCTGCTTTCTAGGGGCTTTACGAAAGAGCTGATTAATGA

>gi |5524211| gb|AAD44166 .1| cytochrome b [Elephas maximus maximus]

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG

LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL

GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX

IENY

Figure 1.2: Above a fasta file using DNA nucleotides.Below a fasta file using
amino acid denotation. Fasta files are the basic file format for protein analysis,
where many high level features can be extracted such as secondary structure,
hydrophobicity and functional groups within the sequences.

The largest databank of nucleotide sequences, the International Nucleotide

Sequence Database Collection is curated by collaborative effort of EMBL Nu-

cleotide Sequence Database at the European Bioinformatics Institute (EBI),

Hinxton UK, Genbank at the US National Center for Biotechnology Infor-
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mation (NCBI), Maryland and The Center for Information Biology and

DNA Databank of Japan. Similar the largest archive of amino acid se-

quences is a merger of SWISS-PROT,The Protein Identification Resource

(PIR) and Translated EMBL -TrEMBL databases - forming the United Pro-

tein Database (UniProt). Some smaller databases may focus on certain or-

ganisms and become highly specialized. The 1000 Genomes Project [45] that

was created in April 2007 and provides by the most comprehensive catalogue

of human genetic variation, where up to October 2012 1092 human genomes

had been sequenced and open access is available to these data. The Gene

Expression Omnibus (GEO) [19] provides gene expression data, while special-

ized protein databases exist such the Transport Protein Database (TCDB)

[42] provides details information on transmembrane proteins and is used later

in this thesis.

All of these databases provide tools to access their data. Most databases

will use an ftp server on their website to access files in their database, where

some of the larger databases such as NCBI have developed retrieval systems

(ENTREZ ) that run on their website, or even mobile phone apps!

Another approach is to input data into the database and search for similar

sequences. The Basic Local Alignment Search Tool (BLAST ) [2] is one the

most widely used bioinformatics tools. It is an alignment tool that takes

DNA/amino acid sequences and aligns the sequences to similar sequences in

the database by picking out short chunks of the input sequence that match

other chunks of sequences in the database. Tools like ENTREZ and BLAST

allow researchers to answer the following questions:

• Search nucleotide sequences in a databank that are similar to a se-

quence of interest. Finding novel genes usually starts with sequencing

a cohorts genomes and sending potential novel sequences through a tool

like ENTREZ or BLAST that will either match up with sequences in

the databanks by some matching criteria, or if no matches are found

it may be that a novel sequence has been found. Such matching al-
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gorithms are discussed later, in which they vary from string-matching

criteria to statistical inference algorithms.

• Search protein sequences in the database that are similar to a protein

sequence of interest. Such matches may be made upon three dimensions

- primary,secondary an tertiary structure of the protein, all of which

have their own dedicated databases and algorithms to predict higher

dimensions from the raw 1-D data.

• If one has a protein sequence of unknown structure, search the database

to find proteins of similar structures and possibly classify the test pro-

tein into a known family of proteins. Some proteins are highly func-

tional in terms of their secondary or tertiary structure. If a drug com-

pany was looking for proteins with a certain type of binding site deter-

mined by their protein structure, they may code up the binding site,

and find proteins by searching the database on their mocked up protein

structure.

• The reverse of the last point is that given a protein structure, find any

sequences which relate to it in the databank. Some structures are highly

dependant on specific amino acids being present in there sequences.

This is rare however as protein structures that require certain amino

acids are scarcely found in nature.

The scientific community puts a great deal of trust in databanks for their

research and rely on the quality of not only sequencing precision, but of the

annotative meta data that come with them. Each databank goes through

peer review and have standard quality indices imposed on them to keep

any errors to a minimum. The most common indices used are by review-

ing the methodology that was used to create a dataset. Older databanks

may have used peptide sequencing to determine the amino acid sequence,

but as computing power increased and hardware used to sequence genome
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improved, the raw DNA was sequenced and translated into amino acid se-

quences. Annotations and meta data will include information on how the

data was retrieved, what organism the algorithm used to glean the infor-

mation from the raw data and the authors that annotated it. If curators

of data create their own meta data, they are mindful of being able to link

their data in other databases, or would otherwise link into other databases

the generate the relative meta data. Since the data available from genome

sequencing is so huge, variables inferred from these data cannot be carried

out by a specialist eye-balling the data, so many databanks generate their

inferred data entirely from computer programs which will have published

their methods before-hand, or used previously published methods in their

analysis. Secondary structure of proteins for example can be predicted by

PSIPRED [23] using raw amino acid sequence data, where it is understood

that the prediction holds a certain accuracy. As one can imagine with such

large datasets, annotation of nucleotide and amino acid sequences is a diffi-

cult task, which are almost entirely automated by computer programs, and

with a demand for both quantity and quality of the databanks, it is only

natural that bioinformatics has turned to more complicated methods than

simple queries against databases e.g. machine learning.

1.3 Analyzing the data

The vast amount of data made available from genome sequencing is a welcome

problem. Data of this magnitude can not be eye-balled by experts, and so it is

the role of computer science that allows us to extract useful information from

DNA/amino acid sequences. Many of the organizations that hold databanks

have developed their own tools to extract useful data from user input, and

will even use that information as criteria to search their own databases. Some

areas of sequence analysis are:

• Single Nucleotide Polymorphism analysis - analysing how mutated genes
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impact phenotypes

• Phylogenetic analysis - using DNA to determine evolutionary relation-

ships between organisms

• Protein structure analysis - use amino acid sequences to predict not

only higher dimensional structure, but to also determine the secondary

and tertiary structure against other proteins.

• Protein classification - classifying unknown proteins into existing fam-

ilies, or finding families that are similar in terms of both sequence and

structure

• Gene expression - determining how genes are expressed in a genome

and the effect they have on other genes.

Trying to understand how the genotype (genetic code) of a person affects

their phenotype (the observable features of an organism) is a non-trivial

problem. Gene mutations have to be expressed within the genome, usually

meaning mutations should occur in highly conserved regions of an organisms

genome passed down from the organism’s ancestors. Tools like MAPPFinder

[15], Meta Gene Profiler (MetaGP) [21] and SeqExpress [7] specialize in ana-

lyzing how genes interpret information in the organisms DNA and then how

that information is used to create a phenotypic output, usually via mRNA

or amino acid processing. Gene maps are built from the annotation data and

show how they interact with eachother.

The effects of gene mutations or Single Nucleotide Polymorphisms (SNP)

are extremely important, and fundamentally responsible for novel genetic

disease mechanisms. It is usual that mutations occurring in genes that are

found in highly conserved regions of DNA passed down by ancestors as these

regions of DNA code for vital processes that make up an organism. Programs

such as the Polymorphism Phenotyping tool, PolyPhen [1] and the Sorting

Intolerant From Tolerant program, SIFT [34] predicts whether amino acid
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http://www.genmapp.org/helpv2/GenMAPP.htm

Figure 1.3: Gene maps are convenient visualization tools for biologists and ge-
neticists. They an be created in a variety of ways include ma- chine learning
methods such as support vector machines and neural net- works. Training data
will typically include gene labels and phenotypes associated with them, and then
supervised (class prediction) or unsu- pervised (class discovery) can be carried out
on new genes.

substitutions effect protein function. The general idea is that mutations are

scored based on the position they occur at in a protein, as well as the type

of amino acid substitution. The mutated sequence is then queried against

similar proteins and uses the amino acids found in nature at the same po-

sition of the mutation to determine if the particular amino acid mutation is

tolerated.

Algorithms such as SIFT and PolyPhen-2 rely on the amount of homolo-

gous sequences in the database to compare submitted amino acid sequences

to. This is because if sequences in the database exist that are closely re-

lated to the test sequence then the algorithm will have a higher confidence
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Figure 1.4: A generic PolyPhen pipeline process for determining the effects of
amino acid substitutions in proteins. SNPs are inputted into the pipeline where
prediction layers include variables such as secondary structure of sim- ilar amino
acid sequences, known binding sites, molecular weight are determined to make a
prediction on how the SNP alters the function of the protein. Source - http:

//nar.oxfordjournals.org/content/30/17/3894/F1.expansion

in the prediction. It also means that if there are many sequences that are

similar, the test sequence would be part of a highly conserved amino acid

sequence and therefore be more likely to predict functional change to the

protein. This may lead to high rates of false positives, where SIFT and

PolyPhen-2 will provide a measure for expecting false positives in the anal-

ysis by calculating the diversity of multiple sequences alignments when the

test sequence is aligned to sequences in the database. A derived variable, the

median consveration value is calculated from the diversity in the alignment.

Predictions with a higher conservation value are more likely to yield false

positives in the prediction result. Accordingly, thresholds for this measure

can be imposed when deciding to trust the prediction. Classifying structural

and functional features about proteins is a long standing tradition in biol-

ogy, a tradition which has been kept and propelled forward in bioinformatics.
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Figure 1.5: The SIFT format for tolerance predictions of amino acid substi-
tutions. Substitutions with a score of less than 0.05 are predicted to affect protein
function. Above is the result of a protein entered into the SIFT web application
found at http://sift.bii.a-star.edu.sg/SIFT.html
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The ultimate aim of bioinformatics in protein classification is to build on the

manual classification by experts, using the experience that has been gained in

terms of methodology and extend the scope of analysis via machine learning

techniques to assist the experts. Structural classification of proteins derive

primary, secondary and tertiary structures based on molecules that are built

from the amino acid sequences. Primary structure classifications determine

familial relationships between proteins by searching for similar homologues

through various algorithms. One of the most widely used primary structure

databases, Protein Families database (PFAM) [4] stores protein families and

superfamilies. All of families are derived by using seed sequences of amino

acids which are suspected to belong to the same family through sequence ho-

mology, and Hidden Markov Models build upon the prominent features found

from the sequence alignments to further the classification process. The prop-

erties of HMM’s make them useful not just for classifying protein families,

but searching against them and learning what features determine what puts

proteins into families other than sequence homology, and as such a whole

chapter of this thesis id dedicated to using HMM’s for protein classifica-

tion. Secondary structure classification aims to predict the three-dimensional

structure of local segments of amino acids. Many bioinformatics tools use

only the raw amino acid sequences to predict where helixes, coils and turns

occur in the corresponding protein. Before the data explosion of bioinformat-

ics, secondary structure was predicted by experts using chemical properties

and statistics of single sequences [11], but as multiple sequences per family

have been made available, more sophisticated tools have been developed that

automate the methodology. Prediction methods described in [31] and imple-

mented by the PSIPRED protein structure prediction server [23] use neural

networks and multiple sequence alignments to predict secondary structure.
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Figure 1.6: An outline of the PSIPRED method. The Position-Specific Itera-
tive BLAST tool is used to create a non-redundant multiple sequence alignment
database of 340,000 proteins. A scoring matrix of log-likelihoods for amino acids
substitutions is defined from the multiple sequence alignment and used as input
to the neural network

Tools such as PSIPRED allows users to submit primary amino acid se-

quence data and determine the secondary structure, classified into helixes,coils,

turns and other features. In this thesis PSIPRED is used to determine sec-

ondary structure of transmembrane proteins, to be used as training features

in random forest for primary protein classification. http://bioinf.cs.ucl.

ac.uk/psipred/
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1.4 Protein classification and machine learn-

ing

The scope of challenges and problems in bioinformatics are vast, and an

overwhelming majority of the tools produced to answer them are built upon

machine learning methods. Machine learning came directly from statisti-

cal model fitting, aiming to mine useful information from a wealth of data,

and implementing them was a natural progression to fit the data explosion

of genome sequencing. Not only are machine learning techniques a perfect

choice to analyze large amounts of data, they can be used to build models

that learn by observed examples and once trained, new data can be fed into

the model and new predictions can be made. The aim is to build classifiers

that describe complex, and often unknown relationships formed by millions of

years of evolutionary changes in organisms. There are not enough biologists

in the world that could churn out findings that keep up with the amount of

data becoming available, so machine learning techniques provide a hypothe-

sis into possible features of DNA/proteomic data that can be used to guide

further experiments, either refuting or proving the hypothesis. Even if there

were enough biologists in the world to keep up with the data, machine learn-

ing may still have one advantage over the experts, and that is being able to

extract relationships that would not have been thought of by the experts -

they can be purely data-driven as well as being used as an extension of the

deductive powers of biologists. Typically, bioinformatics machine learning

techniques can be split into three categories:

• Supervised Learning - the classifier has been given prior knowledge of

the data, for example class labels.

• Semi-supervised Learning - only a small amount of information has

been given to the classifier prior to learning

• Unsupervised Learning - no information has been given to the classifier
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prior to learning

This thesis uses two examples of supervised learning so an overview of

supervised learning follows.

1.5 Supervised learning

Supervised classification makes use of training data that has been divided

into classes, labelled by perhaps protein family name. It is important in su-

pervised learning that the labelled dataset is accurate. Features are provided

along with the labels - these may be statistics about the class, or in the case

of proteins they may be the sequences themselves. The point is that the

features are usually chosen in advance such that the classifier will gain as

much information as possible from the training data. Define a class label as

C ∈ {0, 1} and a feature vector as X ∈ R where features in X is used to C.

This classifier is expected to accurately sort data into classes based on any

set of real feature vectors and generalize away from the training data so that

unseen data may be classified into the class labels given in the training data.

To produce reliable classification, the following steps should be taken:

• Select appropriate training data. This usually means use features that

can be found in real life data, or some statistics about the data such

as frequency of certain amino acids. Derived data such as secondary

protein structure may also be used. The class labels also need to be

accurate and the account for enough diversity within that class to avoid

bias towards certain features.

• Select an appropriate learning algorithm. If the training data consists

entirely of derived features or statistics of raw data, it might be appro-

priate to use algorithms that use decision based learning such as neural

networks of decision trees. We will see later that alignments of raw

amino acid sequences are best suited to hidden Markov models.
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• Ensure that the predictions can be evaluated by use of a test dataset.

Test datasets are useful to determine the accuracy of the classifier when

adding new parameters to the training data.

Choosing which algorithm to use is a particularly interesting are of re-

search. It is certain that one algorithm will not be the best classifier in all

different types of training data. Algorithms of similar architecture are often

compared, but ultimately the algorithm should be chosen to suit the data.

1.6 Popular supervised learning techniques

A variety of different techniques have been used in bioinformatics, and partic-

ularly in protein classification. They include Markov models, support vector

machine, neural networks and decision trees.

Artificial Neural Networks: is a technique proposed by Widrow et

al [40] in the 1950’s, inspired by the central nervous system of animals. The

proposed model was to mirror neurons being a basic information processing

unit that feed into a central processing system. Each “neuron” measures

certain properties, fire based on incoming information and send an output to

the central processing unit. The state of the neuron and output can be rep-

resented mathematically, and as such each neuron is weighted, determining

the effect of the incoming information. Neurons may be weighted positively

(excitatory) or negatively (inhibitory) and the overall activation value for

unit i at time t is given by

ηi(t) =
∑
j

ωijxj + βi (1.1)

where wj is the connection strength from unit i to j. The value unit bias

is given by i and xj is the output value of unit j. The neural network is

set up such that the output of any unit directly effects that of another unit

by either strengthening or weakening it’s signal. The output of the neural
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network is determined by the connections of a unit and represented by a

non-linear function

γi(t) =
1

1 + e
−ηi(t)
T

(1.2)

Wu et al [50] demonstrated an artificial neural network system, Protein Clas-

sification Artificial Neural System (ProCANS) in 1992 to classify 4 protein

functional groups found in the Protein Information Resource (PIR). The ar-

chitecture of the N-N consisted of a three layer feed-forward network; an

input an output units, as well as a hidden layer to store a neural database

of sequence meta-features, where a back propagation learning technique to

adjust unit weighting and a feed-forward algorithm calculates the output of

each unit. This produces a neural database for each protein superfamily that

can be quereyed, albeit more effectively than a simple raw sequence database

query and exploits the meta-features stored in the networks’ hidden layer.

Using 1656 training proteins and 492 test proteins, electron transfer proteins,

tranferases, hydrolases, and lyases were classified to 90% accuracy. The ease

of use, high accuracy and short computation time made N-N’s popular for

protein classification and has been used extensively with good success, in

particular the classification of membrane and non-membrane proteins by [35]

Pasquier et al and achieving classification accuracy of 97% by using only 11

proteins to train their neural network. This experiment provided a basis for

training material in this thesis, where transmembrane proteins are classified

between non-transmembrane proteins and sub-families within the superfam-

ily.
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Support Vector Machines introduced by Vapnik et al [12] is a super-

vised learning technique that takes data in some input space and constructs

hyperplanes to split up the input space into classes. Define training points

in input space as

D =
{

(xi, yi)|xi ∈ RP , yi ∈ {−1, 1}
}

(1.3)

where yi indicates which class training point xi belongs to. The SVM al-

gorithm is designed to construct a hyper-plane that splits training points

belonging to y = 1 from those belonging to y = −1. Such a hyper-plane can

be computed as a hyper-plane which satisfies the equation

wx+ β = 0 (1.4)

where w is the normal vector to the hyper-plane and β is the intercept.

There may be more hyper-planes if there can be more linear separations

made on the data. The solution above assumes linear separation of the data,

however if linear separation is not possible via a linear hyper plane, the

solution may be obtained by forcing the hyper-plane to be non-linear via

some transformation. The main idea behind SVM’s is therefore to split a

set of data into smaller sets by finding the largest distance between the data

when plotted in kernel space.

Complex data sets can be split up in this way by means of a kernel trick to

produce a non-linear classifier, merely by embedding the data into a different

kernel space. The parameters in SVMs are few, and revolve around choosing

which kernel to use e.g. a radial basis kernel, and yet despite such simple pa-

rameters and seemingly simple mathematical formulation SVM’s produce an

elegant solution to data mining for both classification and regression. Unlike

artificial neural networks and other generative machine learning techniques,

SVM’s do not require to build a model for each class of data one are inter-

ested in, but allows a general classification process split across negative and
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Figure 1.7: non-linear (left) and linear (right) support vector machine solutions.
Non-linear solutions solve problems where the data is not linearly separable, in
which a kernel trick is used that maps the data into a different space through an
inner product, where linear separation is possible. Source http://en.wikipedia.

org/wiki/File:KernelMachine.png

positive training data sets and a choice of high level feature vectors to be

used as classification criteria over any training set. This flexibility yields a

simple algorithm that allows the user to choose their own high level features

to classify their data, rather than having an algorithm determine features in a

black box approach. It means that the classification results can be described

in terms of the high level features, rather than meta-features.

Many specific problems are solved by producing bespoke kernels, and

protein classification is no exception. Leslie et al [29] developed the Spectrum

Kernel used for discriminating between positive and negative training sets.

High level vector features, such as hydrophobicity are embedded into co-

ordinates in vector space in which the Spectrum Kernel produces a linear

decision boundary in this vector space. The kernel is a string kernel in input

space X of alphabet A where subsequences a of length k are observed in

training and test sets. The feature map for the spectrum kernel is defined as

Φk(x) = (φa(x))a∈Ak (1.5)

where φa(x) is the amount of times a occurs in sequence x. The Spectrum
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Kernel can then be defined as

Kk(x, y) = 〈Φk(x),Φk(y)〉 (1.6)

Subsequences of length k are collected by moving a sliding window across

each of x and y. k = 3 was found to be the optimal subsequence length

for training the spectrum kernel, where the authors report similar accuracy

to psi-BLAST and the SAM-T98 HMM framework over 36 protein families

from the SCOP database.

Naive Bayes Classifier is a simple probabilistic classifier based on

Bayes Theorem. It assumes that the presence/absence of a feature in the data

is independent of any other features. For example one might imagine two

protein families containing a certain amino acid, but found more frequently in

one family than the other. The probability model for a Naive Bayes classifier

is given by

P (C|F1, F2, ..., Fn) (1.7)

That is given the value of a feature Fi, what is the likelihood of belong-

ing to class Ci? The training data fed into a naive Bayes classifier holds

prior information of which feature values belong to each class. For example,

imagine protein families A and B, where the amount of times amino acid C is

observed in family A is 10/100, and 50/100 in family B. Clearly a new unclas-

sified protein that contains amino acid C is more likely to belong to family

B based on the prior knowledge of the training data, and the probability of

belonging to a certain class is calculated as

P (C|F1, F2) =
P (C)P (F1, F2|C)

P (F1, F2|C)
(1.8)

which translates as

probability =
prior ∗ likelihood
observation

(1.9)
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Naive Bayes is a relatively simple generative classifier, but has been found

to outperform other machine learning techniques. It’s major advantage is

that it doesn’t require a lot of training data to learn the parameters for

classification. Although Naive Bayes classifiers are not as widely used as

N-N’s and SVM’s, there have been some successes in the literature, where

Feng et al [20] use NB to classify phage virion proteins up to 79.5% accuracy,

outperforming random forests

This thesis aims to demonstrate primary protein classification by imple-

menting two other machine learning techniques - random forests and hidden

Markov models. Their approach was to make a Naive Bayes prediction on

each single feature vector expansion, where the feature with the highest ac-

curacy is kept and a separate feature is added to it, and the highest accuracy

of this feature subset is kept, and the process is iterated until all features

have been added.
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1.7 Summary

Machine learning has offered tools that can harness the knowledge of biol-

ogy and make protein classification, as well as other bioinformatics problems

solved accurately, quickly and effectively. For protein classification, many

algorithms have a strong focus on learning the difference between classes and

discriminating further test proteins from each other from using this learned

knowledge. SVM’s, Neural Networks and Decision Trees are all great exam-

ples of these and have been popular before next generation sequencing. This

is mainly because such algorithms are designed to be flexible in terms of data

input and can use meta data extracted from the sequences and tailored to

the type of experiment to be carried out, however the black box approach

to some of these algorithms may cause apprehension to researchers that do

not understand the method being used. Other than discriminative processes,

other more bespoke algorithms have also been designed, in particular align-

ment based algorithms that use raw sequence data and align proteins based

on sequence position to obtain a direct comparison of proteins. The BLAST

alignment search tool does this by comparing substrings of two sequences

and scores them based on matches and indels (deletions or insertions) in any

of the sequences. Later, a profile Hidden Markov Model is presented which

makes use of multiple sequence alignments to learn amino acid emissions and

transitions in certain protein families and scoring a test protein against the

model is done by aligning the protein to the model and traversing through

each position in the protein, noting how its own emissions and transitions

compare to that of the family in question. Overall, machine learning offers

something more than just an accurate classification tool, it offers classifica-

tion that would not be possible by analyzing with the human eye, at least not

on the scale needed. It is also important to understand, as this thesis aims

to point out, that although one particular machine learning algorithm works

well over lots of different applications and data sets, there may be another

machine learning technique better suited to a certain problem.

38



Chapter 2

Protein classification using

randomized decision trees

A decision tree is a directed graph comprised of levels (questions) where by

with each question asked, multiple routes can be taken, of which one will be

chosen depending on the answer. Each question asked (test) is represented by

a node, and depending on the parameters of the test, the data sent through

the node will be split and sent to further test nodes. Special nodes called

a leaf nodes store the final answers to each test, and no further splits occur

when the data has reached the respective leaf nodes. There is also a root node

at the start of a tree, and is the only node where the entire data sample goes

through. Collectively a tree is a collection of nodes, edges between nodes,

leaf nodes and a root node.

Random Forest is an ensemble machine learning technique which builds

decision trees at training time to output classes within the training set based

on splitting the data at each node by a threshold. For each tree in the forest,

the tree is trained and tested using bootstrapped samples (with replacement)

of the dataset where the test data is referred to as “Out of Bag” data that

is used estimate an OOB error. This OOB error tests the accuracy of the

trees and the estimate is proven to be as accurate as using a test set which
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is of equal size to the training set [9]. The classification accuracy the forest

of tree is determined by summing the classification of each individual tree.

A tree in the Random Forest is trained on a bootstrapped training subset

by replacement from the original training data. Training data not used to

train a tree is referred to as “Out-Of-Bag” (OOB) samples. Every tree in the

random forest is both trained and tested independently from all other trees,

allowing for training and testing to be carried out in parallel.

The Random Forest algorithm may be used for both regression and clas-

sification, and since this thesis describes methods that classify proteins into

families via a machine learning approach, the latter will be discussed in de-

tail. The aim of classification is to sort input data , v into discrete classes

c ∈ {ck}. The random forest is trained on some data, and with good gener-

alization unseen data can be classified based on the initial training.

2.1 Randomized decision tree theory

Define data v = x1, x2, ..., xd where v is a dataset, such as proteins, and it’s

components xd are some features about the dataset e.g. molecular weight

or percentage of a certain amino acid. For a forest of decision trees, it is

not necessary to load all features xd per tree, in fact it is advantageous to

randomly select and permute a sub-selection of features to be used in each

tree to generalize the data.

The aim of training a decision tree is to optimize the parameters of nodes

in the tree that contain each test or filter, which will in turn optimize the leaf

nodes and generate accurate prediction. Denote training subsets (starting at

the root node level 0) of training nodes by their node splits S1, S2, ..., Sn in

breadth-first order, where SL1 , S
R
1 are the child subsets splitting left and right

from a parent node. The subset of any split node Sj in a tree may be defined
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as

Sj = SLj ∪ SRj , SLj ∩ SLj = ∅, SLj = S2j+2, S
R
j = S2j+2 (2.1)

A function φ(v) selects random subsets of features from xd to be used in each

tree, where each split node Sj contains a test that evaluates feature xi. To

optimize the parameters, it is necessary to gain as much information about

the sampled training data S(v) as possible at each split node.

At each node split we want to maximize the amount of information gain,

and to do this the data must be split such that the entropy of the data

decreases. Entropy is a measure of disorder in a system, where lower entropy

equals more disorder in the system. The information gain at each split node

can be computed as

I = H(S)−
∑
i∈1,2

|Si|
|S|

H(Si) (2.2)

where H(S) is the Shannon entropy and defined as

H(S) = −
∑
c∈C

log(p(c)) (2.3)

Where p is the probability of a character c appearing from a set of characters

C. One can measure the amount of information gained directly by measuring

the Shannon entropy, where the lower the entropy after subsequent splitting

of the data, the more information gained.

The random forest is comprised of multiple trained decision trees, where

each tree is trained independently with random sampling of training data

without replacement. Each trained decision tree can be considered a “weak

learner” that gains information from a bootstrapped sample of the training

data v. Each leaf node in each tree are distinct predictors determined by the

test at each node leading to the leaf node, and therefore store information

that are used to classify test data. It is also important for the optimization of
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the forest that the sample data fed into each tree, and therefore the predictors

at the leaf nodes are determined randomly.

Since each split node j is a boolean test, each node split can be define as

a binary function

h(v, θj) ∈ {0, 1} (2.4)

with 0 and 1 being the results of the boolean test. The data is then split into

left and right child nodes based on where they exist in the binary set with

the jth feature having a probability of pnj ∈ (0, 1) of being selected. During

training, data is split according to some threshold of the parameters held at

node j to maximize the information gain Ij. Leaf nodes store the predictor

data for a certain class, containing information such as which classes within

the data are stored in the leaf node and the feature parameters that was used

at nodes along its path through the tree. During testing the data is split at

each node j according to some weak learner h(v, j), defined as where ψ is a

filter function that selects features from the entire dataset v, φ primitively

separates the data at each node e.g. linear regression of the data, and τ

stores the thresholds used in each binary test. A good weak learner will have

optimized parameters, and optimal training parameters θ∗j ,at the jth split

node, must be computed by determining which training parameters split the

data ad provide the most information possible at that node. To do this, the

information gain is maximized as

θ∗j = max θjIj (2.5)

Ij = I(Sj, S
L
j , S

R
j , θj) (2.6)

Sj is the node before the split, and SLj and SRj are the child nodes after the

split. Along with randomized sampling of the data, a random forest can be

implemented by random optimization of the weak learner parameters.
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There is also the question of how many split nodes are needed to gain

adequate information, and when to stop tree growth to avoid over-fitting

- which is referred to as tree pruning. Two common approaches that are

common is to either limit the length of each tree by a maximum amount of

levels,D, or to impose maximum information gain for each tree.

Generalization of the forest ensures higher accuracy of classifation over

the entire dataset v. There little use in optimizing classification based on only

a few features of the dataset, or even the strongest features as inevitably some

test data fed into the forest will not exhibit certain features, or introduce

noise into the forest which must be dealt with. Randomizing the way in

which individual decision trees in the forest are trained ensures generalization

by providing many permutations of predictions trees that are combined to

provide an overview of the features that are important when splitting classes

from a large superset of samples. In short, randomness is imposed in two

ways: by randomizing the samples of v chosen to train the trees, and to

randomize the way in which the weak learners θ are optimized, where both

can be used at the same time. Randomizing the data sampling is trivial, so

we will focus on randomized weak learner optimization.

If v is that entire dataset, and Π are all the parameters to be used for

training, for the jth node a subset of Πj ⊂ Π are made available for each

node to choose from. The randomness is introduced by controlling |ΠjΠ and

the node is optimized by

θ∗j = arg max
θj∈Πj

Ij (2.7)

where the optimal parameters θ∗j for a given subset of parameters are those

that maximize the information gain. The information gain will be at a maxi-

mum when the Shannon entropy is at its lowest. By optimizing the parameter

choice at each node, the information passed to the leaf node serves as the

best predictor possible given the parameters chosen in Π. When each tree is

trained independently of each other, we have an ensemble of trees that all
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carry their own predictions (leaf nodes) and these must be tested to deter-

mine which tree gives the best result for test data v.

A forest of containing weak learning trees t ∈ {1, ..., T} each have pre-

dictor leaf nodes pt(c|v) and we are interested in combining the result of all

predictors as a means of testing the forest. Testing involves v going through

each tree, in parallel to increase efficiency, and combining the predictors by

say an average over all predictors

p(c|v) =
1

T

T∑
t=1

pt(c|v) (2.8)

where classification given test data v is achieved by averaging each predictor

pt and normalizing over the number of trees T . The nature of the training

process will produce trees that have gained more information (or decreased

entropy) than others. The distribution of results from averaging over all

trees will be representative of those trees that have gained more information

than others, therefore the results are influenced by those trees that are the

strongest weak learners.

Figure 2.1: All test data moving through each tree reaches a leaf node based on
the optimization of the parameters held at each node. The result of the leaf node
is a weak learner in which the average of all trees are taken as the classification
prediction [13]
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The other advantage of doing this is to account for “noisy” trees, that

may otherwise effect the result if selection was based solely on strongest

weak learners. This is not the only ensemble method however,there are other

ensemble methods that can be used such as user input to “hard” select certain

trees.

2.2 Feature importance in random forest

The amount of data biologists are faced with, often with no prior knowl-

edge of how to classify a protein or gene has lead to the need of machine

learning techniques that not only classify data, but quantify how the data

was classified for feature selection techniques [41]. Random Forest does both

data classifation via feature extraction and determining which features best

classified the data i.e. random forest performs feature selection in parallel to

building classification rules. This is useful to biologists as more often than

not, it is more important to know why a protein belongs to a certain fam-

ily, or why a gene expresses a certain phenotype that to actually know why

gene expresses that phenotype, or which family that protein belongs to. The

measure used in this work to determine which features best split the data

is the Gini index. The Gini index is essentially measured by calculation the

level of impurity of the data at each node split found within the child nodes.

At each node j, the impurity, or “Gini impurity” G(j) is defined as:

G(j) = 1− p2
1 − p2

2 (2.9)

where pk = nk/n is the fraction of nk samples from class k = 0, 1 from n

samples at the node j. The change in the Gini impurity as the data is split

into two child nodes is

δG(j) = G(j)− pLG(jL)− pRG(jR) (2.10)
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where pL and pR are the respective sample fractions held in the child nodes.

At each node, an exhaustive search over features and thresholds yields a pair

Φ, τ that represents the maximum value of G(j) that decreases with each

node split, and for each node j in each tree T the Gini importance is the sum

of all pairs yielding maximum G(j)

IG(Φ) =
∑
T

∑
j

δG(j)Φ(j, T ) (2.11)

IG(Φ) is a measure of how often feature Φ was used to split a node. If the Gini

index decreases at each node, then clearly the larger the Gini importance for

Φ, the more important that feature is in classifying the data.

At least for the findings in this work, feature importance is perhaps more

interesting than simply comparing different algorithms to see which classifies

best. That is just the first step, and the second is to ask why they belong

to that family. It has to be remembered however that any classification and

feature extraction of random forests are only relative to the training sets

used - if one suspects a protein belongs to a family then the positive dataset

is not so much of a problem, but the negative dataset is critical as one are

discriminating against it. One would want to be in a position to say that

the proteins are classified by features that are distinctly different from those

in the negative training set, and so negative training sets should be large

and randomly selected to represent background frequencies of any functional

groups.

2.3 Summary of algorithm and parameters

The random forest algorithm contains multiple parameters that directly ef-

fect the ability to accurately carry out regression/classification by using an

ensemble of decision trees, those being:

Parameter 1: Test/training data ,v, to be fed into the tree
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Parameter 2: Forest size T

Parameter 3: Individual tree depth D

Parameter 4: The randomness parameter Π that controls the parameters

that optimize each split node in a tree

Parameter 5: The data selection criteria ,θ, that determines how each weak

learner is built

Decisions on how to set up these parameters will of course depend on the

trade offs between accuracy and efficiency. Some of the literature on random

forests show that accuracy increases with forest size [14],[43],[51], and some

work points out that as the depth of a tree increases, over-fitting reduces

the power of weak learners. Although using large amounts of training data

may slow computation time, large training data can help inhibit problems

such as over-fitting [44]. Breiman’s random forest algorithm has shown the

importance of introducing and optimizing randomness in the ensemble when

acheiveing correlation and generalization of the predictors. The randomness

parameter, Π, will be discussed later to show the effect of randomness on

tree correlation. In general the algorithm is quick, with complexity O(nm)

where m is the tree depth and n are the amount of trees in the ensemble.

2.4 Protein classification using random forest

Random Forest as a classifier have shown accurate results in protein clas-

sification in the literature, although not nearly as widely used as popular

techniques such as Support Vector Machines (SVMs) and Artificial Neural

Networks (N-Ns). Most work using RF’s has been done in protein-protein in-

teraction and binding site studies, where proteins that bind together produce

a functional output. RF used in this way look at the functional similarities

of the binding proteins by looking at the tree intersections produced from
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functional features [10] [38]. However, as biological data grows there is a need

to implement such techniques to learn what proteins belong to certain fami-

lies and the reasons for doing so. Kandaswamy et al. [24] demonstrated RF

to be a successful classifier for antifreeze proteins when using non-antifreeze

proteins as a negative test set, achieving 84% accuracy, which was better

than other methods used such as HMMs, SVM’s and N-N’s in their study.

Clearly RF can be used and should be explored for other protein families to

be established as a tool for future classification when new proteins are found.

Another useful feature from the RF algorithm that has been explored in the

literature is feature importance using measures such as Gini importance and

permutative importance. Feature importance is an integral part of protein-

protein interaction studies as it explains the relationships between protein

bonds, and as this experiment shows, the Gini importance picks out features

known in the literature to be essential features as part of transmembrane

and antifreeze proteins that are used to split the proteins best over a range

of other features.

This experiment uses the RF algorithm to classify two different types of

protein families: ion channel transmembrane proteins from non transmem-

brane proteins and antifreeze from antifreeze-like proteins. Transmembrane

proteins exist within the membranes of cells that transmembrane molecules

and ions across the membrane to inside the cell. They are generally tightly

packed with polar side groups on the outside to enhance their solubility in

water, with non polar side groups folded to the inside to keep water from get-

ting in and unfolding them. Transmembrane proteins show high structural

homology across the family. In contrast, antifreeze proteins do not show high

structural homology, specifically the type III antifreeze family. The type II

clan consists of two sub groups - one being antifreeze and similar proteins

such as flagellar and pilus proteins that provide a similar functional role, and

the second being homologous proteins in terms of function, which for ease of

use will be referred to as antifreeze and antifreeze-like proteins respectively.
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Protein features

Feature set No. of features

Frequency of Amino acids 20
Frequency of functional groups 17
Physiochemical properties 6
Helix,strand and coil regions 60
Total 93

This particular family of antifreeze proteins have been chosen in contrast to

the transmembrane proteins where structure is rigid and recognizable - an-

tifreeze proteins do not have such well defined structure because they have

convergantly evolved from various different types of organisms [32] and as

such the high variance in structure of the each families’ subtype constituents

will be a good test for classification.

The transmembrane training set consisted of 337 ion transmembrane pro-

teins and non-transmembrane proteins. Ion transmembrane proteins (posi-

tive dataset) were obtained from the PFAM database (PF00520) [46], while

the non-transmembrane proteins were obtained from a random selection of

non-transmembrane proteins in PFAM. The final dataset consisted of 297

transmembrane proteins (positive dataset) and 297 non-transmembrane pro-

teins (negative dataset), in which 40 of each dataset were randomly as a

test dataset, and the remaining 594 proteins used in the training dataset. A

training set of 100 antifreeze proteins and 100 antifreeze-like proteins where

taken from the PFAM database (CL0489), and a test set of 26 antifreeze

proteins and 26 antifreeze-like proteins were used to validate the model. The

feature vectors used were as follows

Frequency of amino acids: Frequencies of the 20 naturally occurring

amino acids. Frequency of functional groups: 20 amino acids were catego-

rized into 17 functional groups based on the presence of side chain chemical

groups such as phenyl (F/W/Y), carboxyl (D/E), imidazole (H), primary

amine (K), guanidino (R), thiol (C), sulfur (M), amido (Q/N), hydroxyl
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(S/T) and non-polar (A/G/I/L/V/P) [37] The frequency of 17 functional

groups (number of occurrences of functional group “X” divided by length

of the protein) was computed for each sequence. Physiochemical properties:

Physiochemical properties derived from AAINDEX database is used to com-

pute the following properties: isoelectric point, aromaticity, grand average

of hydropathicity index (GRAVY), secondary structure fraction, molecular

weight and instability index [25]. For each sequence, physico-chemical prop-

erty value was calculated as the sum of physico-chemical property value for

all residues of the sequence, divided by the length of the sequence. These fea-

tures were extracted using the biopython ProtParam module. Helix,strand

and coil regions: SSE (helix: H, beta sheet: E and coil: C) information was

assigned to all the sequences in the alignment using a secondary structure

prediction program, PSIPRED [23]. The frequency of the 20 amino acids

residing on helix(H), beta sheet(E) and coil (C) were calculated. With the

test set of 40 a-type transmembrane proteins and 40 non-transport proteins,

a baseline accuracy of 62.5% was achieved using only amino acid composition

alone. Main causes for misclassification arose from false positives (22.5%) in

classifying non-transmembrane proteins as transmembrane proteins. With

the test set of 26 antifreeze proteins and 26 antifreeze-like proteins, a base-

line accuracy of 86.9% was achieved using only amino acid composition alone.

The accuracy for both tests increased marginally when more features were

added into the training data set.

Threshold dependant parameters were used to evaluate the classification

accuracy of the Random Forest algorithm, specifically sensitivity and speci-

ficity parameters defined as:

Sensitivity =
TP

TP + FN
(2.12)

which calculates the percentage of correctly predicted proteins from the pos-
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itive test set, were TP are the true positives and FN are the false negatives

Specificity =
TN

TN + FP
(2.13)

which calculates the percentage of correctly predicted proteins from the neg-

ative test set, where TN are the true negatives and FP are the false positives.

Classification accuracy is then determined as

Accuracy =
TP + TN

TP + TN + FP + FN
(2.14)

Cumulative classification accuracy

Features Transmembrane Antifreeze

Frequencies of amino acids 62.5% 86.9%

Physiochemical frequencies 72.5% 89.1%

Frequency of functional groups 75% 89.1%

Secondary structure frequencies 85% 91.2%
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Figure 2.2: A plot of the random forest error for antifreeze proteins split cu-
mulatively over the 4 sets of features. The top left graph is the error when using
amino acid frequencies only, the top right is error when amino acid frequencies
and physiochemical properties etc. The black line is the “Out of bag” error which
represents the error of proteins used outside of the training process from both
classes, and as such the OOB error is an average of both class errors. The green
line denoted positive training datasets, where red are negative training sets.
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Figure 2.3: A plot of the random forest error for transmembrane proteins split
cumulatively over the 4 sets of features. The top left graph is the error when using
amino acid frequencies only, the top right is error when amino acid frequencies and
physiochemical properties etc. The middle line is the “Out of bag” error which
represents the error of proteins used outside of the training process from both
classes, and as such the OOB error is an average of both class errors.

The measure used in this work to determine which features best split the
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data is the Gini index. The Gini index is essentially measured by calculation

the level of impurity of the data at each node split found within the child

nodes. At each node j, the impurity, or “Gini impurity” G(j) is defined as:

G(j) = 1− p2
1 − p2

2 (2.15)

where pk = nk/n is the fraction of nk samples from class k = 0, 1 from n

samples at the node j. The change in the Gini impurity as the data is split

into two child nodes is

δG(j) = G(j)− pLG(jL)− pRG(jR) (2.16)

where pL and pR are the respective sample fractions held in the child nodes.

At each node, an exhaustive search over features and thresholds yields a pair

Φ, τ that represents the maximum value of G(j) that decreases with each

node split, and for each node j in each tree T the Gini importance is the sum

of all pairs yielding maximum G(j)

IG(Φ) =
∑
T

∑
j

δG(j)Φ(j, T ) (2.17)

IG(Φ) is a measure of how often feature Φ was used to split a node. If the

Gini index decreases at each node, then clearly the larger the Gini importance

for Φ, the more important that feature is in classifying the data.

At least for the findings in this work, feature importance is perhaps more

interesting than simply comparing different algorithms to see which classifies

best. That is just the first step, and the second is to ask why they belong

to that family. It has to be remembered however that any classification

and feature extraction of random forests are only relative to the training

sets used - if one suspect a protein belongs to a family then the positive

dataset is not so much of a problem, but the negative dataset is critical as

one are discriminating against it. You want to be in a position to say that
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the proteins are classified by features that are distinctly different from those

in the negative training set, and so negative training sets should be large

and randomly selected to represent background frequencies of any functional

groups.
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Figure 2.4: A comparison of the feature importance between the frequency of
amino acids and the entire feature set in the transmembrane proteins. The fre-
quency of phenylalanine found in helix positions (FH - frequency of helix), closely
by molecular weight were found to be the two most important features for splitting
the dataset as measured by the Gini index.
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Phenyaline helices are integral in promoting folding of proteins to perform

the functions that transmembrane proteins carry out in cells, and are also in-

volved initiating interaction between other transmembrane proteins [49]. The

role of molecular weight in any type of analysis between proteins is trivial

in terms of function, yet useful for discriminatory measures. It is encourag-

ing that the random forest process used the Grand Average of Hydropathy

(GRAVY) to split the data. Kyte and Doolittle’s work on Hydropathy [28]

showed that transmembrane proteins will have a higher GRAVY score than

other globular proteins, and I included the calculation of the GRAVY score

beforehand to see if it was used to split the data. Other notable features of

the data that would perhaps be expected to help determine between a trans-

membrane protein and a non-transmembrane protein that are also found to

be of importance in this study are hydroxyl groups typically found in the

form of glycerol that are found in cellular membranes, and the frequency of

amino acids found in helices of each protein. Helices are responsible for the

structure of transmembrane proteins where Bowie et al [6] documented “helix

packing” in transmembrane proteins, but will fall to background frequencies

in globular proteins.
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Figure 2.5: A comparison of the feature importance between the frequency of
amino acids and the entire feature set in the antifreeze proteins. Molecular weight
being the most important feature to split the data doesn’t add any important
hidden information in particular as on average the non homologous antifreeze “like”
proteins are an average of longer sequence length than the antifreeze proteins.
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Although random forest classification of antifreeze and non-antifreeze pro-

teins have been reported by Kandaswamy et al [24] at just under 85% accu-

racy, a dataset of antifreeze and antifreeze-like proteins were chosen to test

the discriminative power of random forests. It would be expected that it

would be difficult to classify two sub families of proteins rather than clas-

sifying antifreeze from non-antifreeze proteins. On the face of the results

in this experiment a baseline accuracy of 86% was achieved leading up to

92%. However looking at the importance as measured by the Gini index it

is clear that molecular weight, and thus sequence length has played a big

part in exceeding accuracy normally achieved in protein classification, and

if sequence length were such a large factor in the classification process one

would perhaps ask if a machine learning technique is needed (the antifreeze-

like proteins are on average 2.5 times larger than the antifreeze proteins in

terms of sequence length). However the baseline accuracy of 86% achieved

with using the amino acid frequencies alone suggest that random forest can

classify between the two well. This is not so surprising given that in each of

the two sub families of antifreeze proteins, many of the individual proteins

will have evolved from a large range of bacterial proteins - each with their

own distribution of amino acids, of which through the evolution process some

may not be used and get “deleted” from the proteins over time, as well as

some proteins inserting amino acids over time. The evolution of proteins is

not perfect, and the function of one antifreeze protein may have differed going

back through it’s evolutionary history, and to achieve it’s functional purpose

of being an antifreeze now, different paths would have had to be taken in

terms of inserting and deleting amino acids from their sequence to cater end

up producing their functional attributes. It is an interesting confirmation

that functional groups are mainly absent from the Gini importance as the

antifreeze and antifreeze-like proteins are near identical in function, yet as ex-

pected the structure of the proteins are the most important features, however

helical secondary structure does not feature highly in terms of importance
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as neither antifreeze groups have helical structure like the transmembrane

proteins.

2.5 Summary

The results achieved in the two tests are similar to those found in the lit-

erature for other protein families, as well as comparing favorably to SVMs

and NNs, where accuracy for protein classifation is usually reported from

80% upwards. It is noted in the literature that transmembrane proteins are

known for their high structural homology, a finding reported in this exper-

iment and was the second most important feature used for classification as

determined by the Gini Index. A surprising finding is the high classification

accuracy when trying to distinguish between antifreeze and antifreeze-like

proteins. The two set of proteins were chosen because they carry out similar

functions, with subtle differences being that antifreeze-like proteins may also

carry out other functions. It is important to note that while length of se-

quence was not used a feature, a longer sequence has the capacity to contain

more functional groups and is a factor in helping random forest distinguish

between the two, as antifreeze-like proteins in general have longer sequences.

Random forests are flexible in that many different types of features can

be used to classify proteins, with a small number of features such as amino

acid frequencies needed to obtain accurate results. Some features however

are harder to derive than others. Secondary structure prediction, despite

being accurate to 90% [23] involves querying BLAST databases and for

that reason is slow (computation time can be between 15-30 minutes per

sequence). A database of predicted secondary structure that mirrors PFAM

would perhaps be useful when wanting to use secondary structure features.

The physiochemical properties were relatively straightforward to compute by

using biopython modules, however the way in which they are calculated are

complex compared to using simple statistics such as histograms and frequen-
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cies.

Also what can be seen from these results is that often, optimum accuracy

is achieved after using around 100 trees, so computation time is fast, but

as previously mentioned, the data preparation is what takes the most time

in running these experiments. The main strengths of using random forests

is in its discriminative power and its ability to predict which features best

classify the data. The classification however is highly dependant on the

training set. Often biologists are faced with the task of classifying proteins

from little to no prior knowledge about the protein, and if one is given a

protein which one does not know or suspect at least a small group of families

it belongs to, random forest will not be so useful as one have no target

positive training sets to train with. Equally, one also has to make a choice

of what negative training set might one use to discriminate from a family

one have guessed the protein actually belongs to? This leads to having to

process large negative training datasets to try and achieve a “background”

representation of proteins. However if an educated guess or calculation from

some other method points the protein into a small group of families, this

is where random forest excels as one is able to use it as a magnifying glass

to improve upon initial guesses from other methods, as well as ask why it

might belong to that family by using feature importance measures such as

the Gini index. What is perhaps counter intuitive is the fact that random

forest appears to discriminate slightly better against two training sets that

are similar, as demonstrated by the antifreeze and their non homologous

antifreeze “like” proteins. This shows that the data splitting method used

in random forest is sensitive to small and subtle changes between the two

training sets. This is perhaps more relevant to the problems biologists face

today, as it is more likely that one is trying to determine which sub group

in a family a protein belongs to, rather than what super family it belongs

to, where the negative training sets can be viewed as “competing” training

sets. Even so, it must be kept in mind that the classifation has been made
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in relation to the negative training set, and illustrates that choosing the

training sets and the features extracted are absolutely critical if a thorough

and robust analysis is to be carried out.

As we will see in the next section of this thesis, another machine learning

technique called Hidden Markov Models are used to classify proteins from a

positive training set alone, and as such provide a more standardized measure

of protein classification that is dependant only on the family it is classified

into.
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Chapter 3

Protein classification using

profile hidden Markov models

The previous chapter introduced a method for classifying proteins using ran-

domized decision trees and showed high classification accuracy of two differ-

ent structural protein groups: transmembrane proteins that have high struc-

tural homology shared across the family, and antifreeze proteins - a family of

proteins that have evolved from many different types of bacteria in parallel

and as such only show functional homology, rather than structural.

Implementing Hidden Markov Models for protein classification will take

an entirely different approach. Firstly, no negative training set is required to

classify proteins using Hidden Markov Models. Secondly, the raw sequence

data will be used to classify the proteins, rather than meta data such as pre

defined features. Also, rather than simply using one protein, an alignment

of proteins belonging to one family will be used to describe the sequence pa-

rameters that classify the family, and build a model such that a test sequence

can be aligned not just to one protein, but effectively to the entire protein

set within the family. Multiple sequence alignments are used in algorithms

such as BLAST [2] where raw proteins from the same family are aligned and

position specific statistics at each column of the alignment are determined.
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Another important feature of multiple sequence alignments are that they are

able to take into account positions in the sequence alignment that are likely

to contain deletions,insertions or substitutions of amino acids as the proteins

in a family evolve. Certain amino acids can be substituted without compen-

sating the function of the protein and as such when a certain amino acid is

favored in the natural selection process, such substitutions occur. It is there-

fore important for a multiple sequence alignment model to be able account

for such occurrences within a protein family, and HMMs are able to do this.

It is therefore important to provide an overview of multiple sequences align-

ments before defining the HMM architecture, as will be beneficial to know

how sequences are aligned and why they are important to HMMs.

3.1 Hidden Markov models from multiple se-

quence alignment

The previous chapter demonstrated a supervised learning technique that re-

lied solely on descriptive statistics about the amino acid sequences, such as

what is the percentage of thyamine in a sequence, or what percentage of

the sequence is hydrophobic. In order to understand the strengths of Hidden

Markov Models later in this thesis, it is important to understand that we can

take a different approach, namely aligning sequences that are suspected to

be similar and looking for position specific matches in amino acids between

sequences. This way, descriptive statistics aren’t needed by the researcher,

because statistics about protein families are learnt from multiple sequence

alignments of seed sequences in a certain protein family, where the seed se-

quences are those that best describe the features of a family. There are many

elegant methods to align multiple sequences, and to understand what makes

a good multiple sequence alignment it helps to think of pairwise alignments

first.

Suppose one would want to align the following two sequences ’THI-
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SISALINE’ and ’THISISALIGNED’. One way to visualize this would be to

draw a similarity matrix:

Figure 3.1: A similarity matrix aligning two sequences. Similar proteins that
share amino acids in the same position of their proteins will show clear visual
correlations of their similarity in a similarity matrix

By organizing one sequence on the x-axis, and the other on the y-axis,

sequence similarity can be visualized quite easily. When an element of one

sequence is the same is that of the other, a “dot” is drawn on the x-y plot.

It is obvious that two identical sequences of same length will show a dotplot

with a perfect diagonal line, where sequences of some local similarities will

give diagonal regions outside of the main alignment. The following is a

prion protein nucleotide sequence found in two sub-species of wild sheep; the

mouflon and takin:
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moufflon =

ATGGTGAAAAGCCACATAGGCAGTTGGATCCTGGTTCTCTTTGTGGCCATGTGGAGTGACGTGGGCCTC

TGCAAGAAGCGACCAAAACCTGGCGGAGGATGGAACACTGGGGGGAGCCGATACCCGGGACAGGGCAGT

CCTGGAGGCAACCGCTATCCACCTCAGGGAGGGGGTGGCTGGGGTCAGCCCCATGGAGGTGGCTGGGGC

CAACCTCATGGAGGTGGCTGGGGTCAGCCCCATGGTGGTGGCTGGGGACAGCCACATGGTGGTGGAGGC

TGGGGTCAAGGTGGTAGCCACAGTCAGTGGAACAAGCCCAGTAAGCCAAAAACCAACATGAAGCATGTG

GCAGGAGCTGCTGCAGCTGGAGCAGTGGTAGGGGGCCTTGGTGGCTACATGCTGGGAAGTGCCATGAGC

AGGCCTCTTATACATTTTGGCAATGACTATGAGGACCGTTACTATCGTGAAAACATGTACCGTTACCCC

AACCAAGTGTACTACAGACCAGTGGATCAGTATAGTAACCAGAACAACTTTGTGCATGACTGTGTCAAC

ATCACAGTCAAGCAACACACAGTCACCACCACCACCAAGGGGGAGAACTTCACCGAAACTGACATCAAG

ATAATGGAGCGAGTGGTGGAGCAAATGTGCATCACCCAGTACCAGAGAGAATCCCAGGCTTATTACCAA

AGGGGGGCAAGTGTGATCCTCTTTTCTTCCCCTCCTGTGATCCTCCTCATCTCTTTCCTCATTTTTCTC

ATAGTAGGATAG

takin =

ATGGTGAAAAGCCACATAGGCAGTTGGATCCTGGTTCTCTTTGTGGCCATGTGGAGTGACGTGGGCCTC

TGCAAGAAGCGACCAAAACCTGGCGGAGGATGGAACACTGGGGGGAGCCGATACCCGGGACAGGGCAGT

CCTGGAGGCAACCGCTATCCACCTCAGGGAGGGGGTGGCTGGGGTCAGCCCCATGGAGGTGGCTGGGGC

CAACCTCATGGAGGTGGCTGGGGTCAGCCCCATGGTGGTGGCTGGGGACAGCCACATGGTGGTGGAGGC

TGGGGTCAAGGTGGTAGCCACAGTCAGTGGAACAAGCCCAGTAAGCCAAAAACCAACATGAAGCATGTG

GCAGGAGCTGCTGCAGCTGGAGCAGTGGTAGGGGGCCTTGGTGGCTACATGCTGGGAAGTGCCATGAGC

AGGCCTCTTATACATTTTGGCAGTGACTATGAGGACCGTTACTATCGTGAAAACATGTACCGTTACCCC

AACCAAGTGTACTACAGACCAGTGGATCAGTATAGTAACCAGAACAACTTTGTGCATGACTGTGTCAAC

ATCACAGTCAAGCAACACACAGTCACCACCACCACCAAGGGGGAGAACTTCACTGAAACTGACATCAAG

ATAATGGAGCGAGTGGTGGAGCAAATGTGCATCACCCAGTACCAGAGAGAATCCCAGGCTTATTACCAA

AGGGGGGCAAGTGTGATCCTCTTTTCTTCCCCTCCTGTGATCCTCCTCATCTCTTTCCTCATTTTTCTC

ATAGTAGGATAG

Figure 3.2: The two prion protein nculeotide sequences are identical apart from
one element in the sequence. How long does it take to spot this by eye?

The similarity matrix can be plotted as:
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Figure 3.3: The dotplot show high homogeneity between the two sequences,
made clear by the diagonal line through the center of the dotplot.

Aligning sequences like this has a major advantage over the descriptive

features used in the random forest dataset. For example if one randomly

orders the takin sequence while keeping the same percentages of each nu-

cleotide, as well as maintaining the length of the sequence, aligning this to

the mouflon sequence would yield a similarity matrix with no correlation

between the two proteins
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Figure 3.4: Despite the two proteins having the same frequency of amino acids,
the order of the takin protein no longer correlates with the moufflon protein.

where no correlation can be found, and rightly so as the mouflon sequence

is aligned to the fake sequence as any background sequence might. If the

training data for random forest simply contained the percentage of amino

acids per sequence, random forest would likely classify the fake sequence and

the mouflon into the same family. Only adding more information in such

as how many regions are hydrophobic would separate the two. However the

usefulness of similarity matrices stop at being a visulaisation tool. They are

one of the oldest methods for pairwise alignments, but if one look at any

family of proteins there are always proteins that only share local regions of

alignment, and so some algorithm must be constructed to align sequences

and take into account local alignment.

3.2 Global and local alignments

The Needleman-Wunsch (NW) algorithm, introduced in 1970 [33] algorithm

does not necessarily treat mismatches in a pairwise alignment as a “miss”

in the alignment. This is because in nature it is acceptable to substitute
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amino acids in a protein, but still keep the same protein function. The

NW algorithm was designed to account for such substitutions by using a

substitution matrix S(a, b)

S(a, b) =



A G C T

A 10 −1 −3 −4

G −1 7 −5 −3

C −3 −5 9 0

T 4 −3 0 8

 (3.1)

where for any substitution between a sequence element a to a sequence ele-

ment b, a score is given that either penalizes or strengthens the substitution.

This scoring method allows for family members to be found in alignments as

opposed to relying on a visual dotplot. There is also another factor that the

NW algorithm, as well all algorithms after it, and that is it can deal with

insertions or deletions in a sequence. As proteins evolve it is not just amino

acid substitutions that account for any diversity, but amino acids that are

not needed will be deleted, and amino acids that are needed for a protein to

perform a task within the evolving organism will be added. One can imagine

that the entire alignment would be shifted when an indel (insertion or dele-

tion) is observed. This is extremely important as one could technically add

in as many insertions in a sequence to achieve perfect alignment:

where the red letters indicate a match. One can notice here that every

letter in the first sequence has conveniently found a match in the second

sequence, but only because dashes have been added into the sequence to

make a better alignment, perhaps indicating there were deletions in this

sequence, and so an insertion may be added. A problem arises however if

one is allowed to add as many insertions as one like to make as best alignment
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as possible. A sequence with more insertions than amino acids, but with a

good alignment score would actually be a terrible alignment, and so the NW

algorithm arbitrarily penalizes the alignment score per indel, given by d. The

NW algorithm for scoring substitutions and indels in pairwise alignment use

three basic calculations in the algorithm

F0j = d ∗ j (3.2)

Fi0 = d ∗ i (3.3)

Fij = max(Fi−1,j−1 + S(Ai, Bj), Fi,j−1 + d, Fi−1,j + d (3.4)

Fij is the optimal score that is updated with every iteration through the

alignment and S(Ai, Bj) is the substitution matrix for amino acid substitu-

tions. The following shows how to obtain the optimum NW alignment for

sequences ’TTCATA’ and ’TGCTCGTA’:
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Figure 3.5: The NW-algorithm traversing through the sequence alignment space
and calculating the optimal alignment. Starting from the last position in the
alignment space, the optimal alignment is found by traversing back through cells
in the alignment space to the i − 1 cell that was used to calculate the value of
cell i. The score of each cell is stored as the algorithm traverses back through the
alignment space until it arrives at the start of the sequence alignment.

Because the NW-algorithm is a global algorithm, it forces alignment over

the entire length of the longest sequence. This can also contribute to false

negatives in finding possible family members by having criteria that are too

strict.

Some protein sequences from the same family do deviate globally, but

have strong regions of local alignment. Local alignment algorithms such as

the Smith-Waterman algorithm introduced in 1981 [36] allow more flexibility

in the sense that alignment isn’t forced globally. The idea behind the S-W

algorithm is to modify the N-W algorithm by providing thresholds where,

wherever the global alignment score falls below the threshold,the path is

abandoned and another local alignment begins from the next highest score

in the alignment space.
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Figure 3.6: Here it is possible to see that a global alignment can be traded for
multiple local alignment, where it is usual for smaller local alignments to have
greater scores than a global alignment. http://www.seas.gwu.edu/~simhaweb/

cs151/lectures/module12/align.htm

Figure 3.7: A comparison of the NW and SW alorgorithms aligning the Bai3
coupled protein receptor and the VIPR2 transmembrane receptor. The SW align-
ment has a far higher score than the NW alignment, suggesting the two proteins
have similar function, but probably does not belong to the same family of proteins.

It becomes apparent that the NW and SW-algorithms should really be

used for different situations. Since the NW-algorithm is forced globally, it

is used best where the two sequences are known to be of some similarity to

begin with, and really the NW-algorithm tests exactly how similar they are.
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The SW-algorithm however finds regions of local alignments, so in the case

where one do not know if two proteins are similar, using a SW alignment

will tell the user if there are any areas where the two proteins are similar.

Extremely good matches are then often passed onto the SW-algorithm.

The true power of HMM’s lies in the fact that they can take advantage

of aligning multiple sequences together and use statistics of that alignment

to build a model that captures the sequence information. This means that

one can effectively align a sequence to not just one sequence, but to multiple

sequences by aligning to the HMM. This is a powerful tool that can both

provide an architecture to store protein family statistics, as well as providing

a tool to score proteins for potential family members. The next section

introduces the learning algorithms used to build an HMM based on sequences

and how to score a sequence against an HMM.

3.3 Hidden Markov model theory

Hidden Markov Models are stochastic, probabilistic model, whereby a finite

set of states S discreet symbols O that are emitted from S, a probability tran-

sition matrix T = tji to describe how to transition between different states

in S, and a probability emission matrix E = (eix) to describe the probability

of a symbol A being emitted at state S. For each state i in the system, there

is a probability eix of emitting symbol x and a probability tji of transitioning

to state j. Probability of an emission or a transition is determined by the

current state only, as described by the first-order Markov principle, that is

previous states and their emission and transition probabilities do not affect

future states. A simple HMM might be observing the sequence of amino

acids of a protein consisting of 4 types of emission A,T,C and G although

the current amino acid will be T, the protein may be in part of a sequence

which is rich with amino acids C and G, called CpG rich segments of a pro-

tein. The underlying segment of the sequence being described as CpG rich
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is the hidden state, and the amino acid is the observable state. HMM’s can

generally be used to answer three types of questions. Suppose we observe the

10 amino acids of a protein sequence, what are the emission and transition

parameters of our model going to be? If we have a HMM with emission and

transition probabilities, then given a sequence of emissions, how likely is it

that this sequence could be generated by walking through our HMM model?

And finally, given a HMM model, what is the most likely sequence of emis-

sions to be observed when walking through the model? We will need to use

all three features of HMM’s for protein classification to learn the parameters

of a protein family, use those parameters to generate sequences belonging

to that model, and we will also need to use the model to score an observed

sequence of emissions and classify the protein into a certain family. The next

section introduces the theory of how HMM’s answer these three questions.

3.4 The forward,backward and viterbi algo-

rithms

This section defines the algorithms used to determine the parameters of a

HMM, the likelihood and most probable sequence of emissions and state

transitions associated with an observed sequence - the forward, backward

and viterbi algorithms. These algorithms are all dynamic programs and are

all recursive, that propagate through the HMM architecture.

Lets consider how we can calculate the likelihood P (A|w) of a sequence

A = X1..X2..XN given a HMM model M = M(w). The path π through a

protein profile HMM M is defined as the sequence of states in M starting at

a definitive start state and ending with an end state, where each emitting

state in M emits symbols of a defined alphabet. If the likelihood of emitting
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a symbol along path O is

P (O, π|w) =
end∏
start

tji

T∏
t=1

eiXt (3.5)

where the first product denotes transitions along the path π from the start

and end states, and the second product denotes the emissions states i along

π, then an intuitive way to calculate the likelihood of emitting a sequence of

emissions might be

P (O|w) =
∑
π

P (O, π|w) (3.6)

However, summing over all the paths along π to find the likelihood is typi-

cally exponential in nature, so we would be better off searching for a more

efficient solution. One such way of doing this is described by the forward

algorithm. The forward algorithm, as well as the backward and viterbi algo-

rithms iteratively propagate through π to calculate the likelihood of emitting

a sequence, while avoiding calculating all emissions for all paths.

We can define the probability of being in state i at time t as

αi(t) = P (St = i,X1...X t|w) (3.7)

having observed symbols X1...X t from emission states in the HMM model

M(w). The start state can be defined as

αstart(0) = 1 (3.8)

since we always start at the start state. The likelihood of a sequence is being

emitted from M then

P (O|w) = αend(T ) (3.9)

Therefore we must be able to compute the αi(t) state and following states
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αi(t + 1) for emitting recursively as we propagate through M . This can be

defined as

αi(t+ 1) =
∑
j∈S

αj(t)tijeiXt+1 =
∑
j∈N−i

αj(t)tijeiXt+1 (3.10)

where N−i is the neighborhood notation used to describe the previous neigh-

bors in the model. Each iteration converges to a stable set of values α(t+ 1).

The special case of a deletetion in a sequence as described when aligning two

proteins calls for a simple modification in how to iterate through the model,

that is

αi(t+ 1) =
∑
j∈N−i

αj(t+ 1)tij (3.11)

where the contribution of the emission state is removed, and at most can be

iterated N times to delete all emissions. Propagating through the model and

calculating αi(t+ 1) is done in both time T layers and M units in each layer

per HMM state. In such a model, both T and M are computed in O(N)

so the forward algorithm is computed in O(N2) operations. The backwards

algorithm propagates probabilities backwards through M , and is therefore

the reverse of the forward algorithm. The backwards algorithm variables can

be defined as

βi(t) = P (X t+1...XT |St = i, w) (3.12)

which is the probability that the model is in state i and time t when observing

the sequence X t+1, where as in the start of the forward algorithm

βend(T ) = 1 (3.13)

To propagate backwards through M we recursively compute βi(t) for emis-

76



sions as

βi(t) =
∑
j∈N+i

βj(t)tjieiXt+1 (3.14)

and for delete states as

βi(t) =
∑
j∈N+i

βj(t)tji (3.15)

which when computing these variables at each state visited in M , the com-

plexity is of the order O(N2) just as in the forward algorithm. Combining the

forward and backward algorithms we can compute the probability of being

in state i at time t when given an observed sequence (i.e. whether a fair or

loaded dice is being thrown based on the observations). The probability of

being in state i at time t is then

γi(t) = P (St = i|O,w) =
αi(t)βi(t)

(P |O,w)
=

αi(t)βi(t)∑
j∈S

αj(t)βj(t)
(3.16)

and the probability of transitioning from state i → j at time t to t + 1 for

an observed sequence,X is

γij(t) = P (St = i, St+1 = j|O,w) =
αi(t)αijβi(t+ 1)βj(X

t+1)
N∑
i=1

N∑
j=1

αi(t)αijβi(t+ 1)βj(X
t+1)

(3.17)

The most likely states at time t can be found by maximizing γi(t) and γij(t).

By combining the forward and backward variables, it is possible to deter-

mine the most likely state at a given time, and to determine the most likely

pathway of states in a particular model we can use the viterbi algorithm. By

finding the most likely path through a model we will be able to align novel
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sequences of symbols, such as proteins to an protein-HMM model and score

each sequence.

The Viterbi algorithm gives the most probable path through a HMM

model, given a set of observed symbols. This most probable path is defined

as

δi(t) = max
πi(t)

P (πi(t)|w) (3.18)

where πi(t) is a predetermined path through the model characterized by

sequence emissions O = X1...X t up to state i. Like in the forward algorithm,

the Viterbi algorithm updates the cumulative probability as it propagates

through the states, where the probability of being in future state at t+ 1 is

δi(t+ 1) = [max
j
δj(t)tij]eiXt+1 (3.19)

for emitting states, and

δi(t+ 1) = [max
j
δj(t+ 1)tij] (3.20)

for delete states. The Viterbi path is calculated by storing the previous

optimal state, and as the algorithm iterates through O the most probable

path is found. Notice that each time a delete state is found to be an optimal

state in the Viterbi path, the probability of the entire path is decreased,

meaning that a sequence consisting entirely of delete states will never be an

optimal path.

3.5 Expectation of the hidden states

The forward,backward and Viterbi algorithms allow us to firstly determine

the probability of being in a state at a given time, and also the most prob-

able path through a model. Returning to the fair-loaded dice example, it is

possible to calculate the probability distribution of hidden states Q(π). To
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do this we will need to compute the expectations of states,transitions and

emissions in the HMM model. Define these three properties as

• n(i, π, O) is the number of times state i is visited, given π and sequence

O

• n(i,X, π,O) is the number of times letter X is emitted from state i,

given π and O.

• n(j, i, π, O) is the number of times transition from state i→ j occurs,

given π and O

where the expectations for each are calculated as

ni =
∑
π

n(i, π, O)P (π|O,w) =
T∑
t=0

γi(t) (3.21)

niX =
∑
π

n(i,X, π,O)P (π|O,w) =
T∑
t=0

γi(t) (3.22)

nji =
∑
π

n(j, i, π, O)P (π|O,w) =
T∑
t=0

γji(t) (3.23)

where these properties are used to calculate the emission and transition pa-

rameters of a HMM model. There are various learning algorithms that use

these properties, with the most common being the Baum-Welch algorithm

being a widely used one.

3.6 Learning algorithms

When given a set of data, we would like to build an HMM architecture

that encompasses all the features that define the data, so that the HMM

can generate similar data based on the learned features. There are various
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algorithms that can be used - maximum posterior parameter estimation using

maximum likelihood,expectation maximization algorithms such as the Baum-

Welch algorithm, the Viterbi algorithm which uses path calculation based

on multiple local likely paths, rather than global, and a gradient descent

approach which uses backward propagation to incorporate elements of neural

networks into the HMM model.

To understand how expectation maximization works for the Baum-Welch

algorithm, it is necessary to consider maximum likelihood estimation of emis-

sion and transition parameters. This is a low-level Bayesian inference that

determines maximum a-priori parameters (MAP) in the HMM. As before, if

the likelihood of a sequence is P (O|w) =
∑
π

P (O, π|w), then we can deter-

mine the dynamics of emissions in the system by minimizing the Lagrangian

L = −logP (O|w)−
∑
i∈E

λi(1−
∑
X

eiX)−
∑
i∈S

µi(1−
∑
j

tji) (3.24)

where µ and λ are Lagrange multipliers. The partial derivatives of the La-

grangian with respect to emissions is then

∂P (O, π|w)

∂eiX
=
n(i,X, π,O)

eiX
P (O, π|w) (3.25)

where n(i,X, π,O) is the number of times i is visited given the path π. The

Langragian is at the optimum when the partial derivatives are set to 0 and

we obtain

λieiX =
∑
π

n(i,X, π,O)Q(π) = niX (3.26)

Which is the expectation value. If Q = P (π, |O,w), the posterior probability,
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then the expectation of the number of times state i is visited is

λi =
∑
π

∑
X

n(i,X, π,O)Q(π) =
∑
π

n(i, π, O)Q(π) = ni (3.27)

and at the optimum we obtain

eiX =

∑
π

n(i,X, π,O)Q(π)∑
π

n(i, π, O)Q(π)
=

∑
π

P (π|O,w)n(i,X, π,O)∑
π

P (π|O,w)n(i, π, O)
(3.28)

and thus the re-estimation equations for the number of times a symbol X is

observed in state i,eiX , or a transition is made from state i→ j, tji are

e+
iX =

∑
π

n(i,X, π,O)Q(π)∑
π

n(i, π, O)Q(π)
=

T∑
t=0,Xt=X

γi(t)

T∑
t=0

γi(t)

=
niX
ni

(3.29)

t+ji =

∑
π

n(i,X, π,O)Q(π)∑
π

n(i, π, O)Q(π)
=

∑
t=0

γji(t)

T∑
t=0

γi(t)

=
nj
ni

(3.30)

One might ask how to compute this directly without knowing the posterior

distribution of the hidden variables Q as it depends on prior emission values

eiX . This is done by using the same assumption in computing expectation

values, Q(π) = P (π|O,w), so that if P (O, π|w) =
end∏
start

tji

T∏
t=1

eiXt then Q(π)

by computed iteratively by updating eiX in the previous equation. This

iterative process of learning Q is exactly how the expectation maximization
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algorithm works, and the Baum-Welch algorithm in particular calculates both

eiX and tji using the variables γi(t) and γji(t) from the forward and backward

algorithms - for that reason the Baum-Welch algorithm is often called the

forward-backward algorithm. Each sequence entered into the model requires

one forward and one backward iteration leading to a computation time of

the order O(KN2).

The gradient descent method is similar to EM for learning parameters in

HMMs in that it uses the forward-backward technique to determine eiX and

tji, however it differs in that a learning rate, η is specified. This learning rate

helps to avoid large advances towards an incorrect convergence over single

isololated sequences in on-line learning, a problem that the Baum-Welch

algorithm can suffer from. Let us parameterize eiX and tji by normalizing

exponentially

eiX =
ewiX∑
Y

ewiY
(3.31)

tji =
twji∑
Y

ewki
(3.32)

where wiX and wji are the parameterization variables. By taking the deriva-

tive with respect to these variables for gradient descent, the emission proba-

bilities are computed as

∂eiX
∂wiX

= eiX(1− eiX) (3.33)

∂eiX
∂wiY

= eiXeiY (3.34)

It can be seen that using the w′s in the parameterization process ensures that
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neither emission or transition probabilities reach 0. Using the chain rule

∂P (O|w)

wiX
=
∑
Y

∂P (O|w)

eiX

∂eiY
wiX

(3.35)

where the gradient descent equations for the log-likelihood are

δwiX = η(niX − nieiX) (3.36)

and

δwji = η(nji − nitji) (3.37)

η is the learning rate, and niX and nji are the expectation values from the

forward-backward algorithm. The gradient descent algorithm also requires a

forward and backward step, making compute time of the order O(KN2).

Viterbi learning, unlike the EM and gradient descent methods focusses

on calculating expectations only along likely paths, rather than updated

calculations based on all paths. It is often that for any sequence, only the

most likely path π∗ is used so that the emission count over that path is

n(i,X, π,O) and the counts of symbol X being emitted from state i is π∗(O).

Because only one path, the most likely path is considered, averaging count

per state over one path would yield 0 or 1 for any particular emission state

i, making a Viterbi EM algorithm redundant, but using parameterization in

the gradient descent method yields more information from state emissions.

For every step along a Viterbi gradient descent path, the parameters of states

i in the most likely path π∗ updated as

δwiX = η(EiX − eiX) (3.38)

and

δwji = η(Tji − tji) (3.39)
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where EiX and Tji = 1 if X is emitted or a transitition from i→ j is observed,

but otherwise 0. The w′s are updated via the difference between training data

frequency and probabilities eiX and tji of the HMM. The trade-off for Viterbi

learning is as expected speed vs accuracy. The compute time is reduced

by not computing the variables in the backward propagation step, however

optimization is only good for a well defined global likely path, but when

subtle differences in sequences are due to multiple local optimized paths, or

that there may be no optimized path, non-Viterbi algorithms will perform

with higher accuracy.

The next section uses all aspects and tools that HMM’s have to offer.

Using protein sequence data, a HMM architecture will be trained to classify

proteins into families, and given a trained HMM demonstrate that a given

test sequence can be decoded against the model to determine if it belongs to

that family. These special types of HMM’s are called protein profile HMM’s.

3.7 Protein profile HMMs

Proteins and nuceloetide sequences can be used as an input to a hidden

Markov model to classify proteins into families and the organisms which

have the protein. It has already been discussed that pairwise sequence align-

ment can show areas of a protein sequence that are conserved over time, as

well as crucial parts of protein sequences that are inherited throughout a

family, thus being able to help classify them into families. It is advantageous

to use the nature of position-specific information of pairwise alignments to

score how likely a sequence belongs to the same hierarchy as those in the

alignment [22]. The statistics behind such alignments are sound and have

proven to produce accurate results, in particular BLAST/PSI-BLAST [2],

where powerful scoring matrices, known as BLOSUM matrices are produced

to aid pairwise sequence alignment classification.

The introduction of HMMs allowed statistical analysis of protein ’profiles’,
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built from multiple sequence alignments. This is extremely useful as pair-

wise alignments assume that all positions in the two sequences are of equal

importance in terms of protein homology, where profile models indicate that

sequence conservation across protein sequences is non-uniform. Analyzing

profiles of multiple sequence alignments causes problems ranging from the

sheer amount of parameters that can contribute the classifying a family, to

how to determine the best way to score indels in an alignment. As seen earlier

between the Needleman-Wuncsh and Smith-Waterman alignments, ad-hoc

scoring methods can be incorporated into alignment algorithms, however a

well understood mathematical model is needed to analyze protein profiles.

Hausller and Krogh et al [27] first began to see the potential of using

HMMs to analyze profiles of multiple sequences alignments, where many

groups began work on defining the HMM architecture to incorporate protein

profiles, with the aim of utilizing the power of HMM’s to build a statistical

model that could analyze profile of gapped (insertions and deletions) align-

ments. Eddy et al [16] defined a protein profile HMM (p-HMM) that is now

widely used and implemented using the HMMER software [17] which builds

profile HMM’s for the PFAM database. Where the advantages of analysis

of aligned sequences are shown in pairwise alignments algorithms like the

Needleman-Wunsch algorithm, Eddy’s p-HMM provided a way to use both

unaligned and aligned sequences for analysis. Where the advantages of an-

alyzing aligned sequences are shown in pairwise alignments algorithms like

the Needleman-Wunsch algorithm, Krogh’s and Eddy’s p-HMMs provided

a way to use both unaligned and aligned sequences for analysis. Although

the majority of sequences used to build an aligned profile consist of match

states across the columns of the alignment, two additional states are added

to the match states to incorporate aligned profile. These are delete and in-

sert states. A delete state allows for a deletion in an amino acid sequence

across the columns of the alignment and emits nothing, i.e. no emission or

transition, and an insert state allows for new amino acids being built into
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the protein, where any amino acid can be emitted from an insert state, in

which it transitions to itself, allowing multiple amino acids to be inserted

while staying in the same insert state. Profile HMM’s can also be trained

from unaligned data, in which the deletion and insertion probabilities are de-

termined statistically through Baum-Welch or Viterbi training, rather than

a trial and error approach in pairwise alignment algorithms. The flexibility

of p-HMMs is hugely popular while offering the same, if not better accuracy

than programs such as BLAST, and the ability to handle deletions and in-

serts in amino acids is a crucial part of finding highly divergent proteins that

have evolved over time.

Figure 3.8: An example of a profile HMM. States B and E are beginning and end
states. Match states are a normal part of both aligned and unaligned sequences,
but delete/insert states are needed to create a p-HMM based on aligned data.
Delete states do not emit anything from the model, and insert states can emit any
amino acid, and can either transition back to itself, or to a match state [16]

The score produced by aligning sequences to a p-HMM are traditionally

given a log-odds ratio for match states, where if the probability of a match

state being emitted is residue x is px and the probability of a background/null
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sequence is pn then the log-odds score for that residue in a match state is

S =
px
pn

(3.40)

where S is comparable to scores given by FASTA or BLAST for unaligned

sequences. Deletions and insertions are handled differently from those of

pairwise alignments, where ad-hoc gap penalties are used. If x is the amount

of residues being emitted from an insert state, gap penalties can be split into

gap open penalties a - entering and leaving an insert state, and gap extend

penalties b - the amount of residues emitted as a result of being in an insert

state. To penalize insertions in a sequence, the probability of transitioning

from a match state to a transition state tMI, emitting a residue while in an

insert state tII and transitioning from an insert state to a match state tIM

are used where the costs are log(tMI),log(tII) and log(tIM) respectively so

that the total insert cost is calculated as

C = a+ b(x− 1) = log(tMI.tIM) + log(tII)(x− 1) (3.41)

where the difference compared to traditional pairwise alignments is that the

gap penalties calculated by HMM’s are non-arbitrary. Gap penalties for

pairwise alignments are ad-hoc and each insert or delete penalisation are

scored the same as the next insert or delete, without taking into account

which match state came before it. In fact, the gap penalties for traditional

pairwise alignments may use global penalty parameters that do not reflect

the sequences being compared. Insertions in sequences are dependant on

the match states around them, and that is exactly what a p-HMM takes

into account - the probability of an insert occurring in a sequence is ac-

tually linked to the probability of transitioning from a match state to an

insert state. It is worth noting that even transitioning from a match state

to a match state has a cost tMM , depending on which amino acid is next

emitted. The probabilities tMM and tMI are the tradeoff probabilities that
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determine the score of an entire sequence against a HMM - increasing the

probability of tMI decreases the probability of tMM . Inserting amino acids

into a protein has in the past been either thought to have a background

probability, or the methodology had not been developed to take into account

that some amino acids are more likely to be inserted into certain parts of the

sequence - for instance surface loops on transmembrane proteins are often

inserted into the protein sequence, in which the amino acids will reflect runs

of hydrophilic structures. Clearly the background frequency of amino acids

is not sufficient to model amino acid emission probabilities at insert states

for these situations. By modelling a p-HMM on multiple alignment profiles,

insertion emission probabilities can be calculated and linked to match-insert

and insert-insert states.

Profile HMMs are different from other multiple alignment methods in

that the match, insert and deletion parameters are not specified, indeed even

known for the particular set of sequences the multiple alignment is based on.

Unlike BLOSUM matrices describing global scoring methods for matched

amino acids and tolerating amino acid substitutions, p-HMMs require no

prior scoring matrices as they are learned and tailored to the multiple align-

ment. This is not to say that p-HMMs cannot use prior information during

the training phase, emission, transition and insertion parameters can all be

biased towards certain amino acids, for classifying hydrophobic proteins and

biasing the amino acids to suit hydrophobic chains. The flexible manner of

learning how to score insertions and deletions often sees p-HMMs outscoring

other methods when the multiple alignment contains many gaps [18] meaning

p-HMMs are often better for confirming/refuting distant homologues, and us-

ing biasing techniques can cut down the size of the proteins used for multiple

alignment for accurate classification [3]. Profile HMMs are now the choice

algorithms used to classify proteins into domains and families, where pair-

wise alignment algorithms like BLAST specialize in scoring single sequences

against any other sequence.
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The rise of p-HMMs is largely responsible for the mass classification of

proteins into families. The Pfam database,developed by Erik Sonhammer is

a special database - not only is it the leading database that holds protein

family domains, but each family is constructed on the basis of p-HMM scores

and those included in the family score above a given threshold in Pfam for

that given family.

3.8 Protein classification using profile hidden

Markov models

Profile Hidden Markov models have been used extensively for protein clas-

sification, where two reputable databases PFAM [46] and PANTHER [48]

curate protein families based on p-HMMs. The databases are typically di-

vided into clans, families and sub-families and a large amount of studies using

protein data use databases such as PFAM and PANTHER, in which Eddy’s

software, hmmer is used to classify all families to similar, if not better accu-

racies achieved with other machine learning techniques, including software

suggest as BLAST. Profile HMM’s work particularly well at detecting re-

mote and distant homologs [26] by using sequence alignments alone and can

incorporate other features such as secondary structure and evolutionary rela-

tionships from Phylogenetic trees [39]. Classification of such homologs using

HMM’s rely on the fact that sequences in a certain homolog have similar

sequence data when aligned to each-other, rather than from a functional or

structural point of view, and as such is excellent at detecting proteins which

have evolved from an “ancestor” protein even through different organisms

and species. This is where some machine learning techniques would struggle

to find a true positives / negatives when querying a protein homology. For

example the Random Forest algorithm in the previous chapter did not rely

on sequence alignment, but rather on selected features such as frequency of

amino acids, secondary structure and functional groups, where some proteins
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not within the same homology will contain similar features and structures,

especially if two proteins carry out a similar function. It is easy to see how an

algorithm like Random Forest may be bias towards the features used in classi-

fication and falsely identify a remote homolog, where the sequence alignment

would not be so good and therefore not a homolog at all. On the contrary, not

all protein groups or families are defined by a common ancestor. Antifreeze

proteins for instance are a classic example of parallel evolution, in which a

group of protein ancestors not related to each-other have evolved to converge

on a functional purpose, and hence the proteins in a family of antifreeze pro-

teins do not share aligned sequential homology. Random Forest would in this

case be expected to discriminate between different protein groups that have

evolved in parallel better than a machine learning method that uses multiple

sequence alignments. This experiment uses antifreeze proteins as before, as

well as transmembrane proteins. As already discussed, antifreeze proteins

contain many different proteins evolved from multiple “protein ancestors”,

where transmembrane proteins evolves from a very small group of proteins

and hence show both functional and structural homology.

Ligand gated ion channel or Ionotropic Glutamate receptors are part of

the ion channel transmembrane clan (CL0030 ). They are synaptic recep-

tors attached to the membranes of neuronal cells. Glutamate receptors are

implicated in a number of neurological conditions. Their central role in the

central nervous system is linked to a variety of neurodegenerative conditions

and diseases such as autism, Parkinson’s disease, Huntington’s disease and

multiple sclerosis. Transmembrane proteins are designed so that they allow

different molecules to pass through their structure, and as such they have

distinct structures not only from non-transmembrane proteins, but also from

other transmembrane proteins. Various machine learning techniques have

been applied to the classification of transmembrane proteins. Pasquier et

al [35] used a neural network to classify transmembrane proteins from non-

transmembrane proteins. Using only 11 different types of transmembrane
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proteins were used to train the neural network and used a positive test set

of 995 globular membrane proteins to test the NN. They falsely classified

only 23 proteins, acheiveing an accuracy of 97%. Saha et al [35] used sup-

port vector machines to classify voltage-gated ion channel proteins, as well as

classifying 4 sub-types of transmembrane proteins families, acheiveing accu-

racy of 82.89% and 96.89% respectively. The work in the previous chapter on

random forest compares comparatively well, to these two papers, especially

where acheiveing slightly higher accuracy than using the SVM approach.

The aim of this experiment is to show that Hidden Markov Models in

the form of p-HMMs can classify transmembrane proteins (in this instance

voltage gated ion channel proteins) from non-transmembrane proteins and

other sub-types, typically up to a good threshold of 85%.

Three tests were devised for classification of various voltage gated ion

(VGC) proteins:

• Classify VCG proteins from non-VGC proteins. 400 VGC proteins (300

potassium, 60 calcium and 60 sodium) were sourced from SWISSPROT

and proteins with more than 90 percent sequence similarity were filtered

out. 280 (200 potassium, 40 calcium and 40 sodium) were used as a

training set for the p-HMM and the remaining 120 as a positive test

set. 300 non-VGC proteins were also sourced from SWISSPROT as a

negative test-set.

• Classify VGC subtype protein from non-VGC proteins. 44 seed se-

quences for Ligand-gated ion channel proteins in PFAM (ID PF00060)

were used as a positive training set to train a p-HMM. The remaining

3228 ligand sequences in the PFAM ligand HMM family were used as a

positive test set, and 1445 non-VGC proteins selected randomly from

PFAM were used as negative test set.

• Classify VGC-subtypes from other VGC-subtypes The ligand p-HMM

was used to classify ligand proteins from other VGC proteins. The
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other two VGC subtypes used as negative test sets were Potassium-

transmembrane ATPase A subunit proteins (ID PF03814, 2239 pro-

teins) and Inward rectifier potassium channel (ID PF01007, 1452 pro-

teins), as well as the same ligand test set in test 2 as a positive test

set.

Each HMM model was trained using using the following process:

Step 1: Obtain seed sequences to build antifreeze profile HMM.

Step 2: Create a multiple sequence alignment of sequences T .

Step 3: Initialize a profile HMM using the length of the multiple sequence

alignment D.

Step 4: Build profile HMM from the seed sequences.

Step 5: Estimate transition and emission parameters.

Step 6: Score the test sequences against the profile HMM.

Step 7: Repeat steps 4-6 until test scores converge and do not change. This

is the fully trained model.

3 transmembrane (ligand, potassium, rectifier), and two antifreeze (an-

tifreeze and antifreeze -like) models were created.

Table of results

Test Classification accuracy

Trans vs non-Trans 80%

Ligand vs non-VGC 92.4%

Ligand vs Potassium/Rectifier 94.7%

The second test to discriminate between ligand transmembrane proteins

and two other sub families of ion channel transmembranes yielded similar

accuracy of 94.7% for positive ligand classification.
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Figure 3.9: Ligand transmembranes and non-transmembrane proteins were
scored against the ligand profile HMM. The distribution clearly shows the trained
ligand HMM able to discriminate between the two groups of proteins.
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Figure 3.10: Three transmembrane sub-groups (ligand,potassium and rectifier)
were scored against the ligand profile HMM, in which despite stark similarities in
structure, the ligand HMM scores significantly higher for ligand proteins than the
other transmembranes.
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Antifreeze proteins (AFPs) are produced by organisms often inhabiting

environments below freezing temperature, where such proteins can prevent

the organisms cells from freezing. AFPs are present in numerous organ-

isms, including bacteria, plants, vertebrates and invertebrates (split over 2605

species). Despite AFPs having more or less the same functional purposes, se-

quence and structure (28 different structures over 4935 different sequences)

varies greatly, where classification on sequence alone does no discriminate

AFP’s from other proteins very well. Kandaswamy et al [24] show 83%

prediction accuracy with random forest to classify antifreeze proteins from

non-antifreeze proteins, giving higher accuracy than standard profile hidden

Markov models. The following example aims to highlight the difficulties that

are incurred when trying to classify antifreeze proteins using p-HMMs.

An antifreeze profile HMM was built from 169 seed antifreeze proteins

from the PFAM database, where a test set of 4935 antifreeze proteins, 4935

fake proteins generated from amino acid distributions of the antifreeze pro-

teins, and 5000 randomly selected proteins from the PFAM database were

scored against the antifreeze HMM. A second test, taking 1927 “antifreeze-

like” proteins from PFAM were also scored against the antifreeze HMM.

The antifreeze profile HMM easily classified antifreeze proteins, and dis-

criminated against the fake proteins and randomly selected proteins. The

“antifreeze-like” proteins however, scored within the same range as the an-

tifreeze proteins themselves.

It is important to note in the fake protein example that using not only

profile HMM’s, but raw sequence alignment analysis in general would always

produce a correct estimation, where random forest would not be able to

discriminate between the fake proteins and antifreeze proteins based on amino

acid frequency alone, as the fake sequence has used the same composition of

amino acids.

While antifreeze proteins are known to contain above average amounts

of certain functional groups and amino acids, the sequence structure is not
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Figure 3.11: Fake proteins gen-
erated with the same amino acid
frequency as the antifreeze proteins
scored against the antifreeze HMM
was significantly less than that of
the antifreeze proteins

Figure 3.12: Antifreeze-like (green) and antifreeze proteins (blue) scored against
an antifreeze-like HMM. Antifreeze proteins do not score well because antifreeze-
like proteins have high variance in their sequence data, hence providing various
other functional properties.
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Figure 3.13: Antifreeze-like (green) and antifreeze proteins (blue) scored against
an antifreeze HMM. Both score well against the HMM, where antifreeze-like pro-
teins contain segments of sequence similarity to antifreeze proteins.
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know for high homology within the family. This is reflected in the results

from the HMM that find it difficult to distinguish between antifreeze and

antifreeze-like proteins

It is clear that p-HMM’s perform just as well as in the literature, and ex-

cel at picking out subtle differences in proteins of similar sequence structure.

This is illustrated by the high classification accuracy obtained determining

between different types of proteins within the same protein family (92% accu-

racy). p-HMM’s are able to discriminate at this level because the alignment

of proteins to a p-HMM scores the alignment based on conserved regions of

sequence, and hence are able to track the subtle difference in proteins that

occur over evolutionary processes. Based on the multiple sequence alignment

to a p-HMM model it is possible to explore regions of the sequences that are

conserved to see why the proteins are related on a functional or structural

level.

It must be pointed out however that in an example such as antifreeze

proteins where the proteins in the family are mainly based on functional

purpose rather than sequence similarity, discriminating between sub-types

does not work as well as the transmembrane proteins. This is not surprising

given that the proteins have evolved from multiple different types of proteins

to converge on a similar function. It would be necessary to used a technique

that could use functional groups within the protein to classify them, such as

random forest.

The scoring system from the p-HMM however are standardized by the

fact training is undertaken by using a positive datasetset only. A negative

dataset is not required, and the result of aligning a protein to a p-HMM is

not relative to a negative dataset. This puts the alignment in firm context

of what is the main goal of p-HMM’s, and that is to determine if the protein

belongs to a certain family based on the statistics of the multiple sequence

alignment of sequences in that family. p-HMM’s as well as any other tech-

nique that rely of sequence alignment is perhaps the only way of determining
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true distant homologs without supplementing them with Phylogenetic data

from evolutionary processes. It therefore has to be said that based on the

nature of the training and scoring system, p-HMM’s are the choice of tech-

nique to use when a standardized measure of what family a protein belongs

to is needed.

3.9 Summary

Profile HMM’s offer a way of generalizing protein sequences belonging to

a certain family by producing a statistical model of the sequences when

aligning all sequences in the family. They were introduced by [27] and further

developed by [16] to provide a method of aligning multiple sequences for

comparison. Proteins are able to be aligned to the profile HMM by the Viterbi

algorithm in which the proteins are scored against the model by means of a

log-odds ratio. Emissions and transitions of amino acids in specific positions

of the sequence are scored, as well as deletions/insertions of amino acids from

sequence to sequence within the family. This produces an accurate method

of aligning sequences that effectively allows alignment to all of the proteins

in the family. There is also no need to use a negative training set as the

HMM is not strictly discriminatory as random forest or SVMs. The score is

therefore an absolute prediction of how a protein might belong to a family, as

opposed to being weighted by a negative dataset. What hasn’t been included

in the HMM experiment is the ability for the HMM to produce sequences

based on the statistical features of the model. However this could be useful

for protein synthesis, especially in drug discovery.

Many applications of HMM’s focus on determining hidden states of a

system, such as a loaded dice in a casino based on a sequence of rolls. HMM’s

can be used in this way in protein analysis, for example segmenting ares of

sequence that are rich in certain functional groups, profile HMM’s are a

special case where the statistical model built from a family of sequences are

99



used to score a protein by comparing the amino acids sequentially compared

to the model, where no hidden states are factored into this scoring system.

Their specialty is in detecting remote protein homologs that have typically

evolved away from an ancestor family of proteins, and as this experiment has

shown, it is possible to distinguish between very similar groups of proteins

such as transmembrane proteins.
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Chapter 4

Discussion and future work

The aim of this thesis was to provide an insight of machine learning in the

context of protein classification, in particular the random forest and hid-

den Markov model algorithms. Random Forests and HMMs take completely

different approaches - random forest uses meta data extracted from protein

sequences to split the data into user-defined classes, where HMMs build a

statistical model from directly aligning protein sequences of known homol-

ogy, and new sequences are then aligned the model. There is a large focus

in bioinformatics on how various machine learning algorithms compare to

eachother in terms of classification accuracy, but just as was illustrated in

the differences between local and global alignments of sequences (Needleman-

Wunsch and Smith-Waterman algorithms), each machine learning algorithm

should also be viewed on it’s individual merits and what they can offer.

Hidden Markov models not only classify proteins, but can determine un-

derlying features such as frequency of certain amino acids in match states

of a profile HMM, or by segmenting the model to determine hydrophobicity

or isoelectric profiles. The fact that profile HMMs are built from directly

aligning sequences to a model built by aligning many sequences provides a

classification tool that specializes in finding the local segments of protein

sequences that are conserved through evolution or show high homology, and
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thus provide a way to find distant homologues that have diverged through

evolutionary processes. They also take advantage of the statistical infor-

mation obtained from proteins inserting amino acids into their sequence to

achieve a new functional purpose, and when proteins divergence it is often

difficult to see this unless inserts and deletions in data are accounted for,

where two proteins clearly show they are of similar origin, however both pro-

teins have their own amino acids inserted and deleted which only become

apparent when aligning them in this way. Another aspect of HMMs is that

a log-odds scoring system (converted into bit-scores for more readable pur-

poses) provide a metric that is far more expansive than simple and discrete

yes/no labels used in random forest. This can provide biologists a way of

focussing on proteins which do not classify as well and explore through other

methods to discriminate them against a family. Random forests on the other

hand excel at discriminating between two groups of proteins and are not

constrained to classifying on raw sequence data. The ability to extract and

train on a vast array of features, ranging from simple frequencies and purely

mathematical features to recognized physiochemical and functional proper-

ties of the proteins allows for customization that can tailor the process based

on prior knowledge of the protein groups. The features used to best split

the data are computed via the gini index (or permutation importance is an

alternative method) and so provide an insight into what features were used

to classify the data. This is an incredibly useful and intuitive feature of

random forests and can not only be used to verify that important features

expected to be found within certain families are part of the classifier, but also

could potentially provide a platform for investigating features picked out by

random forest that were not necessarily thought to be important.

This thesis implements both algorithms on transmembrane and antifreeze

proteins through a series of different comparisons. Transmembrane proteins

have typically evolved from very few ancestors and as such have retained

high sequence and structural homology, designed to carry out very specific
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tasks. Small nuances in localized parts of the sequences and catalyst sites

are usually the source of difference between sub groups. Antifreeze proteins

on the other hand are a classic example of parallel evolution where many

groups of proteins have evolved convergentially and independently to per-

form the same function, namely controlling the thermal hysteresis of cells in

an organism. Because of the parallel evolution, the sequences and structure

are highly divergent within their own sub groups, but all the while demon-

strating common functional and physiochemical features between them. As

such there are proteins which purely act as antifreeze proteins (which are dis-

tinctly different between different types of organisms such as fish and insects),

and antifreeze-like proteins where the proteins perform in the same way as

antifreeze proteins, but may also contain sequence data that allows them to

perform other functions as well, or functions which are now redundant (like

the common Christmas tree containing huge amounts of junk DNA which

isn’t used any longer, but once performed some function in its evolutionary

history). To really test the power of random forest and HMM, not only were

transmembrane protein groups compared against non-transmembrane pro-

teins, but this thesis tried to classify between type III antifreeze proteins and

their homologous counterparts.

The results of using both techniques yielded accuracy achieved among

many other techniques across various different protein groups (accuracy typ-

ically from 85% upwards). Both techniques coped well with classifying be-

tween transmembrane proteins and non-transmembrane proteins, as well as

classifying between their sub groups. Random forest required a lot of features

in the training and test datasets to achieve similar accuracy, including pre-

dicted secondary structure data which is time consuming to process. Random

forest will also rely heavily on the negative training set to classify the data

- something which requires a huge dataset that can represent “background”

protein distributions. However, as was seen in the classification of antifreeze

proteins from their homolgously similar counterparts, because random forest
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can take into account secondary structure and functional properties as a fea-

ture vectors, classification between the two groups is possible, however due

to the fact that the raw sequences have high variation even between proteins

of the same sub group, profile HMMs struggle to tell the difference between

the two sub groups when aligning both groups to a profile HMM of the an-

tifreeze proteins. This is because both groups only small local segments of

the protein that are similar, where antifreeze proteins do not contain certain

segments of data found in flagellar basal-body an pilus assembly proteins,

however viewed from the other way around the antifreeze-like proteins will

contain more segments found in antifreeze proteins in order to perform their

function just as antifreeze proteins do. It is interesting to note that the

PFAM database which has defined the two sub families of the type III an-

tifreeze proteins only discriminates well between the two when aligning both

families to the antifreeze-like model, meaning that parts of the sequence and

structure in the antifreeze-like proteins that are not used for antifreeze func-

tionality play a major part in discriminating between the two. It is also

interesting that random forest classifies between these two groups better on

a whole when using the seed training data that was used specifically to build

the type III antifreeze HMM in PFAM - which if we remember all families

were built from HMM software.

A case could be made that random forest and profile HMMs can be

used side by side given their methodological difference and outputs. Because

profile-HMMs only require a positive dataset to both train and test on, they

would often be the first port of call to ask the simple question “which family

does this protein belong to?” as it picks up on sequence similarities which

explicitly show how it could belong to a certain family. Random forest can

then be used to look deeper into which features are important within a family.

On the other hand, because some protein families are defined by functional

purpose alone, such as antifreeze proteins, random forest can be tailored to

look only at functional features to classify proteins. Once classified using
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random forest, these proteins with their functional importance known, can

be alingined against profile-HMMs models and potentially identify protein

families with similar functional purpose, something which drug companies

would benefit from knowing. The main realization from this thesis is that, it

is obviously important to have techniques such as random forest and HMM’s

that are known to classify proteins well, however it important to know why

certain proteins belong to certain families. Both techniques in this thesis

demonstrate that and go some way to refuting the idea that machine learn-

ing techniques are merely black box processes giving no insight into what

was important when classifying the data.

Future work will include using predicted secondary structure as the pri-

mary input to profile-HMM’s. If HMMs can built on secondary structure, it

would be possible to enhance search capability for proteins that share simi-

lar structure. Just as aligning to profile-HMMs is effectively like aligning to

100’s of sequences rather than just one, it would be possible to search for

structures based on families rather than individual proteins which be vary

within it’s own family. It would be much quicker to align to a model, find a

homologous family in terms of structure and take a small subset of proteins

to use in experiments. Not only does this speed up an otherwise exhaustive

search, but it is also more powerful. Considering the most time consuming

part of this thesis was to get predicted secondary structure of the proteins,

having a profile-HMM of secondary structures and the ability to generate

sequences from a model, as long as the structure is well defined and recog-

nized to belong to the intended family, secondary structure generation could

be possible to help populate secondary structure training sets for random

forest. In the interest of trying to combine the merits of each technique,

it would also be entirely feasible to use the score of aligning a proteins to a

profile-HMM as input to a random forest,especially if there are multiple com-

peting families to discriminate between. Perhaps a more ambitious metric

to take from p-HMMs into random forests would be to segment the align-

105



ments to a HMM into sections such as regions of high conservation within

the alignment, or even something as simple as percentiles of the alignment

and how well each percentile scores as a local alignment. This would allow a

way to inject ordered sequence data into the random forest, something which

random forest lacks due to its reliance on meta data.
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sifier with feature selection to identify phage virion proteins. Computa-

tional and mathematical methods in medicine, 2013, 2013.
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