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Abstract

3D human pose estimation is a very difficult task. In this paper we propose

that this problem can be more easily solved by first finding the solutions to a set

of easier sub-problems. These are to locally estimate pose conditioned on a fixed

root node state, which defines the global position and orientation of the person.

The global solution can then be found using information extracted during this

procedure. This approach has two key benefits: The first is that each local

solution can be found by modeling the articulated object as a kinematic chain,

which has far less degrees of freedom than alternative models. The second is

that by using this approach we can represent, or support, a much larger area of

the posterior than is currently possible. This allows far more robust algorithms

to be implemented since there is far less pressure to prune the search space

to free up computational resources. We apply this approach to two problems:

The first is single frame monocular 3D pose estimation, where we propose a

method to directly extract 3D pose without first extracting any intermediate 2D

representation or being dependent on strong spatial prior models. The second

is multi-view 3D tracking where we show that using the above technique results
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in an approach that is far more robust than current approaches, without relying

on strong temporal prior models. In both domains we demonstrate the strength

and versatility of the proposed method.

Keywords: 3D Pose Estimation, Tracking, Local Solutions, Root node.

1. Introduction

There is currently much interest in tracking and estimating the pose of artic-

ulated objects, particularly if this articulated object is a human. The principal

difficulty with this task is the high dimensionality of the solution space and

noisy, often ambiguous observations. The high dimensionality of the solution5

space can be overcome by, for example, using iterative approaches that allow

a coarse to fine resolution search to be performed. Whilst effective at find-

ing strong minima, these approaches are susceptible to ambiguous observations;

only a small area of the posterior is supported making these methods prone

to unrecoverable failure. This is in contrast to methods such as the Pictorial10

Structures Model (PSM) [1, 2, 3], where the entire search space is evaluated

over a discrete grid. By calculating the full posterior distribution ambiguities

can be overcame as either more observations become available or by integrating

further high-level a priori information. Whilst the PSM is applicable to 2D

pose estimation, when applied to 3D pose estimation the search space becomes15

too large to exhaustively search without resorting to an unsatisfactorily coarse

grid.

The approach we propose in this work is to combine the advantages of both

methods. On the one hand we want to provide much wider support across the

solution space, whilst on the other hand keep computational costs low by actively20

pruning areas of little interest to enable finer resolution searches to be performed

over a continuous, rather than discrete, state space. To accommodate these

seemingly conflicting ideas, instead of estimating pose as a single optimization

problem, we attempt to solve a set of easier, more constrained intermediate

problems. By allowing each intermediate problem to be solved independently, we25
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can ensure that these are broadly distributed across the domain, thus increasing

support. Whilst at a local level to each sub-problem, we can more confidently

reduce the search space to provide a set of local solutions.

Each local solution is provided by estimating the conditional posterior dis-

tribution. This is a distribution over human pose conditioned on a fixed state30

of the root node. The root node represents the position and orientation of the

person in the global frame of reference. The principal assumption we exploit

in this work is that it is much easier to correctly estimate 3D pose if

the correct state of the root node is known a priori. To exploit this

assumption we only require that: 1. The correct state of the root node is35

contained within the solution set. 2: Given (1), that the correct root

node state can then be identified. The first condition is met by ensuring

local solutions are found for a broad range of root node states. The second

condition is achieved by using knowledge gained through estimating each local

solution, for example, by finding the local solution with the highest likelihood.40

However, the technical challenge in using this methodology is not to allow the

computational cost of finding multiple solutions to be greater than competing

methods that estimate pose as a single optimization problem. Through this work

we show this can be achieved and present a number of novel approaches to attain

this whilst applying a local-solution approach to two different problems. The45

first is direct 3D pose estimation from single monocular images and the second

is 3D multiple-view tracking of pose. It is shown that in both scenarios state-

of-the-art results are achieved without providing our method with additional

computational resources, where we assume the computational bottleneck is in

the required number of image likelihood evaluations.50

2. Background

Human pose estimation can be broadly split into two categories, detection

and tracking. The key difference between the two is in the source of prior

information used by each. In tracking this information is provided through ob-
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servations made in the previous time steps and a temporal prior that describes55

how a part is expected to move. For pose detection it is provided by a spatial

prior that describes the relationships between connected parts. The prior effec-

tively adds a set of constraints. In general the more constrained the prior the

better the method will work given noisy data, though this is at the expense of

its generality.60

Simple and unconstrained priors include zero-mean Gaussian diffusion for

tracking [4] and a uniform prior for pose detection [5]. However, the focus of

much recent work has been on developing stronger priors. For tracking, action

specific models are learned using methods such as Gaussian Process Dynam-

ical Models (GPDM) [6] or Mixture of Factor Analyzers [7]. These methods65

effectively reduce the dimensionality of the pose space by exploiting repeated

patterns of motion in actions such as walking or running. A benefit is that

they can learn correlations between unconnected parts of the body allowing a

part to be localized even if it is occluded, though this is at the expense that

this approach will deteriorate for unseen motions or poses. This limitation can70

be overcame by learning a range of priors for different motions and extracting

the required prior at runtime [8]. In this work for tracking we use a zero mean

diffusion model as a temporal prior. We opt for this weak temporal prior since

this exposes the performance of the underlying tracking methods in coping with

any noisy or ambiguous observations, not the strength of the prior model or75

data it has been learned from.

In pose detection it is often desirable to keep the model as general as pos-

sible so it is applicable to a variety of poses. For example a single Gaussian

may represent the prior between connected parts [9]. Correlations between un-

connected parts are modeled by adding latent variables [10] or learning a set80

of more constrained individual priors by first clustering training data and then

learning a model from each cluster [11, 12].

Whilst still an open problem, some have attempted to combine tracking and

detection using both strong temporal and spatial priors [13, 5, 14, 15, 16, 17], and

very recently coupling action and pose estimation [18], [19]. However, directly85
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combining the two often results in an untractable optimization problem where

the global solution can not be guaranteed [13]. A more popular method is to

effectively treat the two as independent problems [5, 16, 14]. Temporal priors

are used to reduce occurrences of false positives, whilst improving true positive

rates. A further benefit is that temporal consistency of the appearance of parts90

across a sequence can also be exploited.

In addition to a prior, another key component needed for estimating hu-

man pose is a method of optimization or inference. Currently, for single image

2D pose estimation a popular method is the Pictorial Structures Model (PSM)

[9, 20, 21]. This is a part based approach, where each part is detected indepen-95

dently and then these detections are assembled into the most likely configuration

using a spatial prior and Dynamic Programming. This approach assumes a tree

structure, where nodes represent the parts of the model and physically connected

parts are joined by edges. The search space for each part is defined by a uni-

formly sampled grid that covers all permissible orientations and positions. The100

benefit of a uniformly sample grid is that the maximum coverage of the search

space is achieved given the available resources, there is no bias as a result of ini-

tialization. Additional edges can be added to the model to represent temporal

connections, however, often the problem then becomes intractable and meth-

ods such as Loopy Belief Propagation [22] or using a combination of trees [15]105

can be used to find a local solution. Recently, Deep Neural Networks (DNNs)

show outstanding performance on different vision problems, such as large scale

visual recognition and object detection. DeepPose method [23] treats the pose

estimation as a regression problem, where it learns the correlation between the

pose vector (coordinates of the joints in the bounding box of detected subject)110

and the image appearance using convolutional DNN. It requires a large amount

of training data, and hard to extend to 3D, as there are much more degrees of

freedom than 2D image domain.

Whilst popular for 2D pose estimation it is not obvious how to apply these

uniformly sampled grid approaches to 3D pose estimation. The main difficulty115

is how to discretize the search space of a more complex and higher dimensional
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object and negate the additional computation cost of exploring this space. For

this reason stochastic approaches are popular for 3D pose estimation [4, 24,

25, 13, 26, 27]. Each stochastic sample may represent the entire state of the

body [4, 27, 25, 24] or an individual part [13, 26, 28]. Intuitively, estimating the120

entire state is more computationally intensive since the size of the search space is

exponential with the number of parts, though methods have been developed to

improve the efficiency of this task[4, 29]. An alternative is to optimize individual

components of the object’s state, for example using Partitioned Sampling [25]

or Markov Chain Monte Carlo [24]. A limitation with these approaches is that125

they are iterative and need convergence for a solution to be found. As noted in

[30, 31], this convergence happens in a particular order for objects modeled as a

kinematic chain. Typically, those parts nearer a fixed node must converge before

parts further down the model can do so. It is expected that any uncertainty in

a given part will be propagated down the kinematic chain.130

To overcome this problem, stochastic part based methods can be used, such

as Non-Parametric Belief Propagation [32, 13] or Variational MAP [26]. These

approaches do not model an articulated model as a kinematic chain but as a

loose-limbed model, where the joint between connected parts is soft and allowed

to deform. However, as the connection between parts is soft, the model is less135

constrained and slippage can occur, where two limbs can be joined at a very

unlikely location or may not even be physically joined. It has been shown that

given a known root location, models that have fixed joint positions outperform

loose-limbed models at estimating 3D pose [31].

A popular alternative to direct 3D pose estimation is to first estimate 2D140

pose and then “lift” this to 3D using a low dimensional embedding of the action

you are observing [16, 6, 33]. However, the limitation of this is that whilst the

2D prior is likely to be very general the mapping between 2D and 3D will most

likely not be. Other approaches include estimating pose from multiple visual

hulls [34] and from dept images [35, 36] since the recent growing popularity of145

time-of-flight sensors.

The method we propose in this work allows the benefits of a part based ap-
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proach to be exploited, whilst still modeling the body as a kinematic chain. This

results in a method that is constrained, allowing accurate pose estimation to be

performed, yet efficient. This is achieved by fixing the root node state for each150

local solution and finding the conditional posterior for each. All probability den-

sity functions are represented by parametric models making the representation

extremely efficient compared to purely particle based approaches.

The approach developed in this work is applied to two problems, monocular

3D pose estimation and multi-view 3D pose tracking. The tracking method155

has been previously published in a conference proceedings [37], however, in this

paper we significantly strengthen the principal and theoretical grounding for

the approach. This permits us to develop a much more general framework

and we demonstrate this by also applying it to the problem of unconstrained

monocular pose estimation. The tracking method described can be seen as a160

single implementation, or incarnation, of the framework described herein.

3. Approach

To estimate human pose we use a part based approach. The body is rep-

resented as a graph consisting of n hidden and n observable nodes. The hid-

den nodes represent the state of different parts of the kinematic chain, X =165

{x1, ..,xn}, and the observable nodes represent the observation for each part,

Z = {z1, .., zn}. Each observable node is connected to a single hidden node

and hidden nodes are connected by the set of edges (vi, vj) ∈ E. In this work

we place particular emphasis on the root node, xr. The state of this node is

particularly important since it also gives the pose its global configuration, for170

example its position and orientation. The state of all other nodes describe the

local orientation and position of each part relative to this. We therefore can de-

compose the hidden states as X = (X,xr), where X = {x1, ..,xn−1} represents

all nodes excluding the root node. A graphical representation can be found in

Table 1, where only the hidden nodes are shown.175

We use two steps to estimate pose. The first step is to find a set of local
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solutions {(X1∗,x1
r), .., (X

l∗,xlr)}, where each local solution is given by the pose

that maximizes the conditional distribution

Xm∗ = argmax
X

p(X|Z,xmr ). (1)

Given the set of local solutions, or pose estimates, we then seek to find the

“best” local solution. A number of measures could be used to achieve this for

example, by finding the pose that maximizes the posterior or learn discrimina-

tive detectors to locate the correct local solution.

This method is in direct contrast to a hierarchical approach where it attempts180

to first accurately locate the global parameters (position, orientation), following

which it then estimates the pose. In this work, we first accurately estimate

the pose and then the location. The benefit of this approach is that it can

use information extracted during pose estimation to provide a more confident

estimate of the global parameters (i.e. root node state.).185

3.1. Probability Density Function Representation

Probability Density Functions (PDFs) are commonly represented using dis-

crete samples. The distribution or density of the samples may represent the

PDF if using a method such as the Particle Filter [27] or, alternatively the

samples may be taken uniformly over a grid and weighted by the PDF at that190

position. This is particularly popular if using a method such as Dynamic Pro-

gramming or Belief Propagation [9]. We refer to these samples as delta-samples

since they only represent the PDF at a single position. In the case of Kernel

Density Estimation (KDE), each sample is assumed not to be discrete but have

a continuous distribution defined by the parameters of the Kernel.195

In this work, we represent the PDF using a set of hyper-samples, these are

a fusion of both delta-samples and a parametric representation. Each hyper-

sample only provides support at a discrete location in the state space of the

root node, however, the distribution over all other parts is continuous and rep-

resented using a parametric model. A hyper-sample is therefore defined as

Sm = {xmr ,Θm}, where xmr is the delta-sample representing the root node state
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and Θm is a parameter to describe the PDF over all other parts. In addition

each hyper-sample is provided a weight where

wm ∝ p(xmr ) (2)

which is the prior of the root node state.

The PDF over pose X is approximated by a set of M hyper-samples

p(X) ≈ [Sm]
M
m=1 , (3)

where each hyper-sample represents the PDF over all parts conditioned on a

given root node state:

Sm = p(X|xmr ). (4)

Each hyper-sample can further be decomposed to a distribution over each part,

excluding the root node,

p(X|xmr ) = {p(x1|xmr ), .., p(xn−1|xmr )}. (5)

Given a set of hyper-samples {S1, .., Sl}, the probability for a given config-

uration is then calculated as

p(X) =

l∑
m=1

wmp(X|xmr )δ(xmr − xr), (6)

where δ(.) is the Dirac delta function and
∑l
m=1 w

m = 1. The conditional

probability is given by the parametric function

p(X|xmr ) = F (X,xmr ,Θ
m), (7)

Whilst F (X,xmr ,Θ
m) could be represented by any suitable function that could

be used to represent a probability density function, in this work we examine

using a graphical representation. A star graphical model is used for pose esti-

mation so that

p(X|xmr ) =

n−1∏
i=1

p(xi|xmr ) (8)

where

p(xi|xmr ) = f(xi,x
m
r ,Θ

m
i ) (9)
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and the parameter for each hyper-sample becomes a set, Θm = {Θm
1 , ..,Θ

m
n−1}.

For tracking we use a model based on the standard Pictorial Structures model

[9] assuming that the graph is a tree and does not contain any loops

p(X|xmr ) =

n−1∏
i=1

p(xi|xmr )
∏

(vi,vj)∈E

p(xi|xj , θij) (10)

where θij is a connection parameter which describes how probable a configura-

tion is between two connected parts, and (vivj) are a pair of adjacent nodes in

the structure model. Unlike Θm = {Θm
1 , ..,Θ

m
n−1}, these connection parameters

are constant across all hyper-samples.
∏
p(xi|xj , θij) represents the conditional200

dependence between connected parts where the connection graph is illustrated

in Table 1. Note also that as xmr remains constant when estimating a local

solution, for each hyper-sample the addition of a dependence on this value in

Eqn. (10) does not introduce loops into the graph.

Each hyper-sample Sm represents a hyper-plane of the PDF over all parts,205

except the root node. Each hyper-plane is parallel to the axes of the root node

state and passes through the point xmr . This method of approximating a PDF is

illustrated in Figure 1 and compared to using a set of delta-samples. As can be

seen a small set of hyper-samples can represent a large area of the PDF and are

much more informative. For example each mode is easily accessible through the210

parameters of Sm, whereas further analysis, such as clustering, would need to

be applied to extract the modes of the representation depicted in Figure 1 (a).

This representation differs from KDE since we do not combine the distributions

from different hyper-samples. Each hyper-sample independently represents a

slice of the probability density function over the state space X.215

3.2. Estimating a Local Solution

To estimate a local solution the observational likelihood function must also

be computed. Using the standard Pictorial Structures model and Bayes’ theo-

rem, the probability of a configuration given a fixed root node value and set of
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Figure 1: Comparison of representing a PDF using a set of delta-samples (a) versus Hyper-

Samples (b). Whilst in standard approaches a sample typically represents the PDF at a single

location (a), using the proposed method each hyper-sample represents a hyperplane of the

PDF conditioned on the root node state, xr (b).

observations is calculated as

p(X|Z,xmr ) =
p(Z|X)p(X|xmr )

p(Z)
(11)

where the likelihood for each node is independent so that

p(Z|X) =

n−1∏
i=1

p(zi|xi). (12)

The distribution p(X|xmr ) is calculated using Eqns. (8) or (10). To estimate

a local solution we use Belief Propagation to calculate the belief at each node

given by

p(xi|Z,xr) = p(zi|xi)p(xi|xmr )
∏

vj∈E(i)

p(xi|zj , .., zT ), (13)

where vj ∈ E(i) defines the set of edges connected to i and {zj , .., zT } repre-

sents the set of observations for the subtree containing vj , created by removing

the edge {vi, vj}. The right most term represents messages being passed from

connected nodes.220

The beliefs are calculated using Importance Sampling where delta-samples

are drawn from the proposal function given by

xli ∼ p(xi|xmr )
∏

vj∈E(i)

p(xi|zj , .., zT ) (14)
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and weighted by the likelihood function wli ∝ p(zi|xli). Using these weights the

parameters of the hyper-samples Θm = {Θm
1 , ..,Θ

m
n−1} can then be updated

so that the distribution p(X|Z,xmr ) ≈ F (X,xmr ,Θ
m). The method used to

draw delta-samples and calculate the proposal function is different for both pose

estimation and human tracking, as is the method to update the hyper-sample225

parameters.

In the following sections, we use hyper-samples to propose new novel meth-

ods for both 3D pose estimation from single images, and 3D tracking where

multiple views are available. Whilst exploiting the same framework the two ap-

proaches are implemented very differently to highlight the strength of this ap-230

proach. For tracking, the hyper-samples are distributed over xr stochastically,

similar to existing particle filtering approaches, though in contrast the delta-

samples are selected deterministically making the approach extremely efficient.

For single frame pose estimation the hyper-samples are distributed uniformly

over xr as in the PSM model to ensure maximum coverage of the pose state235

space, however, now the delta-samples are drawn stochastically. For monocular

pose estimation we use a discriminative likelihood function, p(zi|xi), whilst for

tracking it is generative. Furthermore, to estimate the correct root node state,

x∗r , a discriminatively trained detector is used for monocular pose estimation,

whereas for tracking we use a generative model. The PDF over each individual240

part, p(xi|xmr ) = f(xi,Θ
m
i ), is modeled using a single gaussian for tracking and

a Gaussian Mixture Model for single frame monocular pose estimation.

In order to demonstrate that for optimizing over articulated objects, a good

global solution can be found by first finding a set of local solutions, and then

optimising over these to find the best global solution, we apply the proposed245

method to both pose estimation and pose tracking problems. The graphical

model used to represent the human body for each task is shown in Table 1 (top

row). The node labels for Monocular Pose estimation are Torso, Head (H), Left

Arm (LA), Left Leg (LL) etc. The labels for Multi-View Tracking correspond

to the Hip (Hip), Torso (Tor), Upper Left Arm (ULA), Lower Left Arm (LLA),250

Upper Left Leg (ULL) etc. There is a hidden node for each observed node, so
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Table 1: Comparison of method presented for monocular pose estimation and multi-view

tracking. Root nodes are shaded and for clarity observable nodes are not shown.

Monocular 3D Pose Multi-View Tracking

Graph
Tor 

H  

LA RA 

LL RL 

Hip 

Tor ULL URL 

H ULA URA 

LLA LRA 

LLL LRL 

Estimate p(X|Z,xmr ) Stochastic Deterministic

Hyper-sample distribution

over xr

Deterministic Stochastic

Estimate x∗r Discriminative Generative

Estimate p(zi|xi) Discriminative Generative

Parameterization of p(xi|xm
r ) Gaussian Mixture

Model (GMM)

Gaussian

it is one to one mapping as in the standard pictorial structure mode. As can be

seen, for monocular pose estimation a single node is used to represent an entire

limb, whereas for tracking a node defines a single part. A comparison of the

two solutions can be seen in Table 1, and a full description of the model used255

for each is provided in the following sections.

4. Application 1: Monocular 3D Pose Detection

In this section, we apply our method to the problem of estimating 3D pose

from single monocular images. The pseudocode is illustrated in Algorithm 1.

Human pose estimation benefits from a fixed root node approach in a number260

of ways. Firstly, using our method we ensure maximum coverage of the search

space is achieved given a fixed set of resources, by distributing the hyper-samples

uniformly across the state space of the root node. Secondly, we use limb likeli-

hood estimates for a given local solution to train discriminative human detectors

to improve detection rates. Finally, using our method, an accurate solution can265

be located without the requirement of convergence as the hyper-samples can

13



easily represent multiple modes, even when conditioned on a single root node

value. This is as the prior is modeled using a Gaussian Mixture Model (GMM)

and we show that each component, learned in quaternion space, represents an

independent volume when projected into Euclidean space.270

Algorithm 1 Algorithm for Monocular 3D Pose Detection

Given a set of hyper-samples uniformly distributed over the root node param-

eter space and initialised to the model prior.

for each hyper sample do

Stochastically optimize to find p(X∗|xmr ).

end for

Find p(X∗) given by the hyper sample which returns a positive detection from

the detector.

Further refine p(X∗|xmr ) using more expensive image features.

4.1. Model Representation and Sampling from the Prior

The graphical model used in this section is a star, consisting of 6 nodes;

the root node, which represents the torso and 5 nodes representing each of the

main limbs (heads, arms and legs). We assume the position of the ground plane

is known, which is a common assumption for 3D pose estimation and tracking275

[14, 38], though methods do exist that could be used to automate this process

(e.g. [39]). The state of the root node is parameterized as xr = (dr, qr), where

dr ∈ R2 defines the position on the ground plane and {qr ∈ R, 0 ≤ qr < 2π}

defines the heading of the subject.

Each distribution p(xi|xmr ) is modeled using a GMM. For each limb, a280

GMM is learned and used to initialize each hyper-sample respectively, hence

p(xi|xmr ) =
∑K
k=1 λ

kN (xi;µ
k
i ,Σ

k
i ), so that Θm

i = {λki , µki ,Σki }Kk=1, where K is

the number of components in the model, and λk, µk and Σk represent the kth

component’s weight, mean and covariance respectively. The root node state

is taken from a three dimensional grid over xr, representing locations on the285

ground plane and at each position a set of discrete orientations. This is de-

14



picted in Figure 2 (c) where we visualize a subset of the initial hyper-samples

used to estimate pose. In practice this is sampled much more densely and

at each sample point there are also hyper-samples with different orientations.

Each hyper-sample is therefore parameterized as Sm = {xmr ,Θm
1 , ..,Θ

m
n−1, w

m},290

where Θm
i = {λki , µki ,Σki }Kk=1.

Each distribution is learned over possible limb rotations, which are repre-

sented as unit quaternions. To approximate a Gaussian distribution over quater-

nions we use an approach similar to [13]. Each unit quaternion is represented

by two parts a scalar and vector part q = q0 + q̄. By ensuring the scalar com-295

ponent is positive a quaternion can be represented in R3 using only the vector

part. To reduce the likelihood of training data being located across the edge of

the unit sphere, the training data is used to estimate a “safe” quaternion space

by rotating the data so that the sum of the scalar component across all data is

maximal [37]. A GMM can then be learned directly in this space for each limb300

independently.

Each model is learned over an entire limb, which is represented by a single

node. This may represent a distribution over more than a single part, i.e. a

distribution over the left leg models that over both the lower and upper leg,

hence xi ∈ R6 (since each part has three degrees of freedom), except for the305

head which is modeled as a single part, xhead ∈ R3. The covariance for each

part is diagonal and can be written as Σki = diag(xki1, ..xij ..,x
k
ip), where j is the

index of the part, p is the number of parts for a given limb. For the arms and

legs p = 2, and for the head p = 1. The rotations are defined in the frame of

reference of the root node, not the part to which they are physically connected.310

As the graphical model is a star with a fixed root node the proposal func-

tion defined in Eqn. (14) becomes p(xi|xmr ). Delta-samples are drawn from

each GMM by first picking a component with likelihood k∗ ∝ λk, follow-

ing which a sample is drawn from the selected component
(
xsi1, ..,x

s
ip

)T ∼
N ((xi1, ..,xip)

T ;µk∗ij ,Σ
k∗
ij ), where p is the number of parts that make up a given315

limb. The rotations described by the sample can then be applied to each limb

and the kinematic chain is assembled. The root node state, xmr , gives the pose
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(a) (b) (c)

Figure 2: Example of samples drawn from the model prior (a). In (b) the GMM components

have been visualized by fitting a covariance to the samples drawn from each. In (c) the model

is shown projected to different root positions, though in practice this would be much more

dense and at each position multiple orientations would be projected. Lighter colors indicate

left side and darker ones indicate right side of the body.

its global position and orientation.

Though a single delta-sample may represent the state of more than one part,

an observational likelihood model is learned for each part independently. There-320

fore, the observational likelihood for a given delta-sample is given by combining

the likelihood of each part assuming conditional independence, hence p(zi|xsi ) =∏p
j=1 p(zij |xsij). Thus, the weight of each delta-sample is πsi =

∏p
j=1 π

s
ij . The

calculated weights are then used to update the GMM components from which

they were drawn using the Maximum Likelihood estimate. Note that if all325

weights were uniform the covariance and mean would be unchanged. The MAP

estimate for a local solution is approximated by finding the GMM component

with the highest likelihood for each node and using the mean.

An example of the prior used in this work is shown in Figure 2. In (a) we

show delta-samples drawn from the prior for a fixed root node position and330

in (b), for visualization a Gaussian has been fitted in Euclidian space to the

delta-samples drawn from each component in quaternion space. As can be seen

a different component learned in quaternion space appears to correspond to an

independent area in Euclidian space.
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4.2. Part Detection and Feature Extraction335

To detect individual parts we learn discriminative part detectors. The fea-

tures used are based on the Histogram of Orientated Gradient (HOG) [40], where

the gradient magnitudes in a small rectangular region of the image are binned

depending on their orientation to form a histogram. A set of these features,

which define the detection window, are then concatenated together to form a340

vector that can be used for training. Each component of this vector is referred

to as an attribute.

In previous approaches applied to 2D pose estimation, a small number of

orientations and scales are searched over for each part (e.g. [41]) allowing the

image to be pre-rotated and scaled before feature extraction commences. In our345

approach a sample for a part could be projected into the image at an arbitrary

scale and orientation preventing this method from being applied. To make

our feature extraction more efficient we take a number of steps. Firstly, we

use the l1 norm to normalize each feature, which allows us to use an integral

image representation to compute histograms efficiently [42] and we compose each350

feature of just a single cell. To accommodate rotations, instead of orientating

individual features we maintain them as squares with the direction of their sides

axis aligned with the image, however, we rotate the histogram bins to make them

axis aligned in the local frame of reference of the individual part. This is similar

to the method applied to orientate SIFT features [43]. To apply scale changes355

and rotations to the dense grid of individual features that compose a detection

window, we directly scale and rotate this grid. This approach can be seen in

Figure 3 where we show a set of features projected onto the position of the arm.

The scale of each feature is dependent on the hypothesized depth of the subject

for which they are being calculated.360

The detector used in this work is a JRIP classifier [44]. This is a rule

induction approach which learns propositional rules by repeatedly growing rules

and then pruning them. During the growth phase, attributes are added greedily

until a termination condition is satisfied. These are then pruned in the next

phase subject to a pruning metric. Once the rule set is generated, a further365
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Figure 3: Example showing features projected onto the lower arm. Whilst the grid of the

detection window is rotated the corners of each feature are not.

optimization is performed where rules are evaluated and deleted based on their

performance on randomized data. A benefit of this approach is that for a

given part not all individual attributes are used in the set of rules learned as a

result only a small fraction of the features need to be calculated. Classifying a

detector window is thus extremely fast. The detector produces a binary decision370

γ(xi, zi) = {true, false}. Whilst the JRIP classifier does not explicitly provide

a likelihood distribution, we approximate this using detection rates estimated

during training. For example, p(zi|xsi , γ(xsi , zi) = true) ≈ TPi

TPi+FPi
. Likewise

given a negative detection p(zi|xsi , γ(xsi , zi) = false) ≈ FNi

FNi+TNi
. We also learn

a detector for the torso, though as this is fixed relative to the root node state,375

only a single delta-sample is generated for this part.

To estimate global orientation and position of a person, x∗r , we use a method

similar to that presented in [16]. For each hyper-sample, Sm, a feature vector

can be constructed using the weights for each delta-sample extracted to update

it, Ym = (bm1 , .., b
m
k ), where k is the number of parts and

bmij =
1

d

∑
s∈Di

πsij (15)

where d is the number of delta-samples and πsij is the sample’s weight for the
jth part of the ith node (i.e. limb). In total there are ten parts, two for each of

the main limbs one for the head and one for the torso, hence Ym ∈ R10.

As previously described the set of hyper-samples, Sm ∈ S, are initially380
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the same except that their root node states, xmr = (dmr , q
m
r ), are distributed

uniformly across a grid that describes different locations on the ground plane

and a set of different orientations. At each ground plane location, dgp, there

are therefore a set of n hyper-samples, V = {Sm|dmr = dgp}, with the same

ground plane position, where n is the number of discrete orientations. The385

feature we use to both detect a person’s position and orientation is constructed

by concatenating the likelihoods of all these hyper-samples together. Hence,

V(V) = (Y1, ..,Yn)T . Since we define 16 different orientations, V(V) ∈ R160.

These are used as features for training detectors.

4.3. Experiments390

We use two datasets to train and test our human pose estimation method.

The HumanEva dataset [45] provides ground truth motion capture data so that

the accuracy of the pose estimation can be quantified and we also use the TUD

Multiview Pedestrians Dataset [16] to test our approach on more unconstrained

and cluttered scenes.395

The position of the ground plane is provided before detection commences.

The hyper-samples are distributed uniformly over the ground plane with a spa-

tial resolution of 100mm and angular resolution of 1/8π. We see this as being

the natural equivalent to 2D approaches that uniformly distribute the samples

across the image plane. To estimate the local solution of each hyper-sample400

600 delta-samples are drawn, where a single delta sample represents the state of

only a single part. Often there are several positive detections where a person is

located at small perturbations in position and scale relative to the true location

of the person. Therefore, after applying our detector we apply the mean-shift

algorithm to cluster the detections.405

The same JRIP detectors are used on both data sets. One is learned for each

part using data taken over all actions and subjects from the Train partition of

the HumanEva dataset [45]. MoCap data was used to select positive examples

and negative examples. An average reduction of 93% in the number of attributes

is achieved using the JRIP detector. This makes the approach far more efficient410
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since on average only 7% of the feature needs to be extracted from the image.

Each classifier has less than 20 rules and the maximum rule length was just 5

conditions.

To improve the accuracy of the extracted pose we further iterate the pro-

posed method using additional image features. We use a publicly available skin415

detector [46] to improve the estimate of the hands position. To improve the

pose estimate for the lower legs we use a generative foot detector constructed

from simple filters. We also use edge features by integrating over the HOG bins

that are orientated perpendicular to the edge of the projected part. Note this

iterative step is only performed for the selected hyper-sample (i.e. the hyper-420

sample where the person has been detected), hence, is far more computationally

efficient than having to calculate these features for all hyper-samples.

4.3.1. HumanEva Dataset

The HumanEva dataset [45] is used to provide quantitative results of the

extracted poses. The prior is learned for each subject using motion capture425

data from the corresponding train partition for that person. Example extracted

poses are shown in Figure 4. As can be seen the poses shown closely match those

of the subject depicted in each sequence. Quantitative results from the Validate

partition of the HumanEva dataset are presented in Table 2. These show the

error averaged across all joints of the model. As the method is monocular, we430

present both the relative and absolute error. The absolute error is dominated by

errors in estimating the root node state; often the hardest component to extract

is the correct depth. However, even if the depth is underestimated a good repre-

sentation of pose can still often be extracted resulting in a reduced relative pose

error. Also for comparison we present the error when the position of the root435

node is given, and only the orientation and pose is unknown. As can be seen the

relative error increase by only about 20mm when the position is unknown. For

comparison we compare our method with [16], who use a 2D Pictorial Structure

and then “lift” this to 3D using exemplars, they also have a temporal prior mod-

eled using a hierarchical Gaussian Process Latent Variable model. Tested on440
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Figure 4: Examples of extracted 3D poses for three different subjects.

walking in a similar sequence they reported a 3D reconstruction error of 104mm

on one subject and we achieve an error of 104.5mm averaged over all subjects.

However, their approach has a much stronger prior distribution and they use

observations made over multiple frames, where as currently we use only a single

image and our prior is much more general.445

−60 −40 −20 0 20 40 60
100

200

300

(a). Height of Ground Plane

 

 

Abs. 3D Error

Rel. 3D Error

−10%−8% −6% −4% −2% 0% 2% 4% 6% 8% 10%
100

150

200

250

(b). Focal Length

 

 

Abs. 3D Error

Rel. 3D Error

64 128 192 256
100

120

140

160

180

200

220

240

(c). κ

 

 

Abs. 3D Error

Rel. 3D Error

Figure 5: The 3D pose estimation errors for perturbations of ground plane on HumanEva

dataset. The units for all Y axis are mm.

To understand the effect of ground plane estimation on pose estimation

and tracking, we carried out a study that perturbs the ground plane position
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Table 2: Quantitative errors on the HumanEva dataset using Camera 3 [45]. The first column

shows the result if the position of the torso is known, but the pose and correct orientation is

unknown. The second column shows the relative error and the third absolute. The unit for

all quantities is mm.

Subject Known root position Rel. error Abs. error

S1 77.7 106.1 256.9

S2 62.1 83.3 200.1

S3 110.3 124.2 203.7

Average 83.3 104.5 238.8

and orientation and focal length. Figure 5(a) shows that when we deviate the

height of ground plane by 60mm (+/-, up and down respectively) from the

ground truth, an increase of absolute error can be observed, up to 343.53mm450

error compared to 220.24mm. This is expected as the height of ground plane

has a noticeable impact on the position of the root node. Figure 5(b) shows the

result of changing the focal length of the camera, which had limited impact on

the performance. Rotating the ground plane had little influence on the results,

see Figure 5(c). The rotational random perturbation is achieved by sampling455

from the Von Mises-Fisher distribution in R3, with concentration parameter κ

controls the degree of perturbation.

4.3.2. Datasets with unconstrained Scenes

The TUD Multiview Pedestrian Dataset contains images of people walking

in unconstrained scenes, such as shopping malls or parks. The scenes are highly460

cluttered and the people differ in both their appearance, location and size.

For training we labeled the position of the person in each image and also

classify their orientation to one of sixteen different orientations. This was per-

formed for 248 images used as a training set. The spatial model used in this

experiment is learned from Subject 1 in the HumanEva dataset whilst walking.465

The GMM for each limb conditional is learned from training data using the

Expectation Maximization algorithm.

We trained a multi-class linear SVM to estimate the orientation. Using 10

fold cross validation we achieve an accuracy of 0.21, significantly better than
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(c)(b)(a)

Figure 6: Example frames showing detector bounding box and ranking. (a) Examples with

ranking R1. (b) Examples with ranking R2. (c) Examples with ranking R3.

chance (0.0625). Note, commonly for pose estimation, we impose a much stricter470

criteria for positive detection compared to object detection. This means lower

accuracy of the classifier will be reported in order to retain only reliable positive

samples. If we relax the criteria slightly, i.e. in this case the discretized orienta-

tion state, the overall classification rate will increase significantly. For example,

if we allow a tolerance of ±1 orientation state, an accuracy of 0.44 is achieved.475

For testing we use 50 images taken across a broad range of scenes and orien-

tations. To give an idea of our detectors performance we rank detector perfor-

mance based on scale and position. We rank a detection as R1 if the estimated

height, Hest, in the image plane is within ±15% of the true projected height,

HGT , and the root position is estimated within ±0.05×HGT of the correct root480

position. A rank R2 score indicates the scale was correct by ±30% and root

position by ±0.10 ×HGT . Rank R3 is anything worse than this. Over the 50

test images the ranking scores are 24, 12 and 14 for R1, R2 and R3, respectively.

Example frames showing the detector’s performance for each are presented in

Figure 6. The conditions we use to rank the detections are quite stringent since485

a small error in the estimated position of the root node can make a significant

difference in the resultant pose.

In Figure 7 we show some examples of the extracted pose. In (a), (b)

and (d) we visualize the posterior distribution for the optimal hyper-sample,

p(X|Z, zm∗r ), by extracting delta-samples ((a) and (d)) and by plotting the490

GMM components (b). As is clearly shown the resultant posterior is still highly

multimodal allowing the opportunity for further optimization based on higher
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(a) (b) (c) (d)

Figure 7: Examples of estimated pose and conditional posterior distribution on TUD Multi-

view Pedestrian dataset, p(X|Z, zm∗
r ). (a) Projection of delta-samples drawn from conditional

posterior distribution. (b) Visualization of GMM modes. (c) MAP estimate of pose. (d)

Visualizing delta-samples from alternative view.

level priors or temporal integration. In particular notice in the example in the

top row that when the samples are rotated slightly as shown in (d), it can be

seen that the front leg in the image is represented by both a mode for the left495

leg and the right. Note also that although we only visualize the distribution

for the most likely hyper-sample, all other hyper-samples for all positions and

orientations are still maintained and can be accessed if needed. In (c) the MAP

estimates are shown for each image, as can be seen these closely relate to the

images shown.500

In Figure 8, we illustrate the most common cause of errors. As the model is

represented using a tree in (a) we see two limbs fitting to the same mode. This

is a common problem with all tree based methods. Errors shown in (b)-(d) are
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(a) (b) (c) (d)

Figure 8: Examples of typical failure cases. (a) Overcounting - both legs are attracted to

the same mode. (b) Poor depth estimation. (c) Incorrect root node position estimation. (d)

Incorrect root node orientation estimation.

all as a result of incorrect root node estimation, whilst (b) and (c) are due to

poor position estimation, (d) shows the wrong orientation has been detected.505

However, it would be expected that by increasing the resolution of the search

over the root node’s position and orientation some of these errors would be

reduced.

In addition, we provide examples of 3D pose estimation on Leeds Sports

Pose (LSP) dataset [47]. Note, this dataset is designed for 2D pose estimation,510

i.e. there is no internal camera parameters available or 3D ground truth.

The main parameters concerned are root node state discretization and num-

ber of components in GMM for each limb. For the first set of parameters, we

only use 16 orientations and the size of each cell on the ground plane is 100×100

mm2 while the ground plane is 2200× 2200. A finer discretization may improve515

the performance at the expense of some computational cost. The number of

components for GMM is empirical set, as in all parametric models. We do not

expect this has much influence on the result as long as the number of compo-

nents is not too small. Generally, the more movements the limb may exhibit,

the larger number of components may be needed. We use a single Gaussian520

for head and torso, 4-components GMM for upper arm, 8 components for lower

arm, 3 for upper leg, and 6 GMM for lower leg.

25



(a) (b) (c) (d)

Figure 9: Examples results on LSP dataset. (a) Projection of delta-samples drawn from

conditional posterior distribution. (b) Visualization of GMM modes. (c) MAP estimate of

pose. (d) 2D ground truth given by manual annotation.
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5. Application 2: Multiple View 3D Tracking

In this section, we apply our framework to the problem of tracking a person in

3D using multiple views. The pseudocode is listed in Algorithm 2. The benefit of525

our approach in this setting is that we can use a set of hyper-samples to represent

a much large volume of the state space than existing methods that typically

converge to a single solution or represent very few modes (e.g. [4]). In effect

a separate mode is represented by each of our hyper-samples making it a very

rich representation. The advantage of this is that it enables our approach to be530

much more robust to tracking failure. Tracking failure typically occurs when the

incorrect mode is tracked. This “incorrectness” is not the fault of the algorithm

and does not imply it has failed to track the global maximum. The problem is

that observations, even using multiple views, are ambiguous and noisy, therefore

it is conceivable that often the global maximum of the posterior is incorrect (i.e.535

it does not correspond to the true pose). Therefore, if only a single or very few

modes are being tracked failure is very likely. Our contribution therefore, is not

to design an approach that can most efficiently find the global maximum, which

is the focus of much of the tracking literature, but to develop an approach that

can support a much larger area of the posterior without further computational540

cost (i.e. without extra likelihood function evaluations). Therefore, if the global

mode is incorrect due to noisy observations the approach is less likely to suffer

catastrophic tracking failure. This is achieved by broadly distributing the root

node states of the hyper-samples. The effect of this is that it permits greater

uncertainty to be represented over the state of the root node, though this is545

achieved without then propagating this uncertainty to the remaining parts of

the model. We show this not to be the case if using existing standard methods,

where adding uncertainty to the root node also inflates the uncertainty of all

remaining parts of the model.

Further benefits of our approach is that as the PDF over the state space,550

excluding the root node, is represented parametrically these can be updated

in closed-form. For example temporal diffusion across frames can be added by
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inflating the covariance of each distribution and messages between connected

parts can be computed as a product of Gaussian’s. This makes performing in-

ference for each hyper-sample very efficient. Furthermore, we present a method555

to deterministically extract a sparse set of delta-samples from each distribution.

This is motivated by minimizing the KL-divergence between the distribution

of the delta-samples and the PDF they are used to approximate. Using this

approach each hyper-sample is updated using the equivalent number of image

likelihood evaluations as just seven delta-samples in a typical particle filtering560

approach.

Algorithm 2 Algorithm for Multiple View 3D Tracking

Given a set of hyper samples.

for each hyper sample do

Deterministically Optimize to find p(X∗|xmr ).

end for

Find p(X∗) given by the hyper sample x∗r with the highest posterior p(x∗r) as

the current solution.

Resample a new set of hyper samples from the old set.

for each new hyper sample do

Deterministically inflate the covariances of each hyper sample.

Stochastically perturb the root node state of each hyper sample.

end for

5.1. Tracking and Pose Estimation

Performing a joint optimization over both time and space using a part based

approach results in a complex graphical model that is difficult to solve. We take

a common approach and assume that tracking can be performed independently565

to pose estimation and each can be performed in turn.

The model used consists of ten nodes as is common in the Pictorial Structure

model, one for each single body part. The state of each part is again represented

by a quaternion rotation qi that describes the orientation of each part in the
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frame of reference of the root node. The root node xr does not explicitly repre-570

sent a part, its state represents the position dr ∈ R3 and orientation θr ∈ R3 of

the body in the global frame of reference, i.e. that of the motion capture suite.

The PDF for each individual node of a hyper-sample is modeled using a

Gaussian distribution, so that P(xi|xmr ) ∼ N (xi;µ
m
i ,Σ

m
i ) where µmi and Σm

i

represent the Gaussian’s mean and covariance respectively. Therefore, each575

hyper-sample is parameterized by Sm = {xmr , µm1 ,Σm
1 , .., µ

m
n−1,Σ

m
n−1, w

m}.

The posterior at time t− 1 is represented by a set of M hyper-samples,

so that p(Xt−1|Zt−1, ..,Z1) ≈ [Smt−1]Mm=1. Temporal propagation of the hyper-

samples is performed using importance resampling. A sample, Smt−1, is first

selected with probability proportional to the sample’s weight, wmt−1. A new sam-580

ple is then generated from this by propagating it through the temporal model

defined as, p(Xt|Xt−1) = {p(xr,t|xr,t−1), p(x1,t|x1,t−1), .., p(xn−1,t|xn−1,t−1)}.

The root node state of the sample is propagated using a Gaussian diffusion

model, so that xmr,t = xmr,t−1 + y, where y ∼ N (ẋr; µ̇r, Σ̇r) and ẋ represents the

first derivative with respect to time.585

The remaining parameters of the hyper-sample are propagated using a zero

mean diffusion model, however, these can be updated by directly inflating the

covariance of each node, so that µmi,t = µmi,t−1 and Σmi,t = Σmi,t−1 + Σ̇i, where the

covariance, Σ̇i, is provided by the temporal prior p(xi,t|xi,t−1) = N (ẋi; µ̇i, Σ̇i).

This temporal prior is not learned directly over ẋi but over ẋij , which is the590

rotational velocity of the ith part relative to the jth part to which it is connected.

Hence, p(ẋij) = N (ẋij , ˙µij , Σ̇ij)), where this distribution is learned over q̇ij =(
qtij
)−1

qt+1
ij .

Given a value for xj this can then be transformed to a distribution over xi

by:595

xi,t|xi,t−1 ∼ N (xi, µ̇i, Σ̇i) ≈ F
(
xj ,N (ẋij , ˙µij , Σ̇ij)

)
. (16)

The transformation, F
(
xj ,N (ẋij , ˙µij, Σ̇ij)

)
, is non-linear and is performed

using the Unscented Transform [48]. This method decomposes the covariance
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into a set of 2D sigma points Σ̄ = {σ1, .., σ2D}, where D is the dimension of the

covariance. Each sigma point is then translated by the mean to generate a set

of points that represent the mean and covariance of the original distribution.

Each sigma point is calculated as

σd =µ+
√
Dυded,

σD+d =µ−
√
Dυded,

(17)

where υd and ed represents the dth eigenvalue and eigenvector of the covariance

matrix. Each sigma point is then propagated through the non-linear function

(i.e. σ′m = qiσm) and the mean and covariance calculated from them.

During resampling, methods from annealing are used to adjust the weight of

the hyper-samples, such that w′ = (w)β . A value of β is selected such that the600

particle survival rate α can be estimated over the entire set of hyper-samples

as described in [4]. To allow the same survival rate to be maintained over a

fixed time interval, α is set according to α = exp lnαc

Nt
, where αc is the desired

cumulative survival rate per second and Nt is the frame rate. This is used so

that the uncertainty over the root node can be consistent regardless of the frame605

rate. A larger value of αc will allow the distribution of the hyper-samples to

spread over a larger area of the root node state space, since more of the sample

population will be maintained. This will provide wider support of the posterior

distribution.

5.2. Local Solution Estimation610

In this section we describe how a single hyper-sample is optimized to find a

local solution. Since we assume this can be performed independent of time we

drop the temporal indices for brevity. Though note the process described must

be performed for each hyper-sample in turn.

5.2.1. Limb Conditionals615

Limb conditionals describe how two connected parts can deform relative to

one another and are described by the distribution p(xj |xi, θij), where θij is
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the connection parameter. Rather than learning a full limb conditional over xi

and xj we follow the approximation in [13] and learn a distribution over xij

(i.e. p(xij |θij)). This distribution is also learned over unit quaternions, where

qij = q−1i qj , and the connection parameters are defined as the mean, µij , and

covariance, Σij , of a Gaussian distribution. Given a state for xi a PDF over xj

can be estimated by propagating the distribution, N (xij ;µij ,Σij), through the

rotation qi. This is also performed using the Unscented Transform, used in the

previous section, and is described by

p(xj |xi, θij) ≈ F (qi,N (xij ;µij ,Σij)) . (18)

5.2.2. Calculating Beliefs

In this section, we describe how the states of the nodes are updated for

each hyper-sample Sm using message passing between nodes. The messages

are calculated using Importance Sampling by drawing delta-samples from the

proposal distribution

xlj ∼ p(xj |xmr )
∏

vk∈E(j)

p(xj |zk, .., zT ). (19)

By constraining that all messages are Gaussian the proposal function is itself a

Gaussian distribution with mean and covariance

Σ−1j =
(
Σmj
)−1

+
∑

vk∈E(j)

(
Σ
~kj
k

)−1
Σ−1j µj =

(
Σmj
)−1

µmj +
∑

vk∈E(j)

(
Σ
~kj
k

)−1
µ
~kj
k

(20)

where Θm
j = {µmj ,Σmj } are the parameters of each hyper-sample and µ

~kj
k ,Σ

~kj
k

the parameters of each message.

A problem with using random samples is that many samples may be required

to give confidence that the sampled distribution is accurately represented. One620

method to provide a confidence in the ability of a sample set to represent the

PDF is to measure the KL-divergence between the covariance and mean of the

samples and that of the original distribution. The closer to zero this measure
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is, the more confidence we have. Instead of this, Eqn. (17), used to select

a set of Sigma points, provides a means to deterministically select a set of625

delta-samples that exactly represent the covariance and mean of the original

distribution, ensuring the KL-divergence between them is zero. We therefore

sample from the proposal distribution by decomposing it into a set of sigma

points using (17), except that a copy of the mean is also maintained. So, 2D+1

sigma points are selected and each scaled by
√

(D + 1/2)υd. An example of the630

delta-samples used to represent a single hyper-sample is shown in Figure 10,

projected into two different camera views. The benefit of this approach is that

it requires just 7 delta-samples to be extracted for each node of each hyper-

sample. This makes the approach extremely efficient, since the bottleneck in

pose estimation is typically the evaluation of the observational likelihood. Each635

delta sample can then be weighted by its likelihood and a Gaussian fitted using

the ML estimate.

Figure 10: An example of a set of sample points used to estimate observational likelihood

distributions projected into two views. They represent the distributions shown on the left.

A message is constructed in a similar way to the belief, except that a message

is not received from the node to which the message is being passed. If we define

this distribution as N (xj ;µ
~ji
j ,Σ

~ji
j ), we can construct a message by propagating

this distribution through the limb conditional p(xij |θij), so that the message

is a distribution over xi. This is performed using the Unscented Transform by

propagating N (xi;µ
~ij
i ,Σ

~ij
i ) through the rotation defined by the mean of the
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limb conditional. Hence,

N (xi;µ
ji
i ,Σ

ji
i ) = F

(
N (xj ;µ

~ji
j ,Σ

~ij
j ), µij

)
. (21)

Whilst this propagates the uncertainty in the initial message, the uncertainty in

the limb conditional Σij must also be passed. This is achieved again using the

Unscented Transform and propagating the limb conditional thorough the mean

of the initial message µ
~ji
j ,

N (xi;µ
mod
i ,Σmodi ) = F

(
µ
~ji
j ,N (xji;µji,Σji)

)
. (22)

The final message is then given by the convolution of the two of these dis-

tributions, setting µmsgj := 0. The marginal for a given root node state is

approximated as

p(xmr |Z) ≈
n−1∏
i=1

7∑
s=1

πsi , (23)

where πsi is the weight of the delta-sample drawn for the ith part. A hyper-

sample Sm then consists of a root node state, a set of updated Gaussian distri-

butions and a weight. The Maximum A Posterior (MAP) pose XMAP is given640

by the set of Gaussian centers of the hyper-sample with the highest weight,

XMAP = {xm∗

r , µm
∗

1 , .., µm
∗

n−1}, where m∗ = argmaxm p(x
m
r |Z).

Once each hyper-sample has been updated they are then propagated through

the temporal priors described in Section 5.1. The new distribution then acts as

a prior for the following frame.645

5.2.3. Likelihood Function

The observational likelihood used for tracking is based on the binary silhou-

ette. Given a silhouette B and the set of image pixels P, pixels classified as the

foreground are set to one B(Pfg) := 1 and those classified as the background

are set to zero B(Pbg) := 0. The appearance of a part is dependent on xsi , since650

this will cause changes in scale due to depth or foreshortening due to orienta-

tion. The projection of the part consists of the pixels L(xsi ) ⊂ P and the cost

is defined as p(zi|xsi ) ∝
∑
l∈L(xs

i )
B(l).

33



Figure 11: Example frames showing the distribution of the samples using the SIR-PF (top)

and the proposed method (bottom). The covariances for each sample have also been plotted

for the proposed method.

Figure 12: Example frames showing the MAP 3D pose using the proposed method projected

into each camera view.

To prevent different limbs being assigned to the same mode (over counting),

each constructs a version of the binary silhouette for the opposing part Bopp(i),

given by

Bopp(i)(L([xsi ]s∈D) ∩ Pfg) := 0.5, (24)

This makes it preferable for a limb to be located where the opposing limb is not

predicted to be, whilst preferring this over locating a limb to a region of the655

image classified as the background.

5.3. Experiments and Results

The presented method was tested using the HumanEva dataset. The “Train”

partition of walking and jogging, consisting of only motion capture data, was

used to learn all model parameters. The first 300 frames of the “Validation”660
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partition was used for testing. Foreground/background segmentation was per-

formed using the Matlab code provided with the data set using default settings.

The presented approach was tested against two existing methods, the An-

nealed Particle Filter (APF) and the Sequential Importance Resampling Par-

ticle Filter (SIR-PF). All methods use the same model parameters, however,665

whilst the presented method adds temporal diffusion by directly inflating the

covariance of each part the alternative methods perform this step stochastically.

The APF allows the presented method to be tested against an approach that

converges to a single mode. Whilst the SIR-PF can be used to examine how

existing approaches behave when permitted to support a larger area of the pos-670

terior. This is controlled by adjusting the particle survival rate. To make sure

the APF converge to a single mode we use a survival rate per frame of 0.03.

To allow both the SIR-PF and the presented method to support a larger area

of the posterior, we use a survival rate per frame of 0.93, whilst tracking from

video captured at 60Hz.675

To ensure the computational cost of each method is the same, all methods

use the same number of image likelihood evaluations. The APF uses 5 layers of

160 particles and the SIR-PF use a single layer of 800 particles. The presented

method used 114 hyper-samples, since calculating the posterior for each hyper-

sample requires the equivalent image likelihood evaluations as 7 SIR-PF/APF680

particles.

For the APF, pose was estimated using the expectation value of the samples

and for the SIR-PF and the proposed method the MAP estimate was used.

Limb limits were learned from the training data and used to discard unlikely

poses for all methods.685

In Figure 11, the set of particles shown represent the posterior for the pro-

posed method and the SIR-PF. As can be seen if the SIR-PF is used to represent

a large uncertainty, this uncertainty is present in all parts of the model. This is

in contrast to the proposed method where the posterior for each part is updated

conditioned on the root node value of the particle, allowing the uncertainty in690

these parts to remain small. This allows a large region of the root node state to
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Table 3: Pose estimation errors (mm) for different methods using varying frame rates and

number of cameras.
Frame

Rate

(Hz)

No.

Camera
APF SIR-PF Proposed

60 3 118.9± 65.5 102.5± 8.4 93.7± 5.8

60 2 146.2± 47.2 110.4± 8.9 103.8± 12.8

30 3 109.0± 27.3 104.8± 10.4 97.6± 12.2

20 3 120.9± 29.6 106.4± 10.8 97.2± 8.6

15 3 150.0± 70.8 114.1± 6.6 104.7± 9.2

be supported without increasing the uncertainty of the remaining parts. Exam-

ple frames showing the estimated pose using the presented method are shown

in Figure 12, as can be seen the estimated pose closely resembles that of the

subject in each frame.695

In Table 3, the error is shown for each method averaged over all subjects.

As can be seen the proposed method outperforms both the APF and the SIR-

PF. We noted that often the APF would fail due to segmentation artifacts that

caused the correct mode to be lost. To further illustrate the robustness of the

presented method we reiterate the method for two cameras setting. Fewer cam-700

era views will result in more ambiguous observations and in these circumstances

it will be beneficial to support the posterior over a larger area of the state space

until these ambiguities can be resolved.

We further experimented using three cameras but at different frame rates.

For all frame rates the annealing rate is adjusted for the SIR-PF and presented705

method to maintain αc = 0.01, as described in Section 5.1. The annealing for

the APF is unchanged to ensure it converges to a single mode. At lower frame

rates, when there is greater movement by the subject across consecutive frames,

the APF becomes more prone to tracking failure and the presented method

continues to outperform both techniques across all frame rates, highlighting its710

superiority. In Figure 13 we show some example frames of the MAP pose and

the distribution of samples used to represent the posterior, whilst tracking at

30Hz.
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Figure 13: Example frames showing the MAP estimate of pose (top) and distribution of the

samples used to represent the posterior (bottom) whilst tracking at 30Hz.

Whilst in some instances the quantitative errors between the proposed method

and the SIR-PF are relatively close, qualitatively the tracking is significantly715

poorer for the SIR-PF. In Figure 14, example frames are shown comparing the

MAP solution using the SIR-PF compared to the proposed method. As can be

seen the poses estimated by the SIR-PF are notably worse than those estimated

by the proposed method. We observed that in general unrecoverable tracking

failure for the APF resulted from poorly estimating the state of the root node,720

for example by estimating the incorrect orientation. This observation highlights

the importance of representing greater uncertainty over the root node to develop

robust tracking algorithms for articulated objects.
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Figure 14: Comparison of pose estimation between the SIR-PF (top row) and proposed method

(bottom row).

Very recently comparison results can be found in [49], Simo-Serra et al. [50]

proposed to stochastically propagate the noise from the image plane to generate725

a set of ambiguous 3D shapes in the shape space, which is then optimized

by imposing kinematic constraints, in order to tackle noisy observations. Our

proposed method achieved better quantitative results in terms of error on the
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HumanEva walking dataset, i.e. an average of 103.8 vs. 111.8. Wang et al. [49]

and Taylor et al. [51] showed that the improvements can be achieved by using730

some strong prior. Wang et al. [49] modeled the 3D pose as a linear combination

of a set of pose bases, and introduced the constrains on the pose model, including

sparsity constraint on the basis coefficients, and anthropomorphic constraint.

To recover the 3D pose, they iteratively solve two optimization problems, which

are first estimating the bases’ coefficient by minimizing the project of 3D pose735

hypothesis and the 2D pose with respect to the camera parameters, and then

re-estimating the pose with respect to the constrains of pose model. Taylor

et al. [51] introduced Conditional Restricted Boltzmann Machines (CRBM) to

model the motion of the subjects, which shows that with the motion prior the

error of estimating 3D pose can be reduced significantly. Our tracking approach740

has no assumed motion model, however, ours could be combined with a much

stronger prior, such as [51], to achieve better results.

In both pose estimation and tracking, the bottleneck of computational cost

is in computing the likelihood functions that describe how likely it is a part

in the given configuration given the observations. In 3D monocular pose esti-745

mation if we use a ground plane of 2m2 at a resolution of one hyper sample

per 100mm with 16 orientations and 600 delta samples per hyper sample we

compute 3.8 million likelihood computations. If we were to apply a standard

dynamic programming approach and discretized the entire space, over a five

part model, where each part has 6 degrees of freedom and each dimension is750

discretized into 10 bins, which would be extremely coarse we would require ap-

proximately 2× 1012 image likelihood evaluations, which is intractable for any

existed method. So, we use the same number of image likelihood evaluations as

the competing methods but achieve much better results.

6. Conclusions755

In this paper we have presented two novel solutions to extract 3D human

pose. The first was from a single monocular image and the second was applied to
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multi-view tracking. Both solutions were designed to exploit the key assumption

that it is easier to estimate pose if the root node state is known a priori. This

was achieved by extracting a set of local solutions through the use of hyper-760

samples. There are two key benefits to this approach that we have exposed.

The first is that using a fixed root node allows the human body to be modeled

as a kinematic chain that can more efficiently be optimized than alternative

representations. The second is that the presented approach allows more of the

posterior to be supported than current methods allow. By exploiting the first765

benefit we have shown it is possible to extract an entire set of solutions using the

same computational cost as competing methods would require to find a single

solution. The second benefit has been used to engineer a tracking method that

is robust in the presence of noisy, ambiguous observations, and to design a single

image monocular solution that is not dependent on initialization.770

For tracking it was shown that more robust performance can be achieved by

providing greater support over the state of the root node. This was particularly

emphasized at lower frame rates, where noise and missing data becomes much

more detrimental as the weakness of the simple temporal prior becomes exposed.

The philosophy of this approach is far removed from the most common to assume775

the answer lies in strengthening the temporal prior, we believe the solution lies

in strengthening the support over the posterior distribution until stronger, more

informative observations become available.
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