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ABSTRACT

Segmentation of aorta and other blood vessels from standard 3D CT or MRI scans needs a lot of hand

work if to do it by a standard segmentation software like Mimimcs and Amira.

In this paper, we present a new level set based deformable model for the segmentation of human aorta

from 3D image dataset. Accurate 3D geometrical models are essential for realistic computational fluid

analysis of the blood flow in human aortas, which can improve our understanding of flow-related aortic

diseases. Segmentation of the human aorta is however difficult, due to its complex topology and inten-

sity inhomogeneity in the image structures. The proposed method uses a hypothesized interaction force

between the geometries of the deformable surface and image objects which can greatly improve the

performance of the deformable model in extracting complex geometries, deep boundary concavities,

and in handling weak image edges. The results show that the new deformable model can be used to

efficiently segment complex structures such as the human aorta from medical images.
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1 INTRODUCTION

Deformable models are highly appropriate in the segmentation of the human aorta since they can nat-

urally adapt to local image structures. However, explicit or parametric models are not suitable in our

case since they generally have difficulties in dealing with topological changes and reaching into deep

concavities such as tubular structures. Implicit deformable models based on the level set technique are

introduced by Caselles et al. [1] and Malladi et al. [4] to address some of the limitations of parametric

deformable models. In this approach, the evolution of curves and surfaces are represented implicitly

as a level set of a higher-dimensional scalar function and the deformation of the model is based on

geometric measures such as the unit normal and curvature. The evolution of the model is therefore

independent of the parameterisation, and topological changes can be handled automatically.

Conventional image gradient based methods are generally prone to local minima that often appear in

real images. The balloon force [4] can monotonically expand or shrink the contours, but has great

difficulties in dealing with weak edges and cross boundary initialisations. The bidirectionality of the

gradient vector flow (GVF) model [7] allows more flexible initialisation and its diffused force field



handles image noise interference in a much better manner. However, it has serious convergence issues

[6]. More recent works, such as [2, 5, 3], showed promising but limited success.

In this paper, we present a new external force field which is based on the relative position and orientation

between deformable model and the image object boundaries. The geometrically induced force field can

easily deal with arbitrary cross-boundary initializations and weak image edges due to its bidirectionality.

In addtion, the dynamic interaction forces between the geometries of the deformable model and image

object can greatly improve the performance of the deformable model in acquiring complex geometries

and highly concave boundaries.

2 PROPOSED METHOD

The new external force field proposed in this paper is created based on the hypothesized geometrically

induced interactions between the relative geometries of the deformable model and the object boundaries

(characterized by image gradients). In other words, the magnitude and direction of the interaction forces

are based on the relative position and orientation between the geometries of the deformable model and

image object boundaries, and hence, it is called the geometric potential force (GPF) field.

2.1 Geometric potential force

Consider two area elements dA1 and dA2 on two surfaces, with unit normals n̂1 and n̂2 respectively.

The hypothesized interaction force acting on dA1 due to dA2 is defined as

dF = dA1n̂1dG (1)

where dG is the corresponding geometrically induced potential created by element dA1, and is given as

dG =
|n2|dA2

r3
(r̂12 · n̂2) (2)

Here, |n2| is the magnitude of the normal at element dA2, r is the distance between dA1 and dA2, and

r̂12 is the unit vector pointing from dA1 to dA2.

The geometric potential dG can be seen as a induced scalar field, in which the strength of depends on

the relative position of the two elements dA1 and dA2. The magnitude and direction of the geometri-

cally induced vector force dF is therefore handled intrinsically by the relative postion and orientation

between the geometries of the deformable model and object boundary.

2.2 Deformable model based on geometric potential force

Let the 3D image be described by function u(x) where x is a pixel or voxel location in the image

domain, and ∇u be its gradient. Let dA1 belongs to the deformable surface whereas dA2 belongs

to the object boundary. To compute the force acting on dA1 from dA2, we substitute |n2| = |∇u|,
n̂2 = ∇u/|∇u| into (2) and treat n2 as a normal to the object boundary. Then we compute the total

geometric potential field strength G(x) at every voxel. Note that only voxels on the object boundary

will contribute to the geometric interaction field. Let S denote the set containing all the edge voxels,

and s denote a boundary voxel, the total geometric interaction at x can then be computed as:

G(x) = V.P.
�
�

�
�

∫∫

S

r̂xs

r3
xs

· n̂2(s)|n2|(s) dAs (3)



where r̂xs is the unit vector from x to s, and rxs is the distance between them. Computation of ((??))

can be performed efficiently using fast fourier transform (FFT).

The force acting due to the geometrically induced potential field on the deformable surface C at the

position x ∈ C can then be given as:

F (x) = dAx n(x) G(x) (4)

Given the force field F (x) derived from the hypothesized interactions based on the relative geometries

of the deformable model and object boundary, the evolution of the deformable model C(x, t) under this

force field can be given as:

Ct =
(

F · n
)

n (5)

Since contour or surface smoothing is usually desirable, the mean curvature flow is added and the

complete geometric potential deformable model evolution can be formulated as:

Ct = αg(x)κn + (1 − α)(F · n)n (6)

where g(x) =
1

1 + |∇u(x)|
is the edge stopping function. Its level set representation can then be given

as:

Φt = αgκ|∇Φ| − (1 − α)(F · |∇Φ|) (7)

Figure 1: Segmentation process of the human aorta using the GPF deformable model.

3 RESULTS

The new deformable model based on the geometric potential force is applied in the segmentation of the

human aorta from a 3D image dataset acquired using computed tomography (CT) imaging. The image

dataset is cropped to obtained the region of interest. This is done so as to reduce the computational

expenses in using the level set method. Figure 1 portrays the results of the segmentation process using

the proposed method. The different views of the segmented aorta model is then shown in Figure 2.

As shown in Figure 1, an initial level set surface is used for the segmentation process. In particular,

the level set surface is initialised across object boundaries (i.e. across different structures) in the image

to demonstrate the capability of the new deformable model to deal with arbitrary cross-boundary ini-

tialisations. The evolution process of the level set surface and the converged deformable model is also

shown in the figure.

The example demonstrates that the proposed deformable model can efficiently segment complex ge-

ometries such as the human aorta. In addition, it can resolve intensity inhomogeneity in image struc-

tures such as those of the human aorta.



Figure 2: Three different views of the segmented human aorta.

4 CONCLUSIONS

In this paper, we presented a new external force field for image segmentation which is based on hy-

pothesized geometrically induced interactions between the deformable surface and the image object

boundary. The proposed deformable model is applied in the segmention of the human aorta from a 3D

image dataset. It is shown that by using this approach, complex topologies such as those of the human

aorta can be efficiently reconstructed. Accordingly, the new external force is dynamic in nature as it

changes according to the relative position and orientation between the evolving deformable model and

object boundary. It can thus be used to attract the deformable model into deep boundary concavities

that exists in some image objects. In addition, the new deformable model can handle arbitrary cross-

initialisation which is a desirable feature to have, especially in the segmentation of complex geometries.

Quantitative analysis and comparison to other gradient based methods are necessary to further study the

performance of the proposed model. However,this preliminary work illustrates the efficiency of this ap-

proach in resolving intensity inhomogeneity and in handling complex 3D geometries, which are often

found in biomedical image datasets.

References

[1] V. Caselles, F. Catte, T. Coll, and F. Dibos. A geometric model for active contours. Numerische

Mathematik, 66:1–31, 1993.

[2] Debora Gil and Petia Radeva. Curvature vector flow to assure convergent deformable models for

shape modelling. In Energy Minimization Methods in Computer Vision and Pattern Recognition,

pages 357–372, 2003.

[3] C. Li, J. Liu, and M. Fox. Segmentation of edge preserving gradient vector flow: an approach

toward automatically initializing and splitting of snakes. In IEEE Conference on Computer Vision

Pattern Recognition, pages 162–167, 2005.

[4] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modelling with front propagation: A level set

approach. IEEE Transations on Pattern Analysis and Machine Intelligence, 17(2):158–175, 1995.

[5] N. Paragios, O. Mellina-Gottardo, and V. Ramesh. Gradient vector flow geometric active contours.

IEEE Transations on Pattern Analysis and Machine Intelligence, 26(3):402–407, 2004.

[6] Xianghua Xie and Majid Mirmehdi. MAC: Magnetostatic active contour model. IEEE Transations

on Pattern Analysis and Machine Intelligence, 30(4):632–647, 2008.

[7] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image

Processing, 7(3):359–369, 1998.


