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ABSTRACT Minimally invasive transcatheter technologies have demonstrated substantial promise for the
diagnosis and the treatment of cardiovascular diseases. For example, transcatheter aortic valve implantation
is an alternative to aortic valve replacement for the treatment of severe aortic stenosis, and transcatheter
atrial fibrillation ablation is widely used for the treatment and the cure of atrial fibrillation. In addition,
catheter-based intravascular ultrasound and optical coherence tomography imaging of coronary arteries
provides important information about the coronary lumen, wall, and plaque characteristics. Qualitative
and quantitative analysis of these cross-sectional image data will be beneficial to the evaluation and the
treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraop-
erative, and postoperative) during the transcatheter intervention procedure, computer vision techniques
(e.g., image segmentation and motion tracking) have been largely applied in the field to accomplish tasks
like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction.
This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treat-
ment assessment. In this paper, we present a systematical review on these state-of-the-art methods. We
aim to give a comprehensive overview for researchers in the area of computer vision on the subject
of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and
hence, it is important to understand the application domain, clinical background, and imaging modality,
so that methods and quantitative measurements derived from analyzing the imaging data are appropriate
and meaningful. We thus provide an overview on the background information of the transcatheter inter-
vention procedures, as well as a review of the computer vision techniques and methodologies applied in
this area.

INDEX TERMS Image processing, IVUS, medical imaging, OCT, reconstruction, registration,
segmentation, transcatheter intervention, TAFA, TAVI, TMVR, TPVR, TTVI.

I. INTRODUCTION
Transcatheter intervention is an emerging technology for the
diagnosis and treatment of cardiovascular diseases. In recent
years, more and more computer vision techniques have
been used in all the phases of the transcatheter intervention
procedures. It is thus desirable to give an overview of this
increasingly important research area. The purpose of this
paper is to present a comprehensive background of this clini-
cal application, including pathology and imaging modality,
and a detailed survey of the computer vision techniques
popularly applied in such procedures. Particularly for new
comers to this area with a computer vision background, it is
beneficial to gain understanding of the basics of transcatheter

intervention technologies, as well as to have a thorough
understanding of the crucial role that various computer vision
methods play in transcatheter interventions.

Cardiovascular disease generally refers to abnormalities
in the heart and blood vessels, mainly including coronary
heart disease, stroke, peripheral arterial disease, and aortic
disease. It is one of the leading causes of death in developed
countries, killing more than 88,000 and 600,000 people in the
UK and USA each year, respectively [1], [2]. Aortic stenosis
is the most common valvular heart disease [3], where the aor-
tic valve cannot fully open, usually a result of calcium deposit
(calcification) in the artery that makes the valve narrow
(see Fig. 1). The blood flow from the heart hence decreases,
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FIGURE 1. Normal and diseased aortic valves (images are adapted from
WebMD [4]).

leading to severe hypertension and angina. If untreated,
it could cause functional deterioration, heart failure,
and even death.

Transcatheter intervention is an emerging technology that
can provide promising solutions for cardiovascular diseases.
In all the phases (preoperative, intraoperative, and
postoperative) during this procedure, computer vision tech-
niques such as image segmentation and motion tracking have
been widely applied to accomplish many tasks including
annulus measurement, valve selection, catheter placement
control, and vessel centerline extraction, which provides
beneficial guidance for the clinicians in surgical planning,
disease diagnosis, and treatment assessment. In this review,
we focus on the importance and benefits of computer vision
techniques popularly used in transcatheter intervention in
clinical practice. However, it is also necessary to intro-
duce background information of transcatheter intervention
procedures, e.g., imaging modalities, principles of imaging,
advantages and disadvantages, properties of acquired images,
and challenges of processing these image data.

Transcatheter intervention is generally performed through
the lumen of a catheter, including the delivery of intravas-
cular devices such as balloon, coils and stents to dilate or
close cardiovascular defects. The catheter-based imaging

technologies such as intravascular ultrasound (IVUS) and
optical coherence tomography (OCT) [5] can provide
2D cross-sectional images of the coronary artery structure.
As a valuable complementary modality to angiography, both
modalities measure the back-scattered signal from the sur-
rounding vessel structure after sending a sound wave in
IVUS or light in OCT. They have been widely used in
coronary disease diagnosis and treatment, since the clinicians
can apply them to assess the severity of a lesion, perform
plaque classification, and determine the location and size for
stenting. The acquired IVUS andOCT images contain precise
information including the lumen size, stent strut location,
and morphology analysis of plaque lesion. However, the
IVUS images are noisy with attenuation, speckles and other
artifacts. OCT images have a relatively higher resolution
than IVUS images, but they still suffer from guide-wire and
shadowing artifacts that may cause missing or weakening the
boundaries. Therefore, it is critical to extract the boundaries,
although the accurate segmentation of the inner/outer arterial
wall is still a challenge problem.

As shown in Fig. 2a, a typical IVUS image consists of
three parts: lumen, vessel that includes intima and media
layers, and adventitia that surrounds the vessel wall. The
media-adventitia border represents the outer coronary arterial
wall located between the media and adventitia. Segmenta-
tion of IVUS images has shown to be an intricate process
due to the low contrast and various forms of interferences
and artifacts caused by different factors such as calcification
and acoustic shadow. Catheter movement can also cause
spatial and temporal fluctuation, leading to ambiguities.
To tackle the problems, various algorithms have been devel-
oped in the literature [8]. Among many others, graph cut-
based technique has shown to be a promising approach
to IVUS image segmentation, where the inner/outer vessel
wall is extracted with careful manual initialization [9] or
automatically detected without requiring user initializa-
tion [10]–[12]. Both of them are based on the minimization
of a cost function derived from different feature information
(e.g., edge/boundary, shape prior, texture).

FIGURE 2. Typical cross-sectional images delivered by different imaging technologies. (a) IVUS image of coronary artery [6], (b) OCT image
of coronary artery [6], and (c) X-ray CT image of aortic root (image is from Morriston Hospital [7]).
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OCT provides high-resolution cross-sectional imaging of
vessels including the coronary arteries and it can accurately
differentiates the most superficial layers of the vessel wall
as well as stent struts and the vascular tissue surround-
ing them (see Fig. 2b). For the management of cardio-
vascular disease, it is important to obtain the vessel wall
properties. Approaches based on mathematical morphology,
thresholding, Catmull-Rom splines, and active contour
models are commonly used for the detection of the vessel wall
and stent strut in OCT images with no existence of guide-wire
shadow artifacts [13]–[15]. In fact, OCT image sequences
may have guide-wire shadow artifacts which result in inac-
curate vessel wall segmentation. To overcome the difficulty,
Tung et al. [16] proposed an automaticmethod utilizing active
contour models, convex hull detection along with expectation
maximization and graph cut for the elimination of guide-wire
shadow artifacts and the accurate detection of the vessel wall
as well as stent strut, in which the removal of shadow artifacts
relies on the good estimation of the guide-wire position.

Traditionally, surgical aortic valve replacement (AVR) is
the only effective treatment for adults with severe symp-
tomatic aortic stenosis that carries a poor prognosis. For
patients (up to 30% [17]) who are not eligible for such an
open-heart surgery to replace their aortic valve, transcatheter
aortic valve implantation/replacement (TAVI/TAVR1) is an
alternative to AVR and will represent the new standard for the
treatment of severe aortic stenosis. To reduce the risk of stroke
andmajor vascular complications after TAVI (e.g., severe aor-
tic regurgitation, atrioventricular block), it is very important
to select the optimal access route for valve implantation and
place the valve in the right position. This depends on the
accurate extraction of the vessel geometry of the thoracic
aorta and heart (especially the aortic root). Computer vision
techniques including advanced image processing, real-time
interactive segmentation [18], and motion tracking provide
an opportunity to approach this goal for both the preopera-
tive planning and intraoperative treatment. Fig. 2c gives an
example slice image for the TAVI procedure through X-ray
computed tomography (CT) imaging modality.

The remainder of this survey is organized as follows.
In Section II, we briefly introduce the transcatheter inter-
vention technologies including heart valve implantation/
replacement, atrial fibrillation ablation, IVUS and OCT. The
variety of computer vision techniques in transcatheter inter-
vention is given in Section III. In Section IV, we discuss
different imaging modalities involved in the transcatheter
procedure as well as performance evaluation of segmentation
methods. We finally conclude this paper in Section V.

II. TRANSCATHETER INTERVENTION TECHNOLOGIES
The four heart valves (see Fig. 3) determine the pathway
of blood flow through the heart. Normally, a heart valve
allows blood flow in only one direction. Heart disease occurs
when a valve cannot fully open due to calcification in the

1We use TAVI for the rest of this paper.

FIGURE 3. The four valves in a human heart (image is adapted from
WebMD [19]).

artery and thus decreases the blood flow (called stenosis) or
a valve malfunctions and allows some blood to flow in the
wrong direction (called regurgitation). Compared to tradi-
tional surgical operations for the treatment of heart diseases,
transcatheter technologies offer a minimally invasive way for
replacing abnormal heart valves, leading to less morbidity
and faster recovery. In the following sections, we give a
brief introduction of these transcatheter approaches currently
employed or potentially adopted in clinical practice.

A. TRANSCATHETER AORTIC VALVE IMPLANTATION
Aortic valve stenosis (see Fig. 1) is the most commonly
acquired heart valve disease. The gold standard for the treat-
ment of severe symptomatic aortic stenosis is the implan-
tation of an aortic valve prosthesis via open-heart surgery,
i.e., surgical aortic valve replacement (AVR). However,
a large number of patients (approximately one-third) are
not eligible for surgical AVR because of their advanced
age or other diseases like renal dysfunction. In such cases,
transcatheter aortic valve implantation (TAVI) [20], [21] is
a cost-effective alternative to AVR and plays an important
role in the treatment of aortic stenosis by increasing life
expectancy and improving quality of life. It has been proven
to be feasible, safe and effective for the treatment of patients
with severe aortic stenosis [17], [22]–[24]. TAVI has evolved
as a routine procedure for high risk patients [22], [25] and it
outperforms medical therapy in these patients with respect to
mortality [26].

TAVI is the implantation of an aortic heart valve prosthesis
within the diseased aortic valve through a catheter without the
need of open-heart surgery. There are two main approaches
for implanting a valve in the aortic root: transfemoral and
transapical approaches. The former technique is a retrograde
approach via the femoral artery, the subclavian artery, or the
ascending aorta; and the latter one is an antegrade approach
via the apex of the heart. As a minimally invasive approach,
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FIGURE 4. The TAVI procedure through femoral artery (images are adapted from Raney Zusman [27]).

TAVI surgery is performed using echocardiographic and
fluoroscopic guidance for visualization during implantation.
During the procedure, a valve (a balloon expandable stent
combined with a bovine pericardial bioprosthetic tissue
valve) is reduced to size and placed on a delivery catheter. The
delivery catheter is then inserted either in the femoral artery
through a small incision at the top of the leg (transfemoral
approach) or between the ribs through the apex of the heart
(transapical approach). Once in the heart, the valve is posi-
tioned and deployed across the patient’s diseased aortic valve.
Fig. 4 gives an example of such a TAVI procedure through
femoral artery. It is very important to place the valve in a right
position to reduce the risk of stroke and major vascular com-
plications. For example, a low valve implantation may lead to
severe aortic regurgitation (AR), or promote atrioventricular
block (AVB) after TAVI [28], [29].

1) ROLE OF IMAGING
During the whole TAVI procedure, a variety of different
imaging modalities [30], [31] are involved, including pre-
operative imaging, intraoperative imaging, and postoperative
imaging. This multi-modality imaging may help to mini-
mize the major complications (e.g., vascular complications,
paravalvular leaks, stroke, atrioventricular block) and plays
an important role in the TAVI workflow. As shown in Table 1,
preoperative imaging techniques such as multislice com-
puted tomography (CT), X-ray angiography/fluoroscopy, and
transesophageal echo (TEE) are applied for patient selection,

artery assessment, access site selection, valve selection,
approach selection, and the planning of implant placement,
while intraoperative imaging techniques (e.g., X-ray angiog-
raphy and TEE) are utilized for guiding the catheter place-
ment, controlling the valve positioning, and quality control.
These imaging modalities can be used for postoperative
follow-up as well.

Precise and extensive preoperative planning is of great
importance for the TAVI procedure, starting from care-
ful patient selection. At present, TAVI is suitable for
high-risk patients with severe symptomatic aortic steno-
sis, but is not recommended for patients with bicuspid
valves [36], [37]. Transthoracic echocardiography (TTE),
transesophageal echocardiography (TEE), magnetic reso-
nance imaging (MRI), or computed tomography (CT) can
be applied for diagnosis of aortic stenosis. Once a patient
is identified, the next step is to choose the approach type
(transfemoral or transapical) according to the criteria
and parameters reported in [36]. The feasibility of the
transfemoral or transapical approach can be best assessed
by multislice CT angiography (CTA). To prevent severe
complications after TAVI such as left ventricular outflow
tract (LVOT) rupture and postoperative aortic insuffi-
ciency (AI) due to paravalvular leaks, it is crucial to decide
the proper valve size and type based on the aortic root
geometry and the aortic annulus diametermeasuredwith CTA
imaging [38].

To select the optimal intraoperative treatment, angiography
is generally used to guide the catheter placement for both

TABLE 1. Imaging modalities and their applicability for the TAVI procedure.
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transfemoral and transapical aortic valve implantation, while
TEE is applied to ensure correct wire placement within the
left ventricle (LV). During valve placement, these online
imaging techniques also guarantee clear identification of the
coronary ostia and the annulus to avoid occlusion of the
coronary ostia and impairment of the mitral valve. Therefore,
the stented valve can be positioned in the aortic annulus
accurately, which is essential for TAVI [31].

After valve deployment, TEE is used to regularly monitor
paravalvular leaks as well as valve migration during
follow-up. In case of inconclusive findings or indication of
major complications, CT imaging can be supportive. The
immediate, midterm and long-term TAVI procedural results
can then be evaluated appropriately.

Accurate patient selection, good knowledge of the vascular
anatomy, aortic annulus size, and LV evaluation will ben-
efit the prosthetic valve selection and procedural approach
selection, thus minimize the risk of major complica-
tions with TAVI. Moreover, a number of new techniques
are being developed, including 3D imaging technology
(e.g., the Syngo DynaCT system) [39], template-based plan-
ning [40], patient-specific simulation approaches [41], and
image-guided catheter interventions [42]. In the future, these
techniques could be employed for determining the optimal
treatment preoperatively, for more accurate patient selection,
intervention planning and valve placement, or for postopera-
tive prediction of the long-term outcome, valve degeneration
and migration.

2) STATE-OF-THE-ART VALVING TECHNIQUES
To date, there are four types of commercial transcatheter
aortic valve prostheses (TAVP) available in the European
market: the Sapien©R valve by Edwards Lifesciences
(Irvine, California, USA) [32], the CoreValve©R revalving
system by Medtronic (Minneapolis, Minnesota, USA) [33],
the Jenavalve©R by Jenavalve Technology (Munich,
Germany) [34], and the Acurate TA©R by Symetis (Ecublens,
Switzerland) [35]. The Sapien©R (stainless steel stent) and
Sapien XT©R (Cobalt-chromium stent) models were approved
for both transapical and transfemoral approaches, and
Sapien©R is the only balloon-expandable TAVP in clinical
use. The CoreValve©R (Nitinol stent) system is a self-
expandable TAVP, which was approved for transfemoral,
subclavian and direct aortic approaches. Both Jenavalve©R and
Acurate TA©R are self-expandable TAVP and they were
approved for transapical procedure only. Recently, Symetis

FIGURE 5. Examples of different prosthetic heart valves. (a) Sapien©R

valve, (b) CoreValve©R, (c) Jenavalve©R, (d) Acurate TA©R, and (e)-(h) valves
expanded on balloon and catheter or crimped on catheters. (Images are
from Edwards Lifesciences [32], Medtronic [33], Jenavalve [34], and
Symetis [35], respectively.)

demonstrated the Acurate TF©R at EuroPCR 2013 that can be
delivered via transfemoral procedure. Fig. 5 shows examples
of these heart valve models and Table 2 gives a summary
of them. The impact of these heart valve prostheses is
impressive. More than 40,000 TAVPs have been implanted
worldwide, among which Germany is the leading country.

TABLE 2. Comparison of four commercial prosthetic heart valving models.
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FIGURE 6. The normal and degenerative mitral valves (images are adapted from Abbott Vascular [44]).

In 2010, approximately 25% of all aortic valve replacements
were performed with TAVP [43]. The total number of patients
currently eligible for TAVI procedure is approximately
200,000, representing a $2B market worldwide.

3) CHALLENGES
The common procedure of TAVI is to place a cylindrical
stent device inside the aortic root, i.e., a cylinder inside a
cylinder. Without calcifications, the stent device is prone to
migrate and dislodge, as the anchoring mechanism is based
on friction. The success rate is still low, due to the intrinsic
complexity of the procedure, the suboptimal positioning of
the prosthesis, and the device migration. In addition, the risk
of malpositioning is still high. These issues can be addressed
by a couple of means, e.g., a sophisticated shape of the stent,
innovative materials for both the stent and the functional
component, an easier and more reliable procedure, etc. From
the technological point of view, the significant improve-
ment of imaging quality and the rapid development in com-
puter vision especially the real-time interactive segmentation
techniques [18] could lead to a higher rate of procedural
success by providing more accurate valve size assessment,
self-guided positioning, unique matching with the anatomy
of the aortic root, and so on.

Compared to the surgical AVR where the original valve
and surrounding calcifications are removed before implanting
the valve prosthesis, TAVI overlaps the prosthetic valve to
the existing irregular calcifications. Thus, its effective func-
tioning and consequent durability in human use need to be
addressed in the future development of the technology.

B. TRANSCATHETER MITRAL VALVE REPAIR
Mitral regurgitation (MR) may lead to progressive left
ventricular dysfunction, heart failure, and even death. The
traditional surgical mitral valve repair or replacement is
the established treatment for degenerative MR, whereas
it may not be applicable for functional MR and those
high-risk patients with both degenerative and functional

FIGURE 7. The MitraClip procedure (images are from Cath Lab
Digest [52]).

MR (see Fig. 6), especially elderly persons. Transcatheter
mitral valve repair/replacement (TMVR) technology has
been developed for such cases. A variety of technologies have
emerged and are at different stages of investigation. In [45],
Karimov et al. reviewed various transcatheter-based tech-
nologies for mitral valve replacement. Chiam and Ruiz [46]
classified the percutaneous TMVR approaches based on
functional anatomy. They grouped the therapies into those
targeting the leaflets, annuloplasty, percutaneous chords,
and LV remodeling. Currently, the MitraClip therapy [47]
(see Fig. 7) is the only percutaneous transcatheter treat-
ment for selected patients with degenerative or functional
MR [48], [49], which is based on edge-to-edge surgical
technique pioneered by Alfieri et al. [50]. Maisano et al. [51]
reported the early and 1-year results of the percutaneous
mitral valve interventions in 567 patients with significant MR
who underwent the MitraClip therapy at 14 European sites.
The patients’ mean age was 74 years and most of them had
functional MR (77%) with multiple comorbidities including
coronary artery disease, hypertension, atrial fibrillation, and
renal disease. The 30-day mortality rate was 3.4% and no
MitraClip device embolization was observed. At 12 months
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FIGURE 8. The TPVR procedure through femoral artery (images are adapted from Medtronic [63]).

after the procedure, the majority of patients demonstrated
improvement in the severity of MR. This study involved the
largest database of MitraClip therapy till now and confirmed
the safety, efficacy, and low mortality rate of the MitraClip
implant procedure in high-risk patient population.

So far, more than 10,000 patients have been treated
with TMVR throughout the world [49]. Compared to the
progress in TAVI technology, the transcatheter treatment of
MR patients is underserved. However, it appears that TMVR
will progress into daily clinical practice in the near future.
Start-up companies like Endovalve [53] and CardiAQ [54] are
in the process of developing TMVR products for the treat-
ment of functional MR. Worldwide cardiovascular leading
companies (e.g., Edwards Lifesciences [32], Medtronic [33])
are involved in this area as well. Furthermore, advancements
in computer vision will offer innovative solutions to properly
address prosthesis anchoring and sealing in mitral position
for transcatheter mitral valve technologies.

C. TRANSCATHETER PULMONARY VALVE REPLACEMENT
Transcatheter pulmonary valve replacement (TPVR) is a fea-
sible alternative to surgical bioprosthetic valve implantation
(see Fig. 8). There has been a recent explosion in this emerg-
ing field. In [55], Ghawi et al. reviewed the progress and
innovations of TPVR, its benefits and challenges, as well as
the future advancements associated with this technology. The
first human transcatheter valve implantation in the pulmonary
position was performed via the transfemoral approach for
a 12-year-old male patient with pulmonary atresia and ven-
tricular septal defect [56]. More TPVR procedures were
reported by the same group [57], where all the eight patients
had significant improvement in their pulmonary insufficiency
after successful implantation of the valve in the desired posi-
tion. Following these successful clinical attempts of TPVR,
more clinical trials [58]–[62] focused on the effectiveness,
safety and longevity of the valves (e.g., Medtronic Melody©R

valve [33], Edwards Sapien©R valve [32]).
Although many successes have been noted, there are still a

number of challenges with this procedure, including potential

procedural complications such as valve migration, guide
wire injury to a distal branch pulmonary artery, damage to
the tricuspid valve, and arrhythmia [58], [60], along with
device-related complications like Hammock effect and stent
fracture [61], [64]–[66]. Recent studies demonstrated that the
procedural complications can be reduced to 5-6% [67] and the
device-related complications can be treated by valve-in-valve
TPVR [68].

D. TRANSCATHETER TRICUSPID VALVE IMPLANTATION
Tricuspid regurgitation (TR) is the most common pathol-
ogy of tricuspid valve, due to the increased right ventricular
preload and afterload, annulus dilation, and right ventricular
systolic dysfunction (see Fig. 9). TR is frequently present in
patients with mitral valve stenosis and severe TR has been
found in about one-third of the patients after mitral valve
replacement for rheumatic heart disease [69]. TR may result
in significant symptoms, even advanced myocardial disease.
For patients at high surgical risk, transcatheter tricuspid valve
implantation/replacement (TTVI/TTVR) plays a significant

FIGURE 9. Tricuspid regurgitation (image is adapted from Children’s
Heart Specialists [78]).
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FIGURE 10. The TTVI procedure [85] (RA: right atrium, RV: right ventricle).

role in the treatment of severe symptomatic TR (see Fig. 10).
A few cases have been reported in patients with single-
valve disease by the transjugular, transfemoral, or transa-
trial approach [70]–[73]. Similar procedures were performed
for patients with multi-valve disease [74], [75]. In [76],
Lauten et al. presented the first human case description of
transcatheter treatment of severe TR in a 79-year-old patient
with venous congestion and associated non-cardiac diseases.
The treatment was performed by percutaneous caval valve
implantation. The investigators in [75] described a success-
ful TTVI procedure via the femoral route with very good
results and no major complications for a 62-year-old man
with severe TR due to bioprosthesis degeneration. The first
human series of percutaneous tricuspid valve replacements in
15 patients with congenital or acquired tricuspid valve disease
was detailed by Roberts et al. [77]. Procedural success was
achieved in all 15 patients and their TRwas reduced tomild or
none. One case of third-degree heart block was the onlymajor
complication, one case of endocarditis was found twomonths
after implantation, and one patient with pre-procedural
multi-organ failure died 20 days after the procedure. The
other patients’ bioprosthetic valves in the tricuspid position
functioned well four months on average after replacement.

E. TRANSCATHETER VALVE-IN-VALVE IMPLANTATION
Due to calcification or scar formation leading to valve dys-
function, the results of surgical valve repair or replacement
are generally not very good and may result in bioprosthesis
degeneration anywhere between 10-15 years after implanta-
tion [79]. Redo-valve surgery is challenging due to the fact
that the patients are often in a poor clinical condition and it
may cause more problems. Alternatively, transcatheter valve-
in-valve implantation (see Fig. 11) is a promising treatment
for high-risk patients with degenerated bioprosthetic heart
valves [80]. Nordmeyer et al. [68] and Wenaweser et al. [81]
described successful percutaneous implantations for aortic
and pulmonary valves. van Garsse et al. [82] presented

FIGURE 11. The transcatheter valve-in-valve implantation procedure.
(Left) A SAPIEN valve is deployed within a surgical Edwards prosthesis
(image is from Heart Valve Surgery [96]), and (Right) a correct positioning
where the SAPIEN valve overlaps the sewing ring of the surgical
prosthesis [80].

the first successful percutaneous tricuspid valve-in-valve
implantation for a 74-year-old patient with chronic obstruc-
tive pulmonary disease, severe stenosis of a degenerated
tricuspid bioprosthesis, and other diseases. In this case, an
Edwards Sapien©R 23 mm valve was placed inside a degen-
erated 25 mm Carpentier-Edwards bioprosthesis. In [83],
Weich et al. reported a transjugular tricuspid valve-in-valve
replacement for a 38-year-old woman with rheumatic heart
disease. The patient’s mitral valve prosthesis functioned
well but her tricuspid prosthesis was severely calcified.
Jux et al. [84] described the first successful percutaneous
transcatheter double-valve-in-valve replacement in a single
26-year-old male patient via the femoral route, where two
valves were implanted in the pulmonary and tricuspid
position, respectively.

F. TRANSCATHETER LEFT ATRIAL
FIBRILLATION ABLATION
Atrial fibrillation (AF) is the most common heart arrhythmia
(see Fig. 12) and it is among the main causes of strokes.
The transcatheter ablation procedure (see Fig. 13) is widely
used for the treatment and cure of AF [86], [87], which is a
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FIGURE 12. Normal rhythm and atrial fibrillation (images are adapted
from Healthy Habits Hotline [97]).

FIGURE 13. Transcatheter left atrial ablation (image is adapted from
Wellington Hospital [98]).

minimally invasive surgery using high radio-frequency
energy with a catheter from inside the atrium to eliminate
the sources of ectopic foci, especially around the pulmonary
vein (PV) ostia [88], [89]. The AF is finally removed by
electrically isolating all the PV trunks of the left atrium (LA)
from the rest of the heart using ablation. The complex and
varying shape of the LA of different patients (e.g., size,
position and number of PV ostia) [90] complicates this
procedure. During the catheter ablation, CT or MRI imaging
can be used to provide anatomical images of heart structures
for the preoperative planning and intraoperative intervention.

Catheter-based ablation is very effective in the treatment
of AF. However, this procedure could increase the risk of
damage to the prosthetic valves in special patient groups.
In [91], the authors described the safety, feasibility and effi-
cacy of transcatheter ablation procedure in 26 patients with
mitral valve prostheses (MVP). These patients had mitral
valve surgery and subsequently developed AF, thus under-
went circumferential PV ablation. To minimize the risk of
valve damage during ablation, the catheter position rela-
tive to the valve and the leaflet motion were monitored
by fluoroscopy. After a 3-month blanking period, they

performed a 12-month follow-up, in which anti-arrhythmic
treatment was considered for every subject. Compared with
another matched group consisting of 52 ablated patients
without MVP, the MVP group took a much longer fluo-
roscopy time. At the end of follow-up, 73% of MVP patients
were in sinus rhythm, slightly lower than the control group.
Six patients in theMVP group had atrial tachycardia and three
of them required repeat ablation, while only one patient in the
control group had this problem and settled without treatment.
No complications were found in control patients, while one
femoral pseudoaneurysm and one transient ischemic attack
occurred among MVP patients. The researchers concluded
that AF ablation is feasible inMVPpatients.More findings on
arrhythmia and electrophysiology can be found in [92]–[95].

The AF may relapse following the transcatheter abla-
tion. Manganiello et al. [99] investigated the incidence of
symptomatic and asymptomatic AF recurrences applying
continuous subcutaneous electrocardiogram (ECG) monitor-
ing and insertable cardiac monitor (ICM, subcutaneously
implanted during the ablation procedure) recording. They car-
ried out a long-term follow-up of 113 patients who underwent
PV ablation. According to the symptoms and ECG data,
40 patients demonstrated AF recurrences. Based on the
ICM results, arrhythmia relapses were found in 75 patients
(35 of them were asymptomatic).

Radio-frequency AF ablation has been widely practiced in
many medical centers with numerous successes. However,
complications like atrio-esophageal fistula could occur after
this transcatheter ablation procedure in the posterior LAwall.
Pappone et al. [100] reported two patients with cerebral and
myocardial damage several days after undergoing circumfer-
ential PV ablation. One of them survived after emergency
cardiac and esophageal surgery, and the other one died due to
extensive systemic embolization. A recent case was presented
in [101], where a 68-year-old woman presented bilateral
oedema secondary to acute embolic stroke in the brain and
air in the LA three weeks after transcatheter ablation for
treatment of her chronic AF. Atrio-esophageal fistula was
diagnosed in all of them.

G. TRANSCATHETER TECHNOLOGIES
USING IVUS AND OCT
As a valuable complementary imaging modality to
angiography, intravascular ultrasound (IVUS) and optical
coherence tomography (OCT) have been widely used in
coronary disease diagnosis and treatment. Compared to
angiography that only depicts a 2D silhouette of the lumen,
both modalities provide 2D cross-sectional images of the
coronary artery vessel structure, assisting the clinicians
in assessing the severity of a lesion, performing plaque
classification, and determining the location and size for
stenting.

IVUS is a catheter-based imaging technique, which places
a catheter with a sensor on its tip inside the coronary
artery (see Fig. 14a). The sensor rotates as it emits ultra-
sound pulses and receives echoes from the tissues around to
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FIGURE 14. Cross-sectional imaging of the arterial wall. (a) Four IVUS images acquired with transducers at different frequencies
(green: media-adventitia border, red: lumen border) [8], and (b) an OCT frame (note the guide-wire shadow artifact at
‘Guidewire’) [102].

TABLE 3. Physical characteristics of catheter-based imaging (IVUS vs. OCT).

generate tomographic images of the arterial wall in real
time, which provides important information about coronary
arteries including lumen, wall and plaque characteristics
(e.g., shape and size). OCT is a novel intravascular imaging
modality based on near-infrared light (shorter wavelength
than ultrasound) emission, which enables a higher-resolution
imaging of the arterial wall (see Fig. 14b) in the range of
10-20 microns than IVUS [103], [104]. Cross-sectional
images are generated by measuring the echo time delay
and intensity of light reflected or back-scattered from inter-
nal tissue structures [105]–[107]. In clinical practice, IVUS
and OCT can provide qualitative and quantitative assess-
ment of coronary arteries and atherosclerosis. For example,
OCT images can be combined with angiography to recon-
struct the 3D coronary arteries for the evaluation of 3D
arterial morphology [108], and the endothelial shear stress
can be quantified using computational fluid dynamics of
coronary arteries after 3D reconstruction for estimating the
development and progression of coronary atherosclerotic
plaque [109]. The authors in [110] analyzed a large number
of intracoronary OCT images using a rapid and reliable seg-
mentation algorithm, which can facilitate quantitative investi-
gation of stent restenosis and thrombosis, as well as robust 3D
reconstruction of coronary arteries to calculate endothelial
shear stress in atherosclerosis. It also has potential application
in plaque quantification and local hemodynamic analysis.

Table 3 shows the physical characteristics of IVUS and
OCT [5], which are based on the Volcano, Boston Scientific,
and Terumo IVUS systems and the Light Lab time-domain
OCT imaging system that are commercially available. It is
worth noting that OCT cannot image through a blood field
which limits its adoption in clinical practice. In order to
produce high-quality images, it requires clearing or flushing
blood from the lumen during image acquisition. Both occlu-
sive [111], [112] and non-occlusive [113], [114] techniques
have been developed to stop the coronary blood flow during
the acquisition period. The safety of intravascular OCT imag-
ing mainly depends on the mechanical characteristics of the
catheter and the extent of ischaemia caused by flow obstruc-
tion from the occlusion balloon when the occlusive technique
is employed or the amount of contrast injected when the non-
occlusive technique is applied. OCT imaging technique has
been considerably adopted across Europe and Japan, though
not approved in USA yet. Preliminary studies of patients
with coronary artery diseases using both occlusive and non-
occlusive techniques show that the OCT image acquisition
is safe and no major complications occurred [113], [115].
Compared to IVUS, OCT provides superior visualization and
differentiation of the lumen and arterial wall interface, which
facilitates the determination of lumen areas and volumes [5].
Due to a low crossing profile, the OCT imaging wires are
able to negotiate tight lesions that the IVUS catheter is unable
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to cross and it can also measure smaller lumen sizes than
IVUS [115]. Because of its limited tissue penetration ability,
OCTmay not be suitable for investigating vessel remodeling,
which is well addressed by IVUS.

III. COMPUTER VISION TECHNIQUES IN
TRANSCATHETER INTERVENTION
Transcatheter intervention is an interdisciplinary technique,
involving clinical, imaging and interventional surgeons,
cardiologists, radiologists and anesthesiologists. Appropriate
image processing and analysis, real-time interactive
segmentation, and visualization tools can help them to
cooperate and communicate efficiently to find an optimal
treatment for a patient. Moreover, preoperative and intra-
operative imaging provides a large amount of volumetric
images for the planning and guidance of the transcatheter
intervention. To make use of these data for clinical inves-
tigations, precise measurement of the geometric features
(e.g., diameter, center and orientation of the aortic valve
annulus) and accurate segmentation of the anatomical struc-
tures (e.g., left ventricle and left atrium) are essential. In this
section, we concentrate on those state-of-the-art computer
vision techniques that have been widely applied in the
minimally invasive transcatheter procedure (see Table 4).

A. GRADIENT-BASED APPROACHES
The edge patterns in IVUS images can be used to
distinguish lumen and media-adventitia contours. Hybrid

algorithms have been developed to incorporate such edge
features into desirable target boundaries. These techniques
usually require precise initialization and rely on energy min-
imization. An early work was introduced by Sonka et al. [9]
for the detection of internal and external elastic laminae (inner
and outer media layers) and plaque-lumen borders. After
removing the calibration markers and selecting the regions of
interest (ROIs), the authors applied Sobel-like edge detectors
on subimages to construct laminae and lumen border graphs
and then performed heuristic graph search deploying two
distinct cost functions to detect the borders. In this work,
dynamic programming is used to search a minimum path
in the cost function, which incorporates edge information
with a simplistic prior, based on echo pattern and border
thickness. The presented technique demonstrated good cor-
relation between manually and automatically detected lumen
borders, plaque areas, and percent area stenoses. However,
it requires manual initialization. An extended version of this
approach using a different cost function and 3D optimal graph
search was presented in [116], where the authors applied
principal component analysis (PCA) to reduce the noise and
increase the homogeneity of intensity within the ROIs, and
then estimated the initial lumen border by applying a spline-
based active contour model for the following graph-search
segmentation.

In [117], Meier et al. proposed to automatically segment
both lumen and media-adventitia boundaries through the
enhancement of image continuity along the circumferential

TABLE 4. Computer vision techniques involved in transcatheter intervention.
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direction in polar coordinates and speckle noise reduction
using iterative nonlinear spatial median filters. They applied
three different segmentation methods for the detection of the
lumen borders: i) thresholding of radial grayscale gradient
maps obtained by convolving the polar image with gradient
kernels, ii) adaptive region growing from a luminal seed
point after detecting the catheter outline, and iii) deformation
of a gradient-based parametric deformable model to search
for connected outline points and detect the media-adventitia
border. In addition, postprocessing involving dropout filter-
ing and outline smoothing is required to remove remaining
outliers and refine the final segmentation. Two data sets of
77 and 28 IVUS images of human coronary arteries are
selected for the identification of lumen and media-adventitia
borders, respectively. Experimental results show that the
first strategy is robust and outperforms the other two
approaches, while they are more computationally intensive.
Instead of using image gradient only, Luo et al. [118]
designed a modified cost function combining both gradient
and variance of the grayscale intensities in the radial direc-
tion, which is less sensitive to noise. They employed circular
dynamic programming to extract themedia-adventitia bound-
aries. It has been demonstrated that the presented algorithm
can attain high accuracy and reliability in the measurement
of the lumen area variation (see Fig. 15). However, manual
initialization of the ROI and the origin point in the first frame
are required.

To improve the convergence capability of existing meth-
ods, Xie and Mirmehdi [176] proposed an external mag-
netic vector force field based on hypothesised magnetic
interactions between the image gradients (object boundary)
and active contour. It can attract the contour to deep
concave regions, without suffering from saddle point and
stationary point problems. This image gradient based
assumption was later extended to 3D medical image
segmentation [177].

B. STATISTICAL AND PROBABILISTIC APPROACHES
Border detection and region identification in IVUS coronary
artery images are challenging tasks. Few algorithms have
been developed in order to trace the intima and the media-
adventitia automatically. Statistical approaches are generally
proposed based on an assumption that grayscale values corre-
sponding to lumen and plaque (intima) regions are generated
by two distinct distributions that can be modeled paramet-
rically [125] (e.g., Rayleigh or mixture of Gaussians) or
non-parametrically [119]. Taking advantage of this property,
Gil et al. [120], [121] suggested the use of elliptic templates
guided by the global statistics inside regions to model and
detect the lumen borders of coronary arteries for the first
time. They incorporated two different Gaussian probabilities
corresponding to lumen and tissue areas into a deformable
model with elliptical shape constraint. The use of probabil-
ities can reduce the impact of speckle noise in low-quality
IVUS images, while the restricted deformable shape makes
the model more robust to shadows due to calcium plaque and
artifacts of the catheter. Similarly, Taki et al. [123] developed
an automatic approach for the identification of the intima
and the media-adventitia borders simultaneously using two
different thresholds after despeckling through affine invariant
anisotropic diffusion filters.

In practice, the vessel border detection is a complex
problem, requiring sophisticated methods. By assuming a
Rayleigh distribution andmodeling the expected contour with
a priori knowledge using Markov processes, Haas et al. [124]
incorporated additional information about the speckle
appearance. The final contours were automatically extracted
by applying a maximum a posteriori (MAP) estimator
iteratively. The algorithm was tested on 29 in vivo frames and
achieved satisfactory results. Similarly, Brusseau et al. [125]
introduced a fully automatic method to estimate the lumi-
nal contour in intra-coronary ultrasound images using a
MAP estimator and a constraint on the first zero crossing

FIGURE 15. A typical contour detection result. (a) Initialized annular region in an IVUS image, (b) Obtained
contours using ordinary (dotted) and modified (solid) methods [118].
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FIGURE 16. Lumen and media-adventitia contours of an IVUS image in the original and rectangular
domains [119].

of image derivatives on the borders. The image brightness
appearance was modeled by a Rayleigh distribution. In [126],
Cardinal et al. developed a 3D segmentation model for
IVUS pullback image volumes based on the fast-marching
framework [178] and applying a mixture of Rayleigh distri-
butions modeling the gray level probability density functions
corresponding to the vessel wall structures. The regions were
initialized using manually traced lumen and media borders
in several frames on longitudinal image cuts. The proposed
algorithm was evaluated using different initializations
on 9 in vivo IVUS pullbacks of superficial femoral arteries
and a simulated volume. They obtained accurate results on
simulated data with small average point-to-point distances
between detected vessel wall borders and ground truth.
On in vivo IVUS volumes, a good overall performance was
achieved with acceptable average distance between seg-
mentation results and manually traced contours. Likewise,
a 2D semi-automatic technique was presented in [122] using
a parameterization of the lumen region with a mixture of
Gaussian distributions. The lumen border was finally
detected byminimizing a cost function that linearly combines
the steepest descent technique and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [179], resulting a faster
convergence toward a global minimum.

The assumption of grayscale intensities in IVUS images
satisfying parametric Rayleigh or Gaussian distributions may

not be true in all situations. Alternatively, Unal et al. [119]
proposed an automatic shape-driven approach for the seg-
mentation of arterial wall boundaries from IVUS images
in the rectangular domain (see Fig. 16). They first built a
statistical shape space using PCA and then evolved an ini-
tialized contour from the surface of the transducer in polar
coordinates by minimizing a region-based non-parametric
probabilistic energy function. The probability distribution
inside and outside the lumen was estimated by using intensity
profiles from a training data set. The lumen borders were
automatically extracted, while the media-adventitia (MA)
borders were detected using edge information instead to
evolve the curve. The performance evaluation on a large data
set demonstrated the effectiveness of the presented technique.
Fig. 17 shows several examples of detected lumen and MA
contours.

C. MODEL-BASED APPROACHES
Due to the limited image quality (e.g., low contrast) of the
volumetric data acquired during the transcatheter procedure,
model-based approaches may be most appropriate for the
segmentation of anatomical structures containing in these
volumes. To improve the robustness of segmentation, model-
based methods exploit the prior knowledge such as shape
information to guide the image segmentation process. With
the prior constraints, themodel-based segmentation can avoid

FIGURE 17. Examples of lumen and media-adventitia contours: (Top) without feature extraction for cases with no/minor calcifications and
branch openings, and (Bottom) with feature extraction for cases with calcifications and branch openings [119].
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FIGURE 18. Segmentation process using topology adaptive snakes: (Top) a corpus callosum from MRI brain image slice, and
(Bottom) a cross-sectional images of a human vertebra phantom [180].

leakage around weak or missing boundaries. However, it may
be difficult for them to handle the structural variations.

1) ACTIVE CONTOUR MODELS
Active contour models (snakes) have been widely used in
many medical image segmentation applications, which rep-
resent contours or surfaces in their parametric form during
deformation. The main idea is to place an approximate con-
tour close to the desired features in an image and then allow
the contour to deform under the influence of external and
internal forces in the energy function to snap to the desired
features. The external force pushes the contour toward the
desired image features, while the internal force ensures that
the contour maintains its overall shape and continuity in the
process. The deformation stops when the forces balance each
other and the contour no longer moves significantly. Fig. 18
gives two examples of the deformation process, illustrating
the high flexibility of snakes. The contour models are able to
track the points on the curves or surfaces across time, and are
suitable for real-time applications. However, they generally
have difficulties in handling topological changes due to the
parameterization of the curves or surfaces.

The traditional parametric snake models [127], [128] are
popularly adopted for the segmentation of IVUS image
data [8]. Rather than implicit shape surface representa-
tion to retrieve lumen and media-adventitia boundaries,
parametric model formulation is more intuitive since the
topology of different boundaries is simple and underlying
parameterization remains simple and computationally
efficient. However, it relies on good initialization and fine
parameter tuning. Generally, the vessel borders in IVUS
images are not well distinguished, which hinders the applica-
tion of the classical snakemodels. Hence, preprocessing tech-
niques (e.g., nonlinear filtering [181]) or energy optimization
skills (e.g., Hopfield neural network [182]) are incorporated
prior to the use of the snake framework. By modifying the

terms of the energy function, several approaches have been
proposed to detect the lumen and media-adventitia borders.
Shekhar et al. [129] developed an active surface model for
the identification of both borders. In this 3D segmentation
algorithm, an initial surface template is placed close to the
desired arterial wall and then deformed to snap to it according
to the external, internal and damping forces. The external
force is the gradient of a 3D potential field computed by
convolution of the image volume with three 3D Sobel-like
kernels, which draws the vertices of the template towards
the desired arterial border. The internal force is based on
the transverse and longitudinal curvature vectors in the local
radial direction, which maintains the smoothness of the sur-
face model. The damping force is used to help the model
to converge to its final shape. The presented technique is
statistically accurate, robust to image artifacts, and capable
of segmenting volumetric IVUS images rapidly. It enables
geometrically accurate 3D reconstruction and visualization of
coronary arteries and volumetric measurements. In addition,
it can be applied to segment 3D images of other modalities.
Nevertheless, the algorithm requires user intervention
to place an initial contour every ten slices. To automat-
ically identify the lumen and media-adventitia borders,
Kovalski et al. [130] proposed a 3D segmentation approach.
The elasticity term in the snake framework [127] is removed
from the internal energy. To control the contour smooth-
ness, they introduced a priori on the final desired shape
through regularization along the longitudinal direction, and
a balloon force to control the point motion along the radial
direction. Compared to manual tracing of both borders, the
automatic results demonstrates high correlation and low vari-
ability, which indicate that the suggested method may poten-
tially provide a clinical tool for accurate lumen and plaque
assessment.

To make the geometric snake model more robust to weak
edges and noise in medical images, the authors in [183]
integrated the gradient flow forces with region constraints.
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An alternative approach to this hybrid image force can be
found in [184] and [185], where Jones et al. combined the
edge-based and region-based constraints with graph cut and
superpixel for interactive segmentation of the MA border
in IVUS images and lumen border in OCT images.
Compared with other approaches, this combinatorial method
demonstrated improved versatility and better segmentation
results. To deal with more complex topological changes and
enable free initialization of contour/surface in the image,
Xie and Mirmehdi [186] introduced the radial basis func-
tion interpolated level sets into the region-based active
contour model. Unlike traditional level set based schemes,
the proposed implicit active model does not require periodic
re-initialisation and allows coarser computational grid, lead-
ing to great potential in modelling in high-dimensional
spaces.

2) SHAPE CONSTRAINED DEFORMABLE MODELS
Among many others, active shape models [131]–[133] are
fast and robust, where the object shapes are represented
by a point distribution model [131], [132] or a hierarchical
parametric descriptor [133]. However, the segmentation accu-
racy is limited because the deformations of these models
are restricted by a few statistical parameters of training
samples. Furthermore, a large training set is required to
build a representative shape model. Elastically deformable
models [134], [135] are more flexible and provide a straight-
forward way to involve prior information for image seg-
mentation by incorporating prior statistics to constrain the
variation of the model parameters. However, the initializa-
tion is critical, which often needs to be very close to the
object contour to produce good segmentation results. This
is due to the presence of disturbing attractors in the image,
which do not belong to the object of interest, but force
the models towards undesired object boundaries. To over-
come difficulties and take advantage of both approaches,
Weese et al. [136] embedded an active shape model into an
elastically deformable surface model, where the shape model
restricts the flexibility of the surface mesh and maintains an
optimal distribution ofmesh vertices. Adaptation to the image
boundaries is controlled by an external energy derived from
local surface detection and an internal energy that constrains
the deformable surface to stay close to the subspace defined
by the shape model. The internal energy is defined with
respect to the shape model, where the pose and parameters of
the shape model are adapted together with the mesh vertices
representing the deformable elastic model. Moreover, the
external energy has been designed to reduce the risk that
the mesh is trapped by false object boundaries, as it attracts
the deformable model to locally detected surfaces. Such a
shape constrained deformable model can capture anatomical
structures even though they cannot be exactly described by
the model, as it is not restricted to the subset of modeled
shapes. In [187], Yeo et al. proposed a novel variational
approach for level set segmentation with statistical shape
prior. By applying kernel density estimation, the incorporated

shape information enables the described model to efficiently
handle complex shapes from occluded and noisy images.

To segment the left atrium and pulmonary veins (LAPV) in
the rotational X-ray angiography images for the transcatheter
atrial fibrillation ablation procedure, Manzke et al. [139]
presented an automatic model-based segmentation algorithm,
where the anatomical prior knowledge is encoded within
a geometric LAPV shape model. This technique is based
on the shape-constrained deformable models [136] and fol-
lows the general framework in [137] with several extensions:
i) the LAPVmodel is based on the four chamber model [137]
with extension of the major vascular structures [138], ii) the
detection of the left atrium with the generalized Hough trans-
form has been slightly modified and takes only boundaries
with distinct gray value properties in a 3 × 3 × 3 neighbor-
hood into account, iii) a histogram-based calibration method
is used to reduce intensity variations between images, and
boundary detection is performed on calibrated gray-values,
iv) the progressive adaptation technique introduced in [138]
for the adaptation of major vessels attached to the heart is
used to segment the pulmonary veins, and v) some aspects
of the generation of the reference meshes are specific for the
presented LAPV surface generation.

As shown in Fig. 19, shape constrained deformable
models can be used for the segmentation of various
anatomical structures such as vertebra, femur, aorta in CT
images [136], and LAPV surface in 3D rotational X-ray
angiography images [139].

3) MARGINAL SPACE LEARNING
In many applications, instead of uniform and exhaustive
search, the posterior distribution can be clustered in a small
region in the high-dimensional parameter space. For example,
in 2D space search, a classifier trained on p(y) can
quickly delete a large portion of the search space, and the
classifier for joint distribution p(x, y) can then be trained
in a much smaller region (see Fig. 20a). Based on this
observation, Zheng et al. [140] proposed marginal space
learning (MSL), an efficient method to search such clus-
tered parameter spaces. The idea of MSL is not to learn a
classifier directly in the full similarity transformation space
but to incrementally learn classifiers on projected sam-
ple distributions. In MSL, the dimensionality of the search
space is gradually increased, e.g., a 3D object localization
problem can be split into three steps: position estimation,
position-orientation estimation, and position-orientation-
scale (full similarity transformation) estimation. After each
step, only a limited number of candidates are reserved to
reduce the search space. To further improve the efficiency,
a pyramid-based coarse-to-fine strategy can be applied.

The MSL has been successfully demonstrated on many
medical image segmentation problems. To quantitatively
analyze the heart function from 3D cardiac CT volumes,
Zheng et al. [140] developed an efficient and robust approach
for automatic four-chamber heart segmentation (see Fig. 20),
which consists of two steps: anatomical structure localization
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FIGURE 19. Segmentation results of (Top) vertebra, femur, aorta in CT images [136], and
(Bottom) 3D rotational X-ray angiography data of two patients in (from left to right) axial,
sagittal, coronal views [139].

FIGURE 20. MSL-based segmentation of 3D cardiac CT volumes. (a) MSL, and (b-d) extracted heart chamber in axial, sagittal,
coronal views with green for LV endocardium, magenta for LV epicardium, cyan for LA, brown for RV, and blue for RA [140].

and boundary delineation. In this work, the MSL algorithm
is first employed to solve the 9D similarity transformation
search problem for automatic heart localization. After deter-
mining the pose of the heart chambers, a learning-based
3D boundary detector is then applied to guide the non-rigid

heart shape deformation. To handle the structural variations
and obtain robust performance on emerging C-arm CT
images, Zheng et al. [141] proposed an automatic model-
based method for the left atrium (LA) segmentation. Instead
of using a holistic mean shape model [139], the authors
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FIGURE 21. Graph cut-based segmentation of a liver image on an undirected graph and a directed graph (a cut divides the nodes between
the source terminal S and sink terminal T that represent ‘object’ and ‘background’, respectively) [188].

applied a multi-part-based model to address the variations
in pulmonary veins (PVs), which splits the whole LA into
six parts: chamber body, appendage and four major PVs
(left inferior, left superior, right inferior, and right superior).
Compared to the mean shape model in [139], each part has
a simpler anatomical structure that can be detected and seg-
mented well using MSL. After segmentation, all the six parts
are then merged into a consolidated mesh, with different
anatomical structures labeled by different colors. However,
it is still hard to accurately segment the connection region
to the LA chamber (the region around the PV ostia and
appendage). To overcome this shortcoming, Zheng et al. [87]
suggested a way to precisely segment the ostia region by
enforcing both the image boundary delineation accuracy and
mesh smoothness.

D. GRAPH CUT-BASED APPROACHES
The catheter-based imaging techniques such as IVUS and
OCT provide 2D cross-sectional images of the coronary
artery. Accurate segmentation of the inner/outer arterial wall
in these images is a prerequisite for clinical investigations,
which provides critical information for coronary disease diag-
nosis and treatment. Among many others, graph cut-based
approaches [8], [11], [12] have shown to be very promising
for the segmentation of IVUS images.

In [142], Wahle et al. applied the novel s-t cut
algorithm [188] (see Fig. 21) to segment 3D IVUS
images, where the cost function used for identifying the
lumen-plaque and media-adventitia (MA) surfaces contains
three-tiered information at both global and local levels:
intensity patterns along the borders, Rayleigh distribution of
ultrasound image data, and regional homogeneity based on
Chan-Vese minimum variance criterion. However, these
intensity-based features are susceptible to IVUS image
variations such as calcification and shadow. Based on the
efficient graph construction method presented in [143],
Essa et al. developed an initialization-free approach for auto-
matic extraction of MA border in IVUS images using double-
interface graph cut segmentation [11]. The images are first
transformed from Cartesian coordinates to polar coordinates,
which removes the catheter regions and transforms a closed
contour segmentation into a ‘height-field’ segmentation. This
transformation facilitates the construction of an arc-weighted
directed graph, on which a minimum s-t cut can be computed
without any user initialization. The authors applied the arc-
weighted directed graph construction to impose geometrical
and smooth constraints learned/derived from the generalized
shape priors [12] of multiple training shapes, and built novel
cost functions using a combination of complementary texture
features. Fig. 22 shows a qualitative comparison between the
manually labeled results and those by Essa’s method [11].

FIGURE 22. Automatic segmentation of IVUS media-adventitia borders on a directed graph with shape priors (green: ground truth,
red: proposed method) [11], [12].
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FIGURE 23. Automatic IVUS contour detection. (a) Fast iterative 2D discrete wavelet frames decomposition of four levels
(only two levels are shown), the input IVUS image is in the polar coordinates (rectangular domain), R and C denote filters
applied row-wise and column-wise respectively, and (b) segmentation results of different images [145].

E. MULTISCALE WAVELET-BASED APPROACHES
Taking advantage of spectral analysis or spatial-frequency
expansions, Katouzian et al. [144] introduced the first mul-
tiscale expansion approach based on discrete wavelet packet
frames to automatically detect the lumen borders in IVUS
images. First, the images are decomposed onto orthogo-
nal Lemarie-Battle filters and the envelope of the complex
coefficients is then computed as features. An unsupervised
K-means clustering algorithm is applied to generate binary
masks corresponding to blood and non-blood regions. The
lumen border is evaluated by iterative Spline interpolation
among nearest detected edge sets in the radial direction.
However, the presence of the guide wire, ring-down arti-
facts, and attenuation of signals in regions far from
the transducer limits the proposed method. Similarly,
Papadogiorgaki et al. [145] applied the discrete wavelet
frames to identify both the lumen and MA borders in IVUS

images, where the decomposition trees were constructed by
the Haar filters (see Fig. 23). Both techniques are able to auto-
matically delineate borders with four decomposition levels in
polar coordinates.

Motivated by the procedure used by interventional
cardiologists, Katouzian et al. [146], [147] developed an auto-
matic technique to trace the lumen borders in IVUS images
acquired with high-frequency transducers. IVUS subvolumes
were projected onto orthogonal brushlet basis functions in
an overcomplete fashion in polar coordinates, as the brushlet
coefficients are invariant to intensity and only depend on the
spatial frequency content of the IVUS signals. In this work,
two approacheswere proposed for the estimation of the lumen
border. They binarized the brushlet coefficients by assum-
ing that those corresponding to plaque regions have higher
magnitude, and then applied the iterative conditional model
segmentation framework with Markovian regularization
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to identify the lumen borders in different classes [146].
The evaluation on in vitro data demonstrated that distinct
histogram peaks correspond to blood and non-blood regions.
Thresholding of these peaks leads to binary masks exploited
for the detection of the lumen border with the surface func-
tion active framework. In addition, techniques for removing
catheter marker, ring-down, and guide wire artifacts were
introduced as well.

F. COMBINED APPROACHES
The combination of different segmentation approaches
(e.g., model-based and graph cut-based methods) can take
advantage of them to produce better results or more anatom-
ical structures, which is potentially helpful for medical diag-
nosis, preoperative planning, and intraoperative guidance
during the transcatheter procedures.

Zheng et al. [87], [141] developed a robust and efficient
model-based method to automatically segment the LA from
469 C-armCT volumes usingMSL. However, on some image
data, the final consolidated mesh may slightly deviate from
the true LA boundary since the method does not make full use
of local voxel-wise intensity information. Furthermore, due to
the large variations of the PV drainage pattern, the extra right
middle PVs between two major right PVs are not included
in the multi-part-based LA model, although these anatomies
are important for cardiac diagnosis and treatment planning.
To refine the LA segmentation and extract the right middle
PVs, Yang et al. [149] proposed an automatic approach com-
bining the model-based method with graph cut-based method
(see Fig. 24). Based on the initial segmentation results by
the model-based approach, two regions of interest (ROIs) are

first determined for the LA segmentation refinement and right
middle PVs extraction, respectively. The initial segmentation
also provides positive (foreground) and negative (negative)
seeds to automatically initialize the graph cuts. The graph is
then constructed within the corresponding ROI by a region
growing process, which connects the seeds and voxels of ROI
together without duplication. By performing the graph cut
optimization, the voxels within the two ROIs are relabeled as
foreground and background. The foreground voxels are used
to update the initial segmentation and refined segmentation
results. To reduce the leakage of graph cuts for the extraction
of right middle PVs, a pruning procedure is exploited to
remove occasional false positive PVs by examining multi-
ple criteria. Finally, the initial segmentation is refined and
further expanded with newly detected right middle PVs.
Fig. 25 shows the final extraction results of the LA and right
middle PV.

To automatically detect the MA border, Gil et al. [148]
combined a statistical strategy with a supervised classifica-
tion approach to achieve optimal performance. The presented
segmentation method consists of three main steps. First,
a restricted anisotropic diffusion filter is applied to enhance
the border. Second, a feature space consisting of horizontal
edges, radial standard deviation, and radial cumulative mean
is constructed. The edge feature represents the MA border,
while the other two features can be used to differentiate
between calcified and fibrotic tissue within the plaque. Fisher
linear discriminant analysis (LDA) is then performed to
achieve a maximum separability among the projected classes
followed by Bayesian thresholding in the feature space to
generate two binary masks corresponding to calcified regions

FIGURE 24. The flowchart of Yang’s combined approach [149].

VOLUME 3, 2015 1900331



Zhao et al.: Computer Vision Techniques for Transcatheter Intervention

FIGURE 25. Segmentation results of (a) LA and (b) right middle PV. The small defect of LA and non-detected right middle PV
(yellow arrows) in the model-based segmentation (odd columns) are corrected after refinement (even columns) [149].

and the MA border, respectively. Third, the MA border is
identified through modeling the fragmented segments in the
MA border mask by computing an implicit closed represen-
tation using an anisotropic contour closing and an explicit
B-spline compact parameterization.

In conventional sequential approaches, segmentation and
interpolation are carried out separately in turn. Somemethods
first perform segmentation of the slices and then interpolate
a 3D surface from the segmented 2D contours, while other
methods perform interpolation of the slices first to reconstruct
a 3D volume, followed by 3D segmentation. Both of them
have limitations in processing 3D and 4D sparse medical
data sets. In [189], Paiement et al. accomplished both seg-
mentation and interpolation simultaneously by integrating
them into a radial basis function (RBF) interpolated level
set framework, which combines the flexibility of level set
methods, the numerical stability of RBF interpolated level
set segmentation methods, and the interpolation abilities of
RBFs. In this work, the interpolation exploits the segmenting
surface and its shape information instead of pixel intensities,
thus achieved improved robustness and accuracy. Moreover,
the proposed method supports any spatial configurations of
2D slices with arbitrary positions and orientations.

G. APPLICATIONS
In this section, we review some of the computer vision tech-
niques applied in transcatheter interventions with respect to
applications, such as the measurement of aortic valve annulus
for valve selection in TAVI, detection of ventricle and atrium
for assessing the heart functional and guiding the intraoper-
ative procedure, extraction of vessel centerline in coronary
angiographic images for estimation of vessel parameters, and
so on.

1) ANNULUS MEASUREMENT
The success of TAVI highly depends on proper preoperative
planning and accurate intraoperative valve placement. During
preoperative planning of valve implantation, one of the major
steps is to determine the prosthetic valve size and type based
on the accurate measurement of the geometric features of
the aortic valve annulus including its diameter, center and
orientation (the direction alongwhich the prosthetic valve can

be deployed). Generally, these features can be estimated by
ultrasound or X-ray based imaging technologies such as TTE,
TEE and multislice CT [151]. MRI can be used for evaluating
the annulus features during the preoperative planning as well
as tracking its motion during TAVI to guide the valve place-
ment [42], [150]. Robotic assistance can also be integrated
into the MRI-guided cardiac interventions (e.g., transapical
valve implantation) to increase its feasibility [153], [154].
In [155], Navkar et al. presented a method to extract the
geometric features from MRI images by finding an optimal
fit for a circular ring mimicking the valve annulus in the
aortic root (see Fig. 26). Moreover, this approach can be used
for MRI-guided annuloplasty [150], [152] by dynamically
tracking the motion of the annulus.

2) VENTRICLE SEGMENTATION
Cardiac MRI provides important information for diagnosis
and treatment of cardiovascular diseases by enabling quanti-
tative assessment of functional parameters of the heart such
as ejection fraction, myocardium mass, wall motion, and
wall thickness [190]. To measure these functional parame-
ters, many approaches were suggested to identify the main
structures of the heart such as the left ventricle (LV) and
right ventricle (RV). Fleagle et al. [156] developed a system
to delineate the myocardium borders using a minimum-cost
path graph search algorithm after the user initialized the
center of the LV cavity and the ROI. In [157], Geiger et al.
applied dynamic programming to refine the contours indi-
cated by the user to make them correspond to image edges.
Goshtasby and Turner [158] proposed a two-step algorithm
combining intensity thresholding to recover the bright blood
and local gradient to outline the strong edges using elastic
curves. Weng et al. [191] developed an algorithm to threshold
the image based on parameters estimated during a learning
phase and gain a good approximation of the segmentation.

A number of automatic approaches incorporated
prior knowledge of heart shape and motion to
improve the segmentation accuracy and robustness.
Montagnat and Delingette [162] developed a framework to
track the LV motion in 4D noisy or low contrast medical
images based on 4D deformable surface models. The pro-
posed method relies on complementary spatial and temporal
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FIGURE 26. Measurement of the aortic valve annulus (blue curve). (a) Annulus tracking in 5 (out of 20) frames
at selected instances over a complete cardiac cycle, (b) annulus position with respect to short and long axis
slices for one frame, and (c) color-coded annulus positions at different instants in one cycle [155].

constraints to regularize the deformation while introducing
prior information of the LV shape and motion during
the segmentation process. The resulting surface mod-
els are well suited for estimating quantitative parameters
such as endocardium volume or wall thickness. In [160],
Lorenzo-Valdés et al. proposed a method for the segmen-
tation and tracking of the LV, RV and myocardium in 4D
cardiac MRI images. Taking advantage of the temporal
relation between images, they achieved convincing results
by volumetric atlas matching using B-spline registration.
However, the efficiency of this approach is low. In [163],
Mitchell et al. combined the fast and robust active shape
and appearance models [132], [192] in a multistage fashion
to extract the LV and RV borders from MRI images. The
developed method yielded promising results (see Fig. 27a).
However, statistical shape models cannot capture variability
outside the training set, which is likely to occur in clinical
setting. In addition, appearance modeling may fail in the
presence of large gray value variability across subjects and
time. Jolly et al. [193] presented a segmentation technique
to automatically extract the myocardium in 4D cardiac MR
images for quantitative cardiac analysis and the diagnosis
of patients. In [159], Kaus et al. proposed to integrate sev-
eral sources of prior information learned from annotated
image data into a deformable model including a determin-
istic, parametric model of the variation of surface features,
inter- and intra-subject shape variation, and spatial relation-
ships of the epicardium and endocardium to handle multiple
objects. The presented technique was applied for automatic

FIGURE 27. Segmentation of ventricle borders in cardiac MRI images.
(a) LV and RV contours extracted by a multistage hybrid method [163],
and (b) LV borders detected by a deformable model in three orthogonal
views from the end-diastolic phase [159].

LV segmentation in 3D cardiac MRI time series. Fig. 27b
gives an example. Quantitative validation of 121 data sets
in end-diastolic/end-systolic phase demonstrates its high
robustness and accuracy.

3) ATRIUM SEGMENTATION
Extracting a patient-specific left atrium (LA) model from
intraoperative volumetric data (e.g., C-arm CT images) is
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important in the preoperative planning for transcatheter
LA intervention, and it can provide intraoperative visual
guidance as well. However, automatic segmentation of the
LA along with the left atrial appendage (LAA) and the pul-
monary vein (PV) trunks is a challenge problem, due to the
large structural variations in the PV drainage patterns [90]
and imaging artifacts. Various approaches have been pro-
posed for the LA segmentation, which can be classified into
two categories: model-based [87], [139], [141], [164]–[166]
and non-model-based methods [86], [167]. The former meth-
ods exploit the prior LA shape information to guide the
segmentation, while the latter methods do not involve any
prior knowledge of the LA shape. With the prior LA shape
constraint, the model-based segmentations can avoid leakage
around weak or missing boundaries. However, it may be
difficult for them to handle the PV structural variations [139].
On the contrary, the non-model-based approaches [86], [167]
address the PV variations well, although they cannot
provide the underlying anatomical information such as
the left inferior PV. Practically, non-model-based seg-
mentations achieve good results on both CT and MRI
data sets.

In order to deal with the structural variations and achieve
robust performance on emerging C-arm CT image data,
Zheng et al. proposed an automatic part-based LA segmen-
tation algorithm [141]. Instead of utilizing a holistic mean
shape model [139], they employed a multi-part-based model
to handle the PV variations, which divide the whole LA into
chamber body, appendage and four major PVs. In comparison
with the mean shape model [139], each part has a simpler
anatomical structure. Therefore, it can be segmented well
using a model-based approach, namely marginal space learn-
ing [140]. After segmentation, all the six parts aremerged into
one consolidated mesh, with different anatomical structures
represented by distinct colors (see Fig. 28). However, it is
still hard to accurately segment the connection region to the
LA chamber. To tackle this problem, in [87], Zheng et al.
suggested a way to precisely segment the ostia region by
enforcing both the image boundary delineation accuracy and
mesh smoothness.

4) VESSEL CENTERLINE EXTRACTION
Quantitative coronary angiography (QCA) [168], [173], [194]
plays an important role in the analysis of coronary artery
disease. An important step in QCA is the estimation of
vessel centerline, which has been widely used in computing
edge gradients and searching for border positions, deriving
video-densitometric profiles, measuring the vessel diameters,
calculating the lesion symmetry, and reconstructing the 3D
structure of vessel segments or the entire artery.

The earlier approach to determine coronary lumen center-
line is commonly based on manual tracing of the entire cen-
terline or identifying several centerline points and producing
the continuous centerline by interpolation [171], [195]. The
manual centerline identification may result in large vessel
orientation errors. On the other hand, the lumen centerline
can be calculated as a midline between the left and right
coronary borders [168], which can be detected at each cross
section separately along the vessel [169] or simultaneously
extracted [170]. Given an initial start-of-search point, some
coronary lumen centerline detection algorithms are based on
vessel tracking by preserving the spatial continuity of vessel
position, curvature, diameter, and density [171], [172]. Other
approaches utilize active contour models (snakes) [173],
which are suitable for analysis of angiographic sequences
where the vessel centerline is manually or semi-automatically
identified in the first frame and the centerlines in subse-
quent frames are then tracked by the snakes. In arterial tree
extraction, the recursive sequential tracking is generally used
for the extraction of the artery network skeleton and the
directional resampling of the angiogram is utilized to identify
the artery borders based on the extracted skeleton [196]. The
accuracy of the skeleton affects the artery border extraction.
In [197], Haris et al. proposed a method to detect and label
the coronary arterial tree using minimal user supervision in
single-view angiograms. Each artery segment was analyzed
for skeleton and border extraction using morphological oper-
ations and watershed transform. Zhou et al. [174] presented
an efficient approach for 3D skeleton and centerline gener-
ation based on approximate minimum distance field. This
method was later extended to volumetric objects in [175],

FIGURE 28. Extraction of atrium contours in a large CT volume. (a) Part-based LA mesh model (cyan: chamber, red: appendage, green: left
inferior PV, magenta: left superior PV, orange: right inferior PV, and blue: right superior PV), and (b-d) LA segmentation results in three
orthogonal views with different colors for different mesh parts [141].
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FIGURE 29. Voting-based centerline extraction. (a) Maximum-intensity projection of a confocal data set, (b) enlarged and rendered
volume of the selected vessel segment in (a), (c) voting results overlaid on the surface rendering (sliced region shows the
cross-section), and (d) detected centerline in red and the surface rendering [200].

where the skeletons were interpreted as connected center-
lines consisting of sequences of medial points of consecutive
clusters. These centerlines were initially extracted as paths
of voxels, followed by medial point replacement, refinement,
smoothing and connection operations.

Blondel et al. [198] described a novel method to generate
3D reconstruction of coronary artery centerlines, enabling
a 3D tomographic reconstruction of coronary arteries from
one single rotational X-ray projection sequence. In [199],
Tyrrell et al. employed cylindroidal superellipsoids to
model complex tumor microvasculature in 3D imagery,
which allows joint estimation of the vessel boundary
and centerline, thus approximating the medial axis.
Narayanaswamy et al. [200] proposed an approach for accu-
rate estimation of vessel centerlines utilizing a ray casting
and vote accumulation algorithm (see Fig. 29). Later on,
Wong et al. [201] developed an energy-minimization-based
framework for the extraction of arterial lumen centerline
according to the theory of nonlinear principal curves. They
applied a nonparametric model for the representation of
lumen centers, and achieved an accuracy of subvoxel level,
benefiting the geometric study of aneurysmal neck. The
proposed algorithm is adaptive to the vasculature complexity
and robust to strongly bended lumen as well as branching vas-
culature. By registering an elliptical cross-sectional tube with
the desired constituent vessel in everymajor bifurcation of the
arterial tree, Wang and Liatsis [202] proposed a deformable

tube model-based technique for precise estimation of the
centerline and reference lumen surface for both the main
vessel and the side branches in the area of bifurcations.
Meanwhile, a completely automatic method based on graph-
cuts was designed for the accurate extraction of coronary cen-
terline in X-ray angiography imagery [203]. Both methods
perform as good as human experts.Motivated by the diffusion
tensor image (DTI) field, Cetin et al. [204] proposed an
approach using an intensity-based tensor model for the loca-
tion of coronary artery centerlines from computed tomogra-
phy angiography (CTA) scans. In [205], a hybrid scheme was
reported for the detection of vessel centerlines in preoper-
ative multislice computed tomography (MSCT) sequences,
making use of a minimum cost path technique with a fast-
marching front propagation. The extracted centerlines are
refined in the second procedure by applying an iterative
multiscale method based on geometrical moments. Fig. 30
illustrates several vascular centerline extraction results over-
laid on the original images in coronary X-ray angiography
volumes.

Most of the techniques mentioned above may have diffi-
culty to handle images of poor quality and little work has
been done in examining accuracy of the estimated centerline.
In most QCA algorithms [173], [194], [213], the vali-
dation was based on comparing the extracted centerlines
with manually labeled results or generating phantoms with
known parameters. The former suffered from a lack of an

FIGURE 30. Detected centerlines overlaying on original coronary angiography images [206].
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objective criteria and inter-observer variability, while the
latter required a full imaging system to test the software
without standard results. Sonka et al. [213] first attempted to
evaluate the accuracy of the estimated vessel centerline using
indexes that express the position and orientation similarities
of two centerlines. In [214], Greenspan et al. described a
method to provide an objective accuracy measure for evalu-
ating centerline extraction algorithms. The method compared
estimated results with a priori data that was used to generate
the centerline. Images of blood vessels with known geometry
and centerline were synthesized. They presented a method
for an objective comparison of different QCA algorithms
and a way for the evaluation of a specific QCA algorithm
performance under different geometrical parameters of the
vessel. A synthetic vessel-generation tool was applied for
the evaluation and comparison of two well-known center-
line estimation algorithms. To quantitatively evaluate and
compare the performance of existing coronary artery center-
line extraction techniques, Schaap et al. [215] presented a
standardized evaluation methodology along with a reference
database containing 32 cardiac CTA data sets.

IV. COMPARATIVE STUDIES AND DISCUSSIONS
A number of imaging modalities are involved in the min-
imally invasive transcatheter procedure. Table 5 shows a
summary list of some of these pre-procedural and intra-
procedural imaging techniques. The catheter-based imag-
ing techniques like intravascular ultrasound (IVUS) and
optical coherence tomography (OCT) are widely used in
imaging coronary artery structures, diagnosing and treating
coronary diseases such as atherosclerosis [5], [106]. During
the whole transcatheter aortic valve implantation (TAVI)
procedure [30], [31], various imaging approaches are applied
to help place the valve appropriately and minimize the

major complications, including multislice computed tomog-
raphy (MSCT), magnetic resonance imaging (MRI), X-ray
angiography/fluoroscopy, and transthoracic/transesophageal
echo (TTE/TEE) (refer to Table 1 for details). To guide
the TAVI interventions, MSCT and TTE/TEE are gener-
ally employed to preoperatively measure the geometric fea-
tures (e.g., diameter, center, orientation) of the aortic valve
annulus [151]. Moreover, MRI is utilized to evaluate the aor-
tic annulus features and tracking its motion [42], [150], [155],
benefiting both preoperative planning and intraoperative
guidance for TAVI. It should be noted that there are certain
limitations with these imaging technologies. For example,
MSCT involves ionizing radiation, TTE provides a limited
field of view (FOV), TEE requires access through the esoph-
agus, and MRI offers limited access to the patients inside
cylindrical MR scanners.

Interventional cardiac electrophysiology (EP) procedures
such as transcatheter left atrial fibrillation ablation require
accurate segmentation and labeling of the left atrium (LA)
and pulmonary veins (PVs). Computed tomography angiog-
raphy (CTA), magnetic resonance angiography (MRA),
and MSCT can provide preoperative images for this
purpose [86], [164]. The integration of preoperative CT
or MRI with electroanatomical mapping (EAM) produces
more anatomical information of the LA and PVs, which
can be used for the guidance of the catheter ablation
procedure [209]–[211]. Recently, C-arm computed tomog-
raphy (C-arm CT) is emerged as a new 3D imaging tech-
nique to provide images for extracting patient-specific
LA model [87], [141], [149]. Compared to conventional CT
or MRI, it reflects the current state of the patient’s heart
chamber anatomy.

Performance evaluation of medical image segmentation
techniques is of great significance, which addresses the

TABLE 5. Imaging modalities and their applications.
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TABLE 6. Measurement of segmentation accuracy.

similarity between the segmentation outcome and desired
result, the clinical impact of such a similarity, along with
the robustness of the segmentation method in the context
of variation in patient anatomies and fluctuations in image
properties. A variety of evaluation schemes and criteria
(e.g., robustness, precision, accuracy and efficiency) have
been presented in the literature [216]–[218], taking clinical
relevancy and impact into account. In this work, we focus on
metrics for the accuracy measurement. Among many other
approaches, cross validation [87], [140], [141] is popularly
utilized in the assessment of segmentation accuracy, and
the results are generally presented in a confusion matrix.
A large number of different metrics have been applied to
measure the similarity between the segmentation results by
an algorithm and the ground truth labeled by an expert.
Table 6 shows a summary list of these metrics. Most of
them are statistical measures as no spatial relations between
image pixels/voxels or edges are considered, assuming spatial
independence between those elements.

V. CONCLUSIONS
In this paper, we review the computer vision techniques
that are widely used in transcatheter intervention for many
medical applications. This review gives us some insights into
the state-of-the-art imaging technologies, segmentations and
user interventions. Even though the research on transcatheter
intervention is expanding rapidly, there are still many
challenges to be faced. Based on this review, we make the
following observations.

1) Compared to traditional open-heart surgery, the mini-
mally invasive transcatheter interventions are less trau-
matic and offer faster recovery time for patients. In the
long term, the transcatheter procedures may encroach
upon the conventional surgical approaches.

2) Transcatheter aortic valve implantation (TAVI) emerges
as an extremely promising life-saving therapy with-
out requiring a full open-heart surgery. A number of
observational clinical studies have demonstrated its
feasibility, safety and effectiveness. It will potentially
represent the standard of care for patients with severe

aortic stenosis. Now it is time to further develop the less
traumatic transcatheter valve implantation technology
to make it applicable to a wider range of patients.

3) Transcatheter mitral valve repair/replacement (TMVR)
is still under development. Innovative solutions prop-
erly addressing prosthesis anchoring and sealing
in mitral position are highly desirable for clinical
applications.

4) With the advent of less invasive and safer transcatheter
technologies like TAVI, TMVR, TPVR and TTVI,
a new treatment option has become available for
patients with inoperable cardiovascular valve stenosis
or regurgitation and this treatment may change
significantly over the next few years.

5) Percutaneous valve-in-valve implantation has gained
increasing acceptance as a feasible treatment option
for selected non-surgical patients with degenerated bio-
prostheses in the aortic, mitral, pulmonary and tricuspid
positions. It is also worth noting that manufacturers
need to further improve the design of current biopros-
thetic valves and more testing is required.

6) While intravascular ultrasound (IVUS) remains the
most widely used and validated intravascular imag-
ing technique in clinical practice, optical coherence
tomography (OCT) has the potential to become the
most accurate imaging modality to assess the lumen
dimensions and facilitate the application of automatic
measurement algorithms.

7) The good estimation of the guide-wire position is cru-
cial to the elimination of guide-wire shadow artifacts,
which will finally benefit the accurate segmentation of
the vessel wall in OCT image sequences.

8) Most of current techniques detect the lumen andmedia-
adventitia borders in IVUS images on two distinct data
sets. It is desirable to develop algorithms to identify
both borders simultaneously.

9) Mid-term and long-term results of a large patient
population are highly anticipated, which will provide
useful insights into the transcatheter interventions in
the real world. Despite current promising results on
transcatheter interventions, there are unsolved issues
such as procedural failure and rate of complications.
Computer vision techniques could help to minimize
these risks and play an important role before, during
and after the procedure.

10) Segmentation algorithms could greatly benefit the
image-guided transcatheter intervention procedures.
There is a clear need for designing efficient and robust
segmentation methods with minimal user interaction
for the extraction of anatomical structures with higher
accuracy during the procedure.

11) Energy minimization-based segmentation approaches
like deformable models and graph-cut are very popular
in segmenting vessel geometries, providing efficient
and precise knowledge in support of transcatheter
procedures.
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12) For the extraction of anatomical vessel structures, the
integration of prior information (e.g., shape priors) into
the segmentation framework could impressively reduce
its complexity.

13) The segmentation results allow the construction of
anatomical databank, which could possibly be used for
exploring the morphological variations, pathological
evolution, or growth of organs.

14) These segmentation algorithms are not mutually
exclusive. Approaches combining different segmen-
tation techniques are able to produce better results
or more anatomical structure information, which is
potentially helpful for both preoperative planning and
intraoperative guidance during the transcatheter
procedures.

15) Machine learning-based segmentation techniques such
as marginal space learning are of special interest since
the learning algorithms in computer vision are being
developed rapidly and promisingly.

16) Performance evaluation in medical image segmenta-
tion measures the amount of similarity between the
segmented results and the gold standard. Unlike tra-
ditional image processing, it needs to consider the
clinical aspects including relevancy and impact. Thus,
it is fairly important to design or adopt medically-
oriented metrics for the measurement of segmentation
accuracy, as inappropriate ones may result in seri-
ous consequences for transcatheter intervention and
consequently the health of patients.
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