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Abstract. We propose a novel shape and appearance based spatiotecgpera
straint and combine it with a level set based deformable modsch can be
used for Left Ventricle segmentation in 4D gated cardiac SPparticularly in
the presence of perfusion defects. The model incorporgipesazance in addi-
tion to shape information into soft-to-hard probabilistic constraint, and utilizes
spatiotemporal regularization via a Maximum A Postericaniework. This con-
straint force allows more flexibility than the rigid forcesshape constraint-only
schemes, as well as other state-of-the-art joint shape@rehsance constraints.
We present comparative results to illustrate the improvermgain.

Key words. spatiotemporal 4D segmentation, constrained deformaladdem
gated cardiac SPECT

1 Introduction

The segmentation of LV borders allows quantitative analgsiperfusion defects and
cardiac function, and is thus of significant importance tgdiosis and clinical study.
In SPECT, perfusion defects have low or no contrast agaiesbackground, thus the
accurate determination of the LV borders around the desatifficult and prior knowl-
edge of LV shape is usually required to estimate such detebtrders. Additionally,
the image data often contains hot structures in the proyiofithe LV, considered as
perfusion artifacts that impose similar difficulties forect LV segmentation. Further,
due to partial volume effect, the images at end-systole terdok brighter than end-
diastole, known as the artifact of myocardial brightenimbich means prior knowledge
of cardiac motion is required to estimate LV borders. In {raper, we address these
problems and propose an automated and reliable segmenggiyoach that detects
LV borders in the face of perfusion defects and artifactsyel$ as cardiac motion, in
4D cardiac SPECT.

As spatiotemporal methods offer the advantages of timeist@m segmentation
[1], a variety of such methods have been proposed for LV segatien on gated cardiac
SPECT. Debreuve et al. [1] and Charnoz et al. [2] took int@aatall the timeframes of
the sequence to cope with background noise. Montagnat[8{ aked a pre-determined
4D shape model registered onto the input image sequence shdpe and temporal
constraints. Kohlberger et al. [4] applied a level set madedearch LV borders under
a statistical constraint, similar to that introduced in. [bhe model in [6] is extended
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from [4] and inferred the constraint by utilizing a kernehdéy estimator as suggested
in [7] instead of the multivariate Gaussian model.

The main limitations of the above models would surface ifytdeal with patho-
logical cases. For example, [1, 2] assumed that the LV hastaotpixel values, [3]
relied on its own rigidity to hypothesize on the defectiveders, and the constraints
in [4, 6] were applied to the models rigidly, i.e. with equaksgth everywhere. Such
shortcomings can compromise the accuracy of the estimsgecelly on LVs with lo-
cal variations and medium to severe perfusion defectshEgrthe constraints of these
models are shape based, with no mechanism proposed to anate@ppearance infor-
mation correlating to the shape in the constraint forcasesthe shape of a perfusion
does not always correspond to the LV shape in the presencefedtd, we argue that
these shape based constraints still lack flexibility to aatii abnormal perfusion and
hence can compromise segmentation accuracy. Appeardoncaation, in addition to
shape, should be considered.

In [8], Rousson and Paragios proposed a constraint via fingiaximum proba-
bility density function (pdf) of the shape and combined ittwa level set model for
object detection in optical images with noisy or missingaddthis Self-Constrained
Geodesic Active Regions model is hereafter referred to &8/ Their probabilis-
tic approach takes into account shape variability, prauyei soft-to-hard force, which
allows a wider range of shape variations than the models ,ié][4Ve will use this
methodology as part of our approach towards LV detectioramliac SPECT as LV
shapes contain large degrees of irregular inter-clasatians [9].

For more reliable application in SPECT, we borrow from th&-sw-hard proba-
bilistic framework of SCGAR and replace its shape based pg#aiive function with
a posterior that considers the shape and appearance of tile sdguence, leading to
a novel shape and appearance based spatiotemporal coinderdved with MAP es-
timation. Instead of globally aligning shapes when evahgathe pdf in SCGAR, we
apply a global-to-local alignment. Meanwhile, as in [4,Blincipal Component Anal-
ysis (PCA) is employed in our model to reduce data dimensimhssatistically depict
shape variations. However unlike [4, 6], instead of ap@yRCA to the whole level set
domain, we apply it to the deformation fields of the level setgaracterized by trans-
formation parameters, to further reduce the data space llovd lzetter control over
temporal shape variations. Compared with current work®ion ghape and appearance
constraints such as [10-14], our soft-to-hard constrdimva more flexibility than their
rigid forces. Additionally, we argue that the probabilisiiamework makes better use
of the correlation between shape and appearance than tietdenearly combine the
two, e.g. [10-13].

In all, we present a model combining a recently proposed rgéipeirpose de-
formable model for boundary detection, namely Chargedw&dliontour based on Elec-
trostatics (CACE) [15], with a constraint that is capablemaforporating prior knowl-
edge in correlated shape and appearance, as well as spgiaytd variations. This is
designed to cope with the irregularities in variations ofdhapes and motions and the
extremely fuzzy gradients due to (temporal) perfusion cksfand artifacts in cardiac
SPECT. We refer to this combined model as Constrained CACEAXE).
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CACE is a general-purpose active contour model introdugedamg et al in [15]
that incorporates particle based electrostatic intevastinto the geometric active con-
tour framework. It can be used for object boundary detedtioa variety of images.
Embedded in level sets, CACE propagates under the infludrecbiedirectional force
field that simulates the electrostatic interaction betwaeimage-derived point charge
field and a charged contour. The force field leads the contevards object boundaries
and dynamically adapts as the contour evolves. It bring#iléy in initialization and
better curve propagation towards object boundaries. et $eto evolution of CACE
is

5]
B = wegnl V6~ (1 - we)T -V (1)

whereuw, is a real positive constant,is an edge stopping function of the inputimage,
denotes the curvature of the contour, dnid the dynamic electrostatic force. For more
details of CACE the reader is referred to [15]. As mentionaidier, we build CCACE
on the CACE framework and effectively CCACE is CACE with titzlaion of specific
constraints for 4D LV segmentation.

2 Proposed CCACE Mode

An Overview - The proposed model comprises two stages: training andesggution.
Through the training stage, a set of pixel-wise Gaussiasrpand spatiotemporal pri-
ors are obtained. The Gaussian priors include a prior imageior shape, an image
variation term, a shape variation term, and the correlatieimveen image and shape.
The spatiotemporal priors are the products of applying P&€glabal-to-local transfor-
mation parameters of the shape variations, and include wfgthe parameters, modes
of variations (or eigenmodes), weights for the eigenmoadesyell as the covariance of
the weights.

During segmentation, an initial surface embedded in lexts is placed in the input
image. A constraint force is derived by finding the maximunthef multivariate pdf of
the inputimage and the level sets based on the Gaussias froar the training stage.
As the level sets evolve, the pdf continuously updates lgnalg the joint priors (prior
image and shape) with the input image and the level sets wviaajto-local transfor-
mations to enable meaningful evaluation of the pdf. Thenatignt is regularized by
the prior distribution over a set &patiotemporal parameters of the transformations.
The force derived from this regularized multivariate pdfeetively a posterior, is a
shape and appearance based spatiotemporal constraiimeabtéa MAP estimation.
The evolving level sets update according to the combinafddACE forces and this
constraint to reach (and hypothesize missing or defedtvéjorders. Next, we discuss
the training and segmentation stages in detail, followeedperimental results in gated
cardiac SPECT.

2.1 Training

A training setM = {(I;, ;) : i € [1, N]} of N gated SPECT samples is constructed
from manually labelled 4D sequences. Each sarfi;;le,;bi) consists of a pair - animage



4 R. Yang, M. Mirmehdi, Xianghua Xie, D. Hall

sequencd; and its corresponding LV shape sequeﬁx;ewhereii is theit" training
image sequence, amk; is thei'” training shape sequence embedded in level sets con-
structed by manually labelling di. Each training sequence consistgdtimeframes,
ie.l; = {Iiy: ke [l,K]}andg, = {¢i) : k € [1,K]}. Any known defect-free
sequence can be selected as the reference shape seguengs, : k € [1, K|}. Each
training shape\biyk is globally and locally aligned towards the correspondingeframe
of the reference shape sequence,gike.via the global-to-local registration technique
proposed in [16, in order to reduce nonlinearity to fit in a Gaussian priore Titansfor-
mations recovered from these shape registrations are ipdied to the training images
accordingly to sustain the correspondence between tgpimages and shapes. From
the aligned training set we derive two sets of priors: pixede Gaussian priors and
spatiotemporal priors.

Gaussian Priors- We compute pixel-wise means of imades {1}, : k € [1, K]},
image standard deviatioss; = {5, : k € [1, K]}, means of the shapes = {¢;. :
k € [1, K]}, shape standard deviatioss = {74, : k£ € [1, K]}, and the correlation
coefficients between image and shape {p; : k € [1, K]}. T and¢ are also referred
to as the prior image/appearance and prior shape sequespaetigely. As the training
shapes are locally aligned, there is risk of bias in the priowards the referencﬁé,
the impact of which on the model performance is however mzant, as will be
mentioned later at segmentation stage. The prior image laapessequences of our
training set, fork = 8 and N = 15, are shown in Fig. 1.

188888881

Fig. 1. From left: timeframes 1-8. From top: prior image and shapgieece.

Spatiotemporal Priors- We seek parameterized temporal correlation among the
spatial variations by applying two levels of PCA to a set ahsformation parameters
that describe how the training shapgez-svary from the prior shapep. These transfor-
mation parameters, denoted @, ;, : (i, k) € [1, N] x [1, K]}, are recovered from
mapping the prior shapg into training shapeé%-, again via the global-to-local regis-
tration technique proposed in [16]. The distribution@{yk can be used to regularize
the segmentation later during which the joint prigks¢) are aligned towards the input
image and level sets.

PCA is then applied to the recovered transformation pararsg®, ;. : i € [1, N]}
at each timeframe individually, each giving a mea®;,, eigenmode® ., and weights

4 We use a rigid transformation and.é x 16 x 12 IFFD grid with single resolution scheme.
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for the eigenmodeéb; : i € [1, N]}. A further PCA is then applied to these weights
of all timeframes, i.e{b;; : (i,k) € [1,N] x [1, K]}, and produces second-level
eigenmode$) and weights{v; : ¢ € [1, N]}. The weights from the first PCA statisti-
cally depict shape variations of every timeframe, and ticersé PCA on them produces
parameters that control their spatiotemporal variatidinss is similar to Cootes et al.
[17] where an appearance model is built by applying secemdHPCA to the results
of a first-level PCA on shape and gray-level intensity daspeetively. These two lev-
els of PCA give an approximation for a new set of transfororaparameter®y, i.e.
O = O + P;Qic, whereQ = [Q) ... Q] andc is a varying parameter to be de-
termined. As it indirectly controls both spatial and terrgdmariations of the sequence
through affecting its transformations, we referct@s thespatiotemporal parameters.
Assuming normal distribution, the prior distribution ©fs

Pe) = (VEZTOT)  exp(~5e'U"e) )

wheren is the number of modes @) andU is the covariance matrix whose diagonal
comprises the eigenvalues obtained from the second-l€#&! P

2.2 Constrained Segmentation

We now outline the derivation of our proposed constraintéobased on the priors
obtained during training and then give the combined forteof CCACE.

Shape and Appear ance based Spatiotemporal Constraint - We use a variational
framework to derive the constraint force that helps evoheslevel sets to optimize a
posterior, defined as the product of a shape and appearattoeanmate pdf and the prior
distribution over the spatiotemporal parameters. Thegomstmeasures the probability
of the input image and shape to occur in a normal distributioaracterized by the
Gaussian priors obtained in training, under spatiotempegularization through the
prior distribution.

Given the input image sequenke= {I;, : k € [1, K]} and the evolving level sets
¢ ={¢r : k € [1, K|} placed on the image, the posterior is defined as:

K
];[( VITH) exp(—gal 5 an)Pa(o), 3)
Whefeak—[‘;f:]—[“s“i}<[S'3fk}—[?:é%3]>v
_ 1 3, (T) pr(T)0, (T)ar, (T)
%= 5 L ]

T is the simplified representation 6{ @;; x), which denotes the transformation model
of the registration in [16], where are the pixel locations. The joint priod, ¢)
are aligned with the input appearance and shdpe) throughT(©@;;x), for k €

[1, K]. The transformations act on the priors so that the derivedtcaint force applies
straightforwardly to the level sets and can be directly comadh with CACE. Note that
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the impact of potential bias in the priors towards the refeee,% is largely alleviated
via the alignment here. Positive constamtbalances the contributions from image and
shape’;, is the covariance between image and shape,sand component 00y, is
the scaling factor. The reason for applyingto ¢ is that level set representation is
not invariant to scaling - see [8] for details. As bathandc are unknown, a coupled
optimisation task is possible, witli4 (¢, ¢) as the objective function:

< ¢, & >=argmin E4 (¢, ¢) = argmin (—/ log (Pa(¢,c)) dx> 4
¢.c ¢.c X

X represents all the possible locations in the shape ddniEie posterior based objec-
tive function in (4) considers both shape and appearanoentation and is evaluated
with variations between the joint priors and the input shape appearance taken into
account. In particular, only spatiotemporally plausikégiations are accounted for ow-
ing to the regularization that biases the transformatiaaupaters towards their most
probable values. This keeps the model within plausible sha@amnd motions. The level
sets evolve towards the maximum of the posterior to give &st jporobabilistic estimate
over the shape in the input image.

Level Set Evolution of CCACE - Combining the constraint component with CACE,
the motion equations for CCACE are given in (5) and (6), tigtowhich¢ andc update
iteratively and simultaneously until equilibrium:

% = /\c<wcgmlv¢k| — (1 —we)J - V¢k) 5)
CACE
Sk skde — or(T) _ I — Ix(T)
0= (- e O5 e )
Shape Appearance
8 8E ) / A Y / / -
8_(;:_(%) [Q/P] ... QkxPy]-U"'c (6)

where® = {©y, : k € [1, K]}. In (5), the first term represents the data-driven evolu-
tion of CACE, while the second is the constraint force, detlibased on (4), with.
balancing the contributions from the two. The constraintéoconsists of a shape and
an appearance termalso updates according to (6) at each iteratiog’sfevolution to
keep the joint priors aligned with the input appearance haps.

According to (5), the level sets evolve under the confluerfah® force field in
CACE and the proposed constraint force. The shape termsitieelevel sets towards
the aligned prior shapes. In the denominator, the squanadtatn allows shape vari-
ability, hence the shape driving force is applied in a sofkvard pattern. Meanwhile,
the appearance term penalizes or strengthens the conftramdepending on the cor-
relation between image and shape. The more distant the imagte from the aligned
prior image, the stronger the term is, where image varighdialso taken into account.
It plays the role of an extra criterion for constraining teedl sets and brings further
flexibility in the constraint.

5 Note that the level set shape domain coincides with the indageain.
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Since the closer the initial shape to the final shape to bevezed, the more efficient
the segmentation process is, we seek a shape estimate evieptlt image for the
level set evolution to start with. This is done by aligning fbrior image towards the
input image, via minimizingE'4 (¢, ¢) with \; = 1 (¢ is ignored). The recovered
spatiotemporal parameters are taken as the initial vatwessfevolution. The recovered
transformations are then applied to the prior shape, gitiegshape estimate.

3 Experimental Results

We used 15 sets of gated cardiac SPECT sequences of heakhyittvnormal perfu-
sion for training, and applied CCACE to another 14 sequefmegerformance eval-
uation, two of which are pathological cases and presenugpieri defects. All patient
studies were clinical studies acquired following standamatocols. The resolution of
the data i$4 x 64 x a x 8 where« varies betweefl5 and58. Throughout the exper-
iments, we seh. = 0.4 and\; = 0.5 which are determined empirically. For eakh
andQ, the 10 most significant modes were chosen to exlai of variations. For
comparison, we also implemented SCGAR based on [8].

18888088
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Fig.2. SCGAR (top 2 rows) and CCACE (bottom 2 rows) on gated cardREGT with severe
perfusion defects. Model results are in red and ground trugiellow.

Fig. 2 shows an example of the results for SCGAR and CCACE frfiok\a with
severe myocardial infarction in the inferior wall (consist perfusion defects present
throughout the sequence as well as perfusion artifactsadlivet uptake). Fig. 3 shows
the results in 2D slices where the SCGAR model can be seenrtgeroger defect areas
as marked by white arrows, while CCACE sustains a plaushm@e and successfully
differentiates the epicardial from the endocardial bosderthese areas. SCGAR has
large deviation from the borders in the lateral segments aked by green arrows,



8 R. Yang, M. Mirmehdi, Xianghua Xie, D. Hall

Fig. 3. SCGAR results (top three rows) and CCACE (bottom three r@nsjlices selected from
the sequence. Frome left: timeframes 1-8. From top (eaalpyréhree slices at different loca-
tions of the LV. Model results in red and ground truth in yello

while CCACE converges more closely around them. This sho®@ACE has more
flexibility as its constraint is more alert to defect regiavisile less sensitive to lateral
segments.

Fig. 4 shows the model results on an example of an LV with a lgigal region in
particular. SCGAR fails to produce an accurate estimate theeLV especially in the
apical regions as marked by black arrows, whereas CCACEdiesved better results.

Quantitative comparison and Timing - The Jaccard’s coefficients of the results
for SCGAR on the two examples above &223% and48.9%, and that for CCACE are
85.8% and90.6%. Across the 14 SPECT sequences, the average accuracy of ECAC
is 88.0%, with ¢ = 4.9%, and that of SCGAR i$9.8% with ¢ = 9.5%. All the
datasets were manually labelled by an expert or the authttbsalnsequently adjusted
and approved by the expert as the ground truth.

Using a 2.8 GHz Linux PC running uncompiled Matlab code, thaing stage of
CCACE takes 3hr and 43mins. The average computation timgefymentation is 249s,
while that for SCGAR is 136s.

4 Conclusions

CCACE probabilistically determines LV boundaries basednoage gradients under a
shape and appearance based spatiotemporal constrainEEE&Anakes use of global-
to-local rather than global transformation to account &gér range of variability, b)

applies appearance in addition to shape information, afhg)MAP spatiotemporal
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Fig.4. SCGAR (rows 1-2 and 5-7) and CCACE (rows 3-4 and 8-9) on an L\ wilong apical
region.

regularisation, i.e. takes the temporal domain into carsition. The first two aspects
allow more flexibility in the constraint while the third bgs more robustness to irreg-
ularities in temporal variations of the data.
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