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Abstract

A new variational Maximum A Posteriori (MAP)

contextual modeling approach is presented that mini-

mizes the product of two ratios: (a) the ratio of the

model distribution to the distribution of currently esti-

mated foreground pixels; (b) the ratio of the background

distribution to the model distribution for all estimated

background pixels. This approach provides robust dis-

crimination to identify the division between foreground

and background pixels, which is useful for applications

such as object tracking.

1 Introduction

Image based photometric information is commonly

used in image segmentation. However, many region

based segmentation approaches often do not provide an

accurate definition of the bounds of the region of inter-

est, e.g. [1]. Those that do may only rely on simplifying

image assumptions, e.g. [6, 2], or an effective competi-

tion between the foreground and background regions,

e.g. [7, 9]. In this paper, we propose a MAP solu-

tion to the matching process (in contrast to [8]), where

the prior information includes a regularity condition im-

posed via the gradient magnitude of the labelling func-

tion and a model probabilistic definition of the region

of interest. The formulation described here combines

both model to foreground matching and model to back-

ground mismatching. This can be compared with ex-

isting probabilistic region based modeling approaches,

many of which only rely on a type of competition be-

tween the foreground and background. These depend

on the region of interest possessing sufficiently differ-

ent photometric information in comparison to the neigh-

boring structures, which otherwise can lead to the fore-

ground region leaking into background regions, or vice

versa. Further information is therefore often introduced

to constrain the identified region such as image de-

rived edge based energy terms, e.g. [7]. Hence in con-

trast to such approaches, we advocate the use of fore-

ground matching and background mismatching using a

stable probabilistic description to reduce the possibil-

ity of leakage or retention from one region to another,

without resorting to dedicated generalization of object

shape, such as in the active appearance model [4].

2 Methodology

An image is considered here to be composed of pix-

els x labeled as either foreground F = {∀x : f(x) = 1}
or background B = {∀x : b(x) = 1 − f(x)}, where

f(x) ∈ {0, 1}. The set of pixels in the entire image

space is given by Ω = F ∪ B. Pixels in the foreground

and background regions are associated with photomet-

ric image information, Ix. The foreground a posteri-

ori probability is given by P (f|If) =
p(If|f)P (f)

p(If)
, where

p(If|f) is the foreground data likelihood, P (f) is the

foreground prior probability, p(If) is the marginal data

PDF and If = {Ix|f(x)}. The a posteriori probabil-

ity P (b|Ib) for the background region can be similarly

defined.

Statistical techniques, such as maximum likelihood

or MAP are often used to maximize the a posteriori

probabilities via an optimization process to obtain an

optimal classification and hence division of the image

space into foreground and background regions, e.g. [7].

Prior knowledge can be introduced into a probabilis-

tic model somewhat indirectly by specifying the form

of prior distributions. Alternatively, a more direct way

of introducing prior knowledge is via a reference fore-

ground data likelihood, p(I|m). This likelihood term

can be obtained via an a posteriori model probability,

P (m|I) = p(I|m)P (m)
p(I) , where m is a hypothetical model

labeling. The foreground region in the image will hypo-



Figure 1. Example use of proposed model similarity and dissimilarity matching method in ob-

ject tracking for varying amounts of noise (tracking framework from the authors’ work in [3]).

thetically exist, i.e. M = {∀x : m(x) = 1}, that is ob-

tained if P (f|If) has been optimized for the data at hand.

This is of course also dependent on the availability and

selection of appropriate features, the probabilistic mod-

eling and optimization. However, we do not seek to

utilize M directly. Instead, we assume the availability

of the model likelihood, p(I|m) which is possible from

the result of prior processing (e.g. object tracking) or

supervised training. Fig. 1 gives an example where the

bootstrapping stage of the object tracking application

provides a good estimation of the foreground object,

whose photometric model can be fed to the method pro-

posed in this paper to estimate the location of the object

in the following frames to, in turn, further assist object

tracking.

Our optimization process will determine a fore-

ground that possesses a very similar a posteriori prob-

ability in comparison to our hypothetical model. This

similarity, Rf,m, can be quantified via a logarithmic

probability ratio test of the a posteriori probabilities for

the foreground and the hypothetical model:

Rf,m = − ln
P (m|If)

P (f|If)
= − ln

p(If|m)P (m)

p(If|f)P (f)
(1)

We can also define a similar but reciprocal test for the

background in comparison to the model, Rb,m.

Rb,m = − ln
P (b|Ib)

P (m|Ib)
= − ln

p(Ib|b)P (b)

p(Ib|m)P (m)
. (2)

This will quantify the dissimilarity of the model

with the background. We show later this dissimi-

larity measure is very useful in accurately estimat-

ing the foreground. Minimization of (1) and (2), i.e.

arg minF,B

(

Rf,m + Rb,m

)

, will produce two mutually

exclusive regions. The foreground and background pri-

ors, P (f) and P (b) can be improper or they can be used

to impose some regularity condition in the image space.

However, the model prior P (m) is considered constant

throughout the image space and therefore not dependent

on the location. Hence, the minimization problem can

be formulated as:

argmin
F,B

(

−

∫

F

ln
p(Ix|m)

p(Ix|f)
dx −

∫

B

ln
p(Ix|b)

p(Ix|m)
dx

+

∫

F

lnP (f)dx −

∫

B

lnP (b)dx

)

. (3)

This expression optimizes the model similarity with the

estimated foreground and its dissimilarity with the esti-

mated background.

Minimization of (3) can be accomplished via gra-

dient descent in a variational framework. The method

used here treats the entire image globally. Hence, both

the foreground and background likelihood ratio inte-

gral terms are now extended to the entire image space,

Ω. Noting that
∫

F
ln(.)x =

∫

Ω f ln(.)x,
∫

B
ln(.)x =

∫

Ω b ln(.)x, and b = 1 − f, then (3) is equivalent to

arg min
F,B

(

−

∫

Ω

(

f ln
p(Ix|m)

p(Ix|f)
+ (1 − f) ln

p(Ix|b)

p(Ix|m)

− f lnP (f) + (1 − f) lnP (b)

)

dx

)

. (4)

A condition that the foreground and background are

considered optimally defined is if they are spatially con-

sistent, which is equivalent to obtaining a classification

with minimal spatial gradient magnitude of the labeling

function across the entire image space. Therefore, min-

imizing the last two terms in (4) is considered here to

be equivalent to (by analogy) arg minF,B(
∫

Ω
|∇f|dx).

Thus we may seek to minimize

−

∫

Ω

(

f ln
p(Ix|m)

p(Ix|f)
+ (1 − f) ln

p(Ix|b)

p(Ix|m)
− |∇f|

)

dx.

(5)

The action of (5) combines three global and simul-

taneous minimizing actions. The first two are the min-

imization of the logarithmic difference between (a) the

model PDF p(Ix|m) and the foreground PDF p(Ix|f)



Figure 2. Convergent results obtained for poor initial conditions using proposed model.

for the currently defined foreground pixels f, and (b)

the background PDF p(Ix|b) and the model PDF for the

currently defined background pixels b, and the third im-

poses smoothness throughout the image space by mini-

mizing the foreground labeling gradient magnitude.

Photometric representation The photometric in-

formation in the foreground and background regions

are described by the histograms Hf (I(x ∈ F)) and

Hb (I(x ∈ B)) respectively. This histogram informa-

tion is then used to approximate the PDFs, p(Ix|f) and

p(Ix|b). The probability space is modeled here with a

finite number of Gaussian components with parameters

that are estimated via Expectation Maximization. It is

worth noting that other statistics, such as filtering re-

sponses, can also be included in the model.

Minimization To solve (5), we first make a simple

substitution of the labeling function, f(x) ∈ {0, 1}, with

a slightly regularized Heaviside function Hǫ(.) in com-

bination with a signed distance function φ(x), similar

to [2]. The signed distance function is Lipschitz con-

tinuous and implicitly encodes the boundary between

the foreground and background. Thus, the minimiza-

tion problem is now

arg min
F,B

(

−

∫

Ω

(

Hǫ(φ) ln
p(Ix|m)

p(Ix|f)
(6)

+(1 − Hǫ(φ)) ln
p(Ix|b)

p(Ix|m)
− |∇Hǫ(φ)|

)

dx

)

.

The solution to (6) can be found via gradient descent

using the derivative of the functional, equivalent to

∂φ

∂t
= −δǫ(φ)

(

ln
p(Ix|m)

p(Ix|f)
+ ln

p(Ix|m)

p(Ix|b)
− κ

)

, (7)

where κ is the curvature and δǫ(.) denotes a slightly reg-

ularized Dirac delta function, ([2]).

Model interpretation An interpretation of (7) can

be considered via a number of possible solution states.

Table 1 summarizes three possible solution states: (a)

a good solution state where the currently defined fore-

ground is in good agreement with the hypothetical

Table 1. Intuitive simplified summary of
possible solution states. H - high; M -

medium; L - low.

Solution state

Good Medium Bad

Model Var. f b f b f b

Pm H L H L H L

Pf H L M M L H

Pb L H M M H L

Pm − Pf 0 0 +1 -1 +2 -2

Pm − Pb +2 -2 +1 -1 0 0

Combined +2 -2 +2 -2 +2 -2

model, (b) a medium solution state where the currently

defined foreground is in moderate agreement with the

hypothetical model, and (c) a bad solution state where

the currently defined background has more in com-

mon with the hypothetical model than the current fore-

ground. The bottom three rows of Table 1 illustrate

that the combination of foreground matching and back-

ground mismatching in (7) provides a consistent cost

function. A good solution state will heavily penalize

(≈ ×2) background pixels in the foreground region and

heavily penalize (≈ ×2) foreground pixels in the back-

ground region. As the state changes, so do the costs.

This can be compared with approaches that only rely

on foreground matching (cf. row Pm − Pf in Table 1),

see e.g. [5], and similarly for methods that only perform

model foreground and background comparison (cf. row

Pm −Pb in Table 1). Combining these two brings extra

enforcement, which is demonstrated in the next section.

3 Results

The importance of the properties summarized in Ta-

ble 1 are now illustrated experimentally. The model

likelihood, p(Ix|m) was defined here, for the purposes

of our work via a manually defined model region x ∈
M on the test images. This region can be defined au-

tomatically e.g. via the outline of the object in a pre-

ceding frame for tracking applications, e.g. see [3]. The

results in Figs. 2 and 3 illustrate the performance of the



Figure 3. Comparative performance of different components of (7). 1st Row: foreground back-

ground competition with context (see e.g. [7]); 2nd row: foreground similarity; 3rd row: back-
ground dissimilarity; 4th row: foreground similarity and background dissimilarity with context.

proposed approach for difficult initial conditions which

may arise in e.g. a tracking application, where the re-

gion of interest has moved significantly between frames

(cf. Fig. 1). It is important to note that the initial con-

tour has to touch the region of interest. This is highly

likely for tracking applications and furthermore is of

considerable interest when an image may possess more

than one region with similar photometric properties.

The relative performance of the model proposed here

in relation to just foreground matching, background

mismatching or a competition between the active fore-

ground and background are also illustrated in Fig. 3.

The first row provides the reuslt of foreground back-

ground competition without prior model m, e.g. [7]. It

performed badly due to difficult initialization and lack

of prior knowledge. The next two rows show the re-

sults using foreground matching alone and background

mismatching alone, respectively. Foreground similar-

ity measure removes false positives, while background

dissimilarity comparison increases true positives. How-

ever, working individually, neither of them produced

reasonable results. The proposed method which com-

bines these two actions provides the best results across

our range of experiments, e.g. last row of Fig. 3.

4 Conclusions

An approach that applies both foreground match-

ing and background mismatching in combination with

a MAP solution was proposed. The performance of the

method in relation to other potential model configura-

tions has also been illustrated, demonstrating its unique

potential for use in a wide variety of applications.
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