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Abstract

An active contour based tracking framework is described geaerates and
integrates dynamic shape information without having terleepriori shape

constraints. This dynamic shape information is combinet aynamic pho-

tometric foreground model matching and background mishatc Bound-

ary based optical flow is also used to estimate the locaticdhebbject in

each new frame, incorporating Procrustes shape alignnm@mmising re-

sults under complex deformations of shape, varied levet®isfe, and close-
to-complete occlusion in complex textured backgroundpegsented.

1 Introduction

This work is concerned with the segmentation and trackirapggcts undergoing arbitrary
and smoothly varying deformations, however without theoftomplex, supervised, pre-
processing and model preparation that is normally assextiaith a priori learning of
shape constraints. In other words, we are particularlyré@sted in eliminating the need
for harda priori shape constraints for tracking objects.

Active contours have been extensively investigated fonsagation and tracking,
see for example [8] and the references therein. They have inéegrated with prior
shape knowledge (including its variations) to help incesth® robustness of tracking in
both spline based approaches, e.g. [2], and geometric bageldsets, e.g. [12]. Shape
representation in active contour based works is often irfidha of a PCA model of a set
of characteristic level sets [12], or control points modélusing Active Shape Modelling
(ASM) [6]. The level set PCA approach is used to model the mosbable underlying
variations of an object’s shape to which the currently evajvievel set is compared.
Similarly, the ASM approach represents spatial modes aétian of a set of points along
an object’s contour. Another relevant example of the useiof ghape information is the
recent work in [7] which demonstrated how such informaticayrbe useful in extremely
noisy situations where non-shape information alone (Gansstensity distributions) is
not enough to allow a person to be tracked.

Many of these prior shape based methods are quite robustdprg accurate outlines
of the shape of the object being tracked rather than, e.gxatmind the object. How-
ever, the preparation of extensive prior shape knowledg®isalways convenient and
even cumbersome. Moreover, these methods can encouffiieultis if the object being
tracked undergoes an unpredicted transformation in sHag&8], Yilmaz et al. propose
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a method that adapts to previously unseen shapes, but diiggdithis high-level on-line
shape information when an occlusion had been detected.pive@ch we present here is
to use a signed distance skeleton representation of shapis ttynamically and contin-
uously updated. This assumes that the deformable objecum#grgo smooth changes
in shape and does not require ampriori shape configurations. Unlike a conventional
skeleton, a signed distance skeleton is a useful reprégante# shape as it is a com-
pletely reversible summary of the object shape. Furtheemibis based on shock points
of the signed distance function which we use as the levekggesentation for our active
contour framework.

We instill the signed distance skeleton in a level set basédeacontour framework
that combines dynamic photometric information and in-liyeamic shape modelling to
continuously control the shape of the tracked object. Furttore, we use optical flow
along the shape boundary of the object to initialise the nesitipn of the object in each
frame. Then alignment of the dynamic shape information iggoeed by Procrustes
analysis, e.g. [9], of the points in the silhouette of thekexd object.

A new modelling approach for the photometric informationalso presented that
utilises a dynamic photometric probabilistic descriptafrihe object being tracked. The
model maximises the product of two ratios: (a) the ratio &fthodel distribution to the
foreground distribution of the current contour positiom &l foreground pixels; (b) the
ratio of the background distribution to the model distribatfor all background pixels.
This approach provides a robust measure of match with tlekdrhobject. The initial
conditions can be provided manually or via a bootstrap aggravhich detects spatially
independent foreground objects as possessing differetibmproperties from the dom-
inant motion (e.g. background), see e.g. [10]. The boqipirg topic is the focus of
another publication in which we describe an automatic ag@ng5].

2 Methodology

Three sources of information are incorporated into the abilistic tracking framework
(section 2.1): dynamic photometric information via higmg modelling of the fore-
ground (tracked object) and background image regionsi(se2t2); shape regularisation
using a combination of signed distance skeletons and sigavetlse distance transforms
(section 2.3); and low level motion estimation using bouwdi@sed optic flow estimation
(section 2.4). The form of the shape is carried across froefame to the next, thus pro-
viding temporal shape regularisation without resorting fwiori learnt shape structures.
Section 3 considers some practical issues such as thetdifomnmulation of the proposed
PDE. Experimental comparative results are then presentseidtion 4.

2.1 Probabilistic model

Each pixel x in each framgis associated with photometric image informatigh, Each
frame is divided into foregroungl” and backgroun@Y pixels, withQ = {FYUBY} the

set of pixels in the image space aff@x) € {0,1}, b¥(x) = 1 —f¥(x) binary foreground
and background labels, respectively. The foreground amttgrvaund division is also
characterised by a dynamic shag¥, (see section 2.3). We develop a method to deter-
mine whether a point is more likely to come from the foregrd@# or backgrounds”.



The foreground posteriori probability is given by

p({[f)p(SIf¥, S H)P(F)
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wherep(lfy|fV) is the foreground photometric likelihoog(S"|f¥,S"~1) is the shape PDF,
P(#V) is the foreground prior probability, arm{lfy, S¥|9"1) is the marginal data PDF. The
a posteriori probabilityP(bV|Ig') for the background region can be similarly defined. An
optimisation process can be applied to maximisestpesteriori probabilities. Certainly,
the optimisation process would become redundant itithe likelihoods and prior terms
were known. Instead, the optimisation process can be eeldamith dynamic knowledge
(from preceding frames) regarding a hypothetical foregrblikelihoodp(1¥|m"). Again
this can be obtained via a (hypotheticafjosteriori model probabilityP(mY|1V, S, S~ 1)
wherem! is a hypothetical model labelling. Thus, the foregroundilsirity R}"m and
background dissimilaritﬂ;m can be derived via two logarithmic probability ratio tests,
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The expression in (4) quantifies the model similarity witk #stimated foreground and
its dissimilarity with the estimated background. By minging it, we can produce an
optimal division of the image space into foreground and aoknd regions. The terms
in (4) are obtained in the next two sections.

2.2 Dynamic photometric modelling

Itis common to use RGB values to identify contiguous regihas may correspond to an
object of interest. This photometric information can be bamad with an active contour
method which is then able to bound regions of commonality, [@, 15, 21]. Such exist-
ing region based active contour approaches rely on congrebetween foreground and
background regions which depends on the tracked objecepsisg) sufficiently different
photometric information in comparison to the neighboustrgctures to prevent the fore-
ground region leaking into background regions (and vicesagr Further information is
therefore often introduced to constrain the object, e.gdgnt magnitude based energy
terms. In contrast to this, we advocate the use of foregromatdhing and background
mismatching using a stable probabilistic description to reduce the ipdig of leakage



from one region into another. This intricate probabiligtfltometric model continuously
updates the photometric information of the object beingkeal (Dynamic Photometric
Model) to provide a more robust measure of the object’s baund

The photometric PDFg(1)|§¥) and p(l¥|bY) can be obtained from the colour his-
togramsjf}y(l Y(x € §¥)) and %) (1Y(x € BY)), respectively. The probability space is
modelled here with a finite number of Gaussian componentspéatameters that are es-
timated via Expectation Maximisation. This informationaigtomatically available for
each new image frame via the bounds of the active contours, Mae can reformulate the
photometric part of (4) as a photometric energy to be mingahjs

£ = ~A (Ankn P(YJm) — In p(1}[%))dx— Ay | (I P(X]6Y) — Audn p(Y|m¥) ), (5)
24 BY

whereA, controls the dynamic photometric model PDF importance,grahdA, con-

trol the contribution of the foreground similarity and bac&und dissimilarity.

If particular parameter configurations are selected gihenRDFs of the tracked re-
gions, then (5) may also be considered to be equivalent,rin feaexisting models, e.g.
[4, 15, 21], that do not incorporate a similar foreground meyrcomponent. For exam-
ple, if A, =0,A; <O, /\f’ = —A; and given imaging conditions that result in the intensity
distributions of the foreground and background regionspssing Gaussian distributions
with a common variance, i.¢Y(x;) ~ A" (Hjv, 08y) and1(xp) ~ A (Usv,03y), then
(5) reduces to

;»Egé_A;/ (|XV—ufy)2dx_/\b/ (1 = ppr) % lx, ©6)
3 BY
which is the popular energy term proposed by Chan and Vesé[@rnatively, if A, =0
andA; = —Ay, then (5) reduces to

=EL2 —/In p(1Y]§")dx — /In p(1Y|6Y)dx, (7)
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which is another popular active energy term found in [15, Pdflerred to collectively as
region competition in this paper. Thus, the formulation proposed here provaeen-
eral dynamic photometric probabilistic model to match tdipalar regions of the image.
Furthermore, the unique combination of foreground maiglaind background mismatch-
ing can be shown to be an ideal combination for tracking apgibns. The foreground
matching helps to reduce false positives and the backgrousihatching increases true
positives so that the effect of any initial mis-alignmenttbé model with the tracked
object is rapidly reduced.

2.3 Shape representation and regularisation

In addition to photometric information constraints, oadking framework in (4) includes
shape PDFs and prior probabilities for the foreground antkgpaund regions. This
allows dynamic shape information to quantify the dissiniijaof the current shap&,
with the preceding frame shaf® 1. This assumes smoothly varying transformations in
object shape. Thus, the shape of the currently tracked pirjag be compared with the
shape of the object in the preceding frame to reinforce theking stability.

As an abstraction of the shape at a high-level, a signedmtistakeleton represen-
tation,s = {(x,0)|¥(x) = 0} is selected here, e.g. [1], whevas the distance from the



contour to the skeleton arlél(-) is a signed distance map from the cont@uthat sur-
rounds the foreground regidgn The latter is a composite function, obtained by applying
the signed distance transforf, e.g. [3], given by = Z o C, and it has the following
properties¥(x € f) <0 and¥(x € b) > 0. Thus W(-) quantifies a distance to the contour
C. The distance transfor® is implemented here via ax33 Chamfer approximation to
the Euclidean distance transform [3]. The signed distakeke®nisation procesS,o W,
utilises the signed distance map by first identifying thealaainima in the signed distance
map [1], i.e. %nin = {X|W(X) < W(x;) I : [(X,%)| < 1,¥(x) < 0}. These points define a
set of disconnected minima which can be connected to defineagnisable skeleton in
the direction of minimum gradient

X5 = {xlargminW(x) — W(x))), W(x) <0, x € X§, I %}, [ (x.x})| <1}, (8)

where X_§:° = Xmin @and X then defines the skeleton where no further points can be
connected at iteratiok+ 1. Hences = XX when X< = X%*+1, The inner producty-,-)| <
1is defined on a discrete pixel based grid where in practiagatial pixels are weighted
by the inverse of their distance. The skeleton often reguinéning, so such a process
is then applied to reduce it to a 1 pixel-width skeleton. Tkeletonisation process is
reversible via a signed reverse distance transfoém: 2-1(s), providing the signed
distance values are retained, oe.The signed distance skeleton representation therefore
succinctly encapsulates the shape information of the écokbject.

Intuitively one may consider a simple comparison of the ekals to be sufficient to
determine whether the current shagfeclosely resembles the tracked object’s shafyé
in the preceding frame. However, this can not regulate amdrabthe active contour’s
shape at a local level. Thus, it is necessary to reconstngcshape of the object after
transforming the preceding frame shaple! to the space relevant to the current image.
The reconstruction process can take the form of a signedsewistance transfors —*
of the aligned signed distance skeletdi 2, i.e. WV-1 = 271(s'V-1) wheres'V ! =
T(s¥~1, Wy=1 W), The alignment procesE rigidly aligns the preceding frame skeleton
to the current shape via Procrustes alignment [9] of theaiite of the foreground in the
preceding frame and the current frame, i.e. wHé(&) < 0 [19]. This has been found to
be more robust than direct alignment of the skeletons. Tkl fabelsf(x), b(x) and the
current signed distance m&#y together with the converged and aligned signed distance
map from the preceding frami¢’Y~1 are defined for the entire image space. Hence, by
analogy, a shape based regularisation term can be included

ey~ [in p(S|m, )" p(SV[bY, 8" 1)°
YL RS (S |y, 8

dx 2 Ay / (WY (x) - W¥1(x))dx (9)
Q

The parameteAy controls the influence of the shape of the contour from thegqie
ing frame CY~1 on the evolving contour of the current frang¥. The signed distance
skeletons in combination with the signed distance mapstrdicked object thus pro-
vide a concise approach to alignment and comparison of teeshof the tracked object.
This approach is similar in some respects to [22], excey# ia variable topology, dy-
namically updated skeleton is used, and (ii) signed digtaatues are retained to enable
the reconstruction of a comparable signed distance map tinerpreceding frame to the
signed distance map of the currently evolving contour. Th&n important consideration,
as will be seen shortly, when the signed distance map is sregim re-initialise the level
set embedding functiog, used as the basis for the evolution of the object shape.



Region regularity As a measure of regularity, the prior probabilitie§?) andP(bY)
can be described by Markov Random Fields. However, a sinptgriarity measure can
be introduced, by analogy, into the optimisation proceasceintour length minimisation
defined by Y = [, &(WY)|OWY|dx, whered(-) is the Dirac delta function. Hence,

P(Y)"” & vy oY
/In 5 fyol /\L/6 (WY)|0WY|dx. (10)
whereA_ is the weight of the length constramt and hence controlsegigelarity of the
boundary that divideg’ andb”.

2.4 Boundary based optical flow

Tracking objects in video can be accomplished with active@ors by allowing the con-
tour to adjust to the new frame data without any externatrestion of the new position
of the object, e.g. as in [20]. However, this will often regumore computations to al-
low the contour to adapt to the new position. A commonly usggre@ach for tracking
objects is to utilise estimates of optical flow for featurdesttare reasonably easy to iden-
tify. For example, Lowe [13] described salient featuresahhivere tracked using optical
flow estimation. Paragios and Deriche [14] utilised optitalv as a further constraint
to be minimised. Alternatively, boundary based optical flmay also be considered,
e.g. in [17] a Canny edge detector was used to identify sigitabundary locations for
optical flow estimation. Here we also track the object byreating the optical flow
along the boundary points. However, the tracked contowgsmaplicitly defined in our
active contour framework. First, a mean estimate® of the movement of the object
is determined along the zero level of the signed distancetiom, (i.e. the contou€):
Mt = 5 T wr1x-0VY H(X)dx wherevY1(x) is an optical flow estimate at point x.
This is then used to update the position of the signed distéuntction for each new im-
age framepY(x) = W=1(x+ p¥—1). Thus, the position of the contour in each new image
frame is estimated via the mean of the optical flow along thekied object’'s boundary.

3 Combined tracking framework

The contourCY that surrounds? can be approximated via splines, but such an explicit
representation presents some practical difficulties, k@ngple situations that result in
significant changes in the topology of the evolving contdimerefore CY is embedded in
the zero level of a level set, i.@(x,t) = 0. Thus, the three energies in (4), i} in (5),

EY, in (9), andE! in (10) can be written as (omitting

E= / (1= He(@)) (In pl1xfm) ~ Inp(1x]1)) + AoHe (@) (I p(lx|m) I (i o))

A (WX) = W ()7 A8 (W) O] . (12)

whereH,(-) is a Heaviside function ane denotes slight regularisation ([4]). Minimisa-
tion of (11) is possible via gradient descent, hence (usiathods from [4, 16])

99— 6.(6) (A (inp(im) 10 p(1e})) ~ Ao (11 p1xm) ~ I plsf6)) + A7)
+ Ay (@(x) — W'(x)) dx, (12)



where#” is the curvature an® = g which is enforced via initialisation and re-initialisatio
processes discussed shortly. This is then implementedfinétedifference scheme:

S (@(t+ 1)~ 9(t) = 06| (~Ar(AwInp(m) ~ Inp(1[1) (13)
Ao (AmInp(1m) — I p(1[6)) +ALH ) +Aw (0(1) = W(1)

whereAt is the iteration step of the finite difference calculatiomsl @ (¢) has been
replaced by|Og| ([4]) to extend the evolution to all level sets. The level kas to be
re-initialised after a number of iterations to reduce esithiat accumulate due to the finite
difference approximation. The re-initialisation proces®d here involves locating the
zero contour of the current level sgft) and re-computing the signed distance transform.

After re-initialisation, the photometric PDFs for the fgreund and background are
re-estimated to take account of the change in the locatitimeafero level set, i.&/ x € Q,
@(x,t) = 0. The skeleton from preceding framé& ! is then aligned to the skeleton of the
current level ses” to gives’Y~1. The signed reverse distance transform is then applied to
5’1 to create the signed reverse distance map for this levetesation.

4 Experimental Results

We report various experiments including noise analysis @rdparative results against
the region competition approach from [15, 21]. The numbefimfe mixtures in the
Gaussian Mixture Model (GMM) for the photometric modelliwgs set to 6. This was
empirically found to provide the best results for the imagguences we used.

The proposed method is first illustrated by tracking a moviagd undergoing a rota-
tion resulting in complex shape changes and transformsitidnotating hand presents a
very large range of different shapes through which the fragkamework has to dynam-
ically and adaptively update the shape information. Noiss wtroduced by replacing
pixel values with a given probability (i.e. 15%, 30%, 45% 0£6) using a uniformly dis-
tributed noise value, similar to [7]. Sampled frames frorateaoise sequence are shown
in Figure 1 where it can be seen that the tracking framewaakis to track in the presence
of varied amounts of noise and complex shape deformations.

Figure 1: lllustration of tracking through complex defortioas and variable noise. Sam-
ple frames from each noise sequence shown (15%, 30%, 45%08ay 6

In Fig. 2, we demonstrate comparative results for a sequeheeperson walking
amongst some trees (video data from [11]). In the top rowtegeon competition [15, 21]



in (7) and optical flow were used to track the person withoutgishape, i.eAy = 0. The
region competition approach soon became unable to comdtraimodel sufficiently to
prevent growth into the complex textured background. Ir2the row, our tracking frame-
work was applied but with a fixed photometric motderived from (5), i.e. by setting
mY = mY=1, and still without shape regularisation. The tracking psxis stabilised, pro-
ducing fairly accurate tracking of the person moving amaenigs complex background.
However, the tracking was lost when the person was occludssipg behind a tree. In the
3rd row, we performed the same experiment, but introducedttape information. The
use of this shape information appears to provide a smootiténe of the tracked person.
Furthermore, accurate tracking was also obtained for thgopeuntil close-to-complete
occlusion behind the tree (partially shown here). Keephegpghotometric model fixed,
i.e. not dynamic, constrains tracking to only adapt to thiecttof interest. This becomes
a problem during severe occlusion due to the different pietoic properties of the tree.
In the final row, the same model configuration was utilisedvaitit the dynamic photo-
metric model (updating from one frame to the next, thus mitimg dynamic information
regarding the changing photometric properties of the fapegd region). This model
configuration enabled tracking of the person through theeskm-complete occlusion.

Figure 2: Tracking results for person walking in busy backgrd: (top row) region com-
petition (7) without shape, (2nd row) fixed photometric mio¢t without shape, i.e.
mY = mY=1; (3rd row) as last row but with shape prioky # 0), (final row) as last row
but updating the photometric model from frame to frame mé# mY~1. Data from [11].

Performance characterisation (Fig. 3) was performed ofrathes from the video
shown in Fig. 2 using the Dice co-efficient. The Dice co-effiti 2w N Fqt|/ (|| +

1This is equivalent to tracking an object with a fixed priortdizition.



| || Model (row in Fig. 2) |
| Frame y || 1st | 2nd | 3rd | 4th |

Dice co-efficient (smoothed)

21 0.10 | 0.75 | 0.76 | 0.74 0.40 + B
occlusion———=>

41 0.09 | 0.82 | 0.84 | 0.84 020 L o shape (1stromy .

215 0.03 | 0.63 | 0.78 | 0.55 0.00 with shape (4th row) —— . L

258 0.05 | 0.00 | 0.00 | 0.76 o 50 100 150 200 250
image frame

Figure 3: Quantitative comparison for tracking resultsvghan Figure 2.

] T 3
™ 85 “ e

Fvigure 4: Tracking results for fish sequence with ovmg olese Some problems were
encountered, but tracker subsequently recovers full shaghe fish. Data from [20].

|Sqt|) is a suitable performance quantifier as it quantifies the arnoiloverlap between

the tracking framework’s definition of the foregrourgl and the manually defined fore-
groundg§g:. The Dice co-efficient tends to 1 for perfect tracking resatid O for imperfect

tracking results. The values in each column show the pedoga for each row in Fig. 2.

The values are also graphed in Fig. 3 for every frame, shottiaglip in accuracy when

the occlusion occurs. Results in Figs. 2 and 3 help to illdetthe advantage of including
dynamic shape information in the model framework. They dlgstrate that dynamically

defined shape information is sensitive to occlusions, sries photometric information

is also defined dynamically, as for the final row in Fig. 2.

Results for a sequence with ego and object motion can be sd€g.i 4, using data
from [20]. The complex imaging conditions prevent accutadeking for a number of
frames. Nevertheless, the proposed combination of dynabjéct shape and foreground
matching and background mismatching recover the full stdgke tracked object, de-
spite the fish undergoing significant changes in scale, shiagp@hotometric properties.

5 Conclusions

We presented a tracking framework incorporating a novekgalised dynamic photo-
metric active contour model and an approach for includingatgically driven shape
information, adapting to new shape configurations whilsist@ining the evolution of
the active contour. Tracking is performed via optical floviraation along the bound-
ary of the contour rather than relying on the extraction diesd points in the image and
associating those points with the object being trackedulRekave shown that the com-
bined framework is able to track objects undergoing comgkfiormations of shape even



in the presence of varied amounts of noise. Further resaits hlso shown tracking un-
der close-to-complete occlusion with complex backgroumatpmetric information. The
main shortcoming of the method is that it is too slow for rieadt purposes.
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