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Automatic Bootstrapping and Tracking
of Object Contours

John Chiverton, Xianghua Xie, Member, IEEE, and Majid Mirmehdi, Senior Member, IEEE

Abstract—A new fully automatic object tracking and segmen-
tation framework is proposed. The framework consists of a mo-
tion-based bootstrapping algorithm concurrent to a shape-based
active contour. The shape-based active contour uses finite shape
memory that is automatically and continuously built from both the
bootstrap process and the active-contour object tracker. A scheme
is proposed to ensure that the finite shape memory is continuously
updated but forgets unnecessary information. Two new ways of au-
tomatically extracting shape information from image data given a
region of interest are also proposed. Results demonstrate that the
bootstrapping stage provides important motion and shape infor-
mation to the object tracker. This information is found to be es-
sential for good (fully automatic) initialization of the active con-
tour. Further results also demonstrate convergence properties of
the content of the finite shape memory and similar object tracking
performance in comparison with an object tracker with unlim-
ited shape memory. Tests with an active contour using a fixed-
shape prior also demonstrate superior performance for the pro-
posed bootstrapped finite-shape-memory framework and similar
performance when compared with a recently proposed active con-
tour that uses an alternative online learning model.

Index Terms—Active contour, level set, object segmentation, ob-
ject tracking, online learning, shape modeling.

I. INTRODUCTION

BJECT contour tracking is a complicated process due to

many factors, including variations in object appearance
and deformations of object shape, e.g., for articulated objects or
changing perspectives of 3-D objects. Therefore, object tracking
approaches need to incorporate some form of shape modeling to
enable successful contour localization and tracking.

An ideal medium for shape modeling is the active-contour
model, which has been extensively investigated in conjunction
with prior shape knowledge since at least [1] and [2]. These
spline-based approaches are limited by topological constraints
unlike level-set-based active-contour approaches, e.g., in [3].
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Principal component analysis (PCA) is often used in these tech-
niques to compress and summarize the important components of
a set of characteristic level sets [3], [4] or control points mod-
eled using an active shape model (ASM) [5]. These techniques
use a set of representative 2-D contours of an object, which is
learned a priori to enable more accurate contour localization in
object segmentation or object tracking techniques.

Many prior shape-based tracking methods have been demon-
strated to be quite robust, providing accurate outlines of the
shape of the object being tracked. For example, Cremers [6]
used a dynamical shape prior to enable tracking under high-
noise conditions where the prior shape information was com-
bined with a second-order autoregressive model of the trans-
formation of the shapes of a person walking. Dambreville et
al. [7] demonstrated the inability of a linear PCA shape space
to fully describe the nonlinear deformations prevalent in de-
formable or articulated objects in static images and video data.
The authors therefore chose to embed their shape prior in kernel
space using kernel PCA and presented impressive segmentation
and tracking results.

However, preparation of extensive prior shape knowledge
is not always convenient and even cumbersome. Furthermore,
many methods can encounter difficulties if the tracked object
is protean and cannot be easily approximated by the current
reduced dimensional shape space, i.e., a realistic prospect for
articulated objects and their 2-D image projections. Some
promising alternatives are available. Yilmaz et al. [8] proposed
a tracking method that adapts to previously unseen shapes
but only utilized shape information when an occlusion was
detected. Yezzi and Soatto [9] described a framework that used
a moving average of the shape information without reference
to shapes seen in much earlier frames that may otherwise have
provided useful information for much later frames.

Recently, Fussenegger et al. [10] described an approach that
was able to update a reduced dimensional shape space online
using robust incremental PCA [11]. Such methods are still de-
pendent on manual extraction of relevant information about the
objects to be tracked, requiring at least a manual segmenta-
tion of the object in an initial frame. In addition, while using
a fixed-shape-prior-learned a priori provides a distinct advan-
tage of making the object tracking process more robust, a dy-
namically learned prior can result in the active-contour model
becoming more dependent on the manual adjustment of param-
eter values [12].

Online learning is not limited to shape-based techniques.
Nummiaro et al. [13] used online learning for tracking and
learning of a color distribution of the tracked object. Their
model was based on a linear tradeoff between an existing model
distribution and the color distribution for the current frame.
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However, no attempt was made to learn the shape, and tracking
was limited to an ellipse region that was manually initialized.

Tu et al. [14] also used an appearance-based model where
a number of key frames were manually provided to help con-
strain the tracking system enabling head pose tracking. Online
updating of the histogram information was used for individual
frames, but new observations were not combined for future head
pose tracking. Again, shape information was not included in
the model formulation where the histograms for the mean-shift
tracking were computed in a rectangular region of the image
space.

Pan and Schonfeld [15] investigated the use of higher order
particle filters to provide improved motion estimates obtained
from a tracking system using an adaptive block-matching tech-
nique. Earlier variations of their tracking system included an
active contour to adapt the tracked ellipse to the relatively static
shape of the human head for individual frames in [16].

Gai and Stevenson [17] used robust appearance modeling in
a tracking framework with the use of a student’s ¢ distribution
version of PCA but without modeling shape information. The
authors compared their work with that in [18], which was de-
scribed as robust because of the use of an incremental PCA ap-
proach for (online) learning the appearance of the tracked ob-
ject. However, the PCA subspace used by Ross et al. did not
explicitly include a step or modeling to assist in the automatic
rejection of outliers. In contrast to this, De La Torre and Black
[19] described a robust approach to subspace learning using ro-
bust M-estimation. Their work was found to be computationally
more demanding but equivalent in power to the work by Skocaj
et al. [11]; a variant of which was later used by Fussenegger et
al. [10] in their online adaptive active-contour framework.

A number of authors have combined feature tracking with
object shape or contour tracking. Feature tracking helps to
improve the performance of the process of object tracking
and is relatively robust even if the object undergoes signifi-
cant changes in shape or photometric properties, e.g., due to
changing light conditions. Furthermore, shape information,
such as an active contour combined with feature tracking,
enables an object tracking approach to provide additional in-
formation to the tracking system. This may include new unseen
shape information and further regional information such as the
distribution of the colors of the object.

Smith and Brady [20] proposed an approach based on fea-
ture tracking combined with hulls attracted to edge strength. The
technique provided a way of extracting the tracked object shape
in the form of a radial map enveloped around clustered motion
features. This limited shape information could be enhanced with
the use of edges from an optional edge detector. McCane [21]
described an approach that imposed constraints on the motion
of features dependent on immediate neighbors connected by an
edge in a minimum spanning tree (MST), which was also used
by Smith and Brady, [20] but McCane [21] described this part
in detail. A spider, which extends the concept of a 1-D boundary
snake to the 2-D linking of features, was used as the basis of the
technique. The spider was built using a Delaunay triangulation
to identify neighboring corner features connected via live-wire
paths (attracted to high image gradients); then, the MST was
calculated on this graph resulting in a spider. Consistency of
the image gradients across frames enabled identification of im-
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Fig. 1. Overview of the proposed system. The two major parts of the system
are a bootstrapper and an object tracker. The bootstrapper is motion based and
automatically extracts shape information for a subset of the frames. The object
tracker continues the shape extraction process using a shape-based active con-
tour. Both the bootstrapper and the object tracker subsystems perform shape
extraction and tracking, with the object tracker performing the final role in this
part of the process.

portant edges. The results from two image sequences illustrated
that this approach could identify some simple shape information
suited to tracking objects in video data.

Gouet and Lameyre [22] used corner-feature tracking in com-
bination with an active contour. Features were tracked using in-
terframe spatial appearance matching rather than optical flow
(i.e., similar to [20] and [21]), primarily to overcome problems
associated with tracking through occlusions. An active contour
was then defined around the envelope of the tracked features.
The system required manual initialization for the first frame.
Olszewska et al. [23] utilized an ASM on a set of corner fea-
tures. The ASM was used to track objects, which in turn identi-
fied suitable bounds for corner points in each new frame unless
an occlusion had been detected. As for [22], the ASM required
manual initialization before tracking could commence.

Most of these techniques assume accurate corner identifica-
tion and tracking, unlike that in [21], which indirectly checks
the consistency of tracked features across frames via the edges
connecting neighboring features. Gouet and Lameyre [22] de-
scribe an approach that somewhat mitigates inaccurate corner
tracking by assigning high confidence to corner points within
the converged active-contour region. Unfortunately, this does
assume that the active contour can converge to a suitable minima
without the use of a shape prior, which is often not possible
when the video data consists of complex photometric informa-
tion in the foreground or background.

A. Our Approach

This paper proposes an online active-contour-based shape
learning model, which is fully automatic. Unlike our previous
work [12], the system applies an original automated bootstrap-
ping stage, and it is further combined with a novel multilevel
approach to feature, region, and object tracking. The system
also proposes a finite-sized shape memory, which automatically
eliminates unnecessary shape information. An overview of the
system is shown in Fig. 1.

Overall, the proposed framework tackles a number of impor-
tant and unsolved issues in shape-based object tracking, i.e.,
bootstrapping and online learning of an object’s changing shape.
The objective of the framework is to track automatically a single
moving object in the video data while dynamically learning the
shape of the object over time, continuously remembering the
most important shape information. This provides an extensive
framework for tracking of shapes in video data, placing signif-
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Fig. 2. Tracking results and corresponding similarity weight matrices illus-
trating the commonality of tracked shapes over time. Results from [12]. Original
data from [29].

icant emphasis on past shape modeling defined and learned on-
line, in conjunction to the tracking process.

B. Paper Organization

The next section presents the proposed methodology.
Section II-A describes the feature tracking, clustering, and
higher level region-based tracking technique. Section II-B
describes how shape information is automatically extracted
from the tracked regions. Sections II-C and II-D describe
the initialization and updating of the object shape memory.
Section II-E describes the shape-based active contour, and
Section II-F provides an algorithmic overview of the entire
system. Section III presents results and discussion. Section IV
closes the paper with a discussion and some conclusions.

II. PROPOSED FRAMEWORK

There are two main components of the proposed tracking
framework, as shown in Fig. 1: a bootstrapper stage, which is
a motion-based sparse-in-time shape and region tracker, and an
active-contour stage that tracks shapes,which is guided by the
output of the bootstrap stage.

The object shape is bootstrapped here by assuming that, for
at least a subset of the frames, the object will possess some
form of differential photometric properties from the region im-
mediately surrounding the object. Two alternative approaches
are described that bootstrap this information purely from crude
regional information: one operating over each object region as
a whole and the other performing a local differential analysis.
Shapes that are extracted using these processes are then ana-
lyzed for consistency across individual frames using a shape
overlap metric. Consistent shapes are then stored in an asso-
ciative memory for tracking by the shape-based active-contour
tracking framework. The similarity of learned shape informa-
tion over time can be observed in similarity weight matrices of
the contents of the memory (see Fig. 2). Shapes that are similar
to previously observed shapes can be forgotten.

Each region from which the shape information is extracted
also defines a point set of features that are required to satisfy
correspondence between frames. We track individual features
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based on the feature detector in [24] using measurements from
estimates of optical flow combined with individual Kalman
filters for each tracked feature. Features with distinct motions
are then spatially clustered using alpha shapes! on the Delaunay
triangulations of features, which are motion clustered using
random sample consensus (RANSAC) [26]. RANSAC is used
to identify the dominant background motion (see, e.g., [27]
and [28]); hence, objects of interest are assumed to possess
outlier feature motion, at least for a subset of the frames being
analyzed. These alpha shapes then define spatial regions that
are tracked also with individual Kalman filters.

Errors due to inaccurate feature tracking and natural motions
present in the video frames (such as nonplanar motions) are
handled implicitly via a normalized measure of intersection
of the feature sets (between frames) by virtue of a discrete
overlap measure. These regions then define plausible regions
from which an object should be tracked, i.e., an object that
has motion that is significantly different from the background
motion.

Following the bootstrapper stage is an object tracking stage
that consists of a shape-based active-contour object tracker. The
bootstrapper stage provides an initial memory from which the
object tracker can perform a more detailed analysis of the data
and infer the tracked object shape. The object tracker for each
new frame provides a new object shape that can be included in
the shape memory. The shape memory is then used to infer fu-
ture object shapes. Some shapes in the shape memory will not
be used very often, and shapes that have been used rarely are
automatically removed. This means that the shape memory re-
mains finite and that any future observations of shapes will be
compared with shapes that have already been found to be useful.
This results in more efficient shape memory usage and relatively
stable shape memory where the integrity of the memory is more
likely to remain intact for a longer (indefinite) period because
irrelevant or badly extracted object shapes are more likely to be
forgotten before first use so that the tracked shape is not ad-
versely affected. The robustness of the active-contour frame-
work is enhanced further with the use of the alpha shapes as
an initial prior for each individual frame to guide the tracking
process and to reduce the likelihood of the propagation of er-
rors in the object contour tracking process. Furthermore, the
proposed method is not exclusively for video acquired using a
stationary camera as no such explicit assumption (e.g., back-
ground subtraction) is used in the development of the system.

A. Feature Tracking, Clustering, and Region Tracking

Potential foreground features are identified based on non-
membership of the dominant background motion using
RANSAC [26]. After this, they are spatially clustered by
performing a Delaunay triangulation on the set of feature
points and subsequently isolated from the nonbackground
points as follows: clusters of features are spatially grouped
by disconnecting any edges connecting background points
with nonbackground points, then performing a graph-based
connected component analysis to identify isolated subgraphs.
Alpha hulls [25] of these subgraphs form envelopes surrounding
spatially isolated feature sets, which can be used to identify
sets of image pixels.

! An alpha-shape is a hull that can be convex or concave [25].
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Fig. 3. Overview of the process of feature tracking and clustering. Initially,
Kalman-filtered Shi and Tomasi image features are detected as sparse feature
sets F* at each time frame ¢. The dominant global motion is then detected and
used to eliminate background feature points, which provides a sparse definition
of foreground ROIs F*, *, . Foreground ROISs are then spatially isolated via con-

nected component labeflng on a Delaunay triangulation of the features. Alpha
shapes are drawn around the resulting isolated foreground components to form
regularly and densely sampled definitions of the respective ROISs 7.

The image features in [24] are used to detect a sparse feature
set, and the motions of the detected features are estimated using
pyramid-based Lucas—Kanade optical flow [30]. An accelera-
tion-model Kalman filter is assigned to each feature to perform
individual motion estimation and to reduce the effect of mea-
surement errors. Each clustered set of pixels enveloped by an
alpha hull defines an image region; the motion of which is also
individually tracked using a Kalman filter. This region-based
information provides feedback to the individual features, in-
cluding correction of nonbackground membership motion clus-
ters. This reduces the effect of inaccurate motion estimation and
tracking for individual features.

The corresponding regions r:~! and r} from different frames,
e.g.,t—1 and ¢, will envelope corresponding features from each
time instance }";t L and }"t For the ideal case, the two sets
of features from two correspondmg regions at dlfferent time
instances should be equivalent, i.e., rt L~ 7" if F tt 11 ~

f . Correspondences between regions from different frames

are therefore calculated based on a discrete overlap measure,
e.g., the Dice coefficient D(.,.), of the corresponding features
between frames

,fﬁ): ‘J—'t nF,

Ex M

+ ‘f:t
b

where }":; L is a set of features at time ¢. Correspondence be-
! and r} will be declared if

D(FTLFL) > @

tween regions 7}~

where 7 is a threshold set depending on the feature stickiness.
If it evaluates as true, then 72~ has many features in common
with 77. This provides an efficient and unambiguous approach
to determining correspondences between regions. An overview
of this process is illustrated in Fig. 3.

Next, the sets of pixels defined by each of the alpha hulls can
be used to automatically extract the shape of the object that has
generated the motion of the underlying features.

B. Bootstrapping the Shape Information: Shape Extraction

The photometric properties of the foreground region are
initially unknown and have to be extracted dynamically from
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the given image information. This information may change
over time due to, e.g., changes in illumination. Therefore, an
approach that can adapt to the dynamic statistical properties
of the photometric information is necessary. Many techniques
seek to model the background statistics of the image, such as
background subtraction techniques. However, this information
is often difficult to extract and is not usually relevant to a
moving observer.

The object shape from an alpha hull can be extracted using
gradient-based edge detection techniques, such as that in [20].
However, gradient information is typically susceptible to noise
or even textured image regions. Therefore, we propose two ap-
proaches of increasing computational intensity and accuracy
that statistically estimate the foreground from the potential mix-
ture of foreground and background enveloped by an alpha hull.

The first approach, i.e., referred to here as single back-
ground—foreground boosting (SB-FB), estimates the fore-
ground using a single foreground—background model, which
assumes that the tracked object possesses different photo-
metric properties from any part of the background immediately
surrounding the object. This assumption is sufficient for a
sparse-in-time shape estimation technique, where the object
being tracked will be different sufficiently (photometrically)
from the background.

The second technique, i.e., referred to here as multiple
background—foreground boosting (MB-FB), estimates the ob-
ject shape using an assumption of local differential properties
between the tracked object shape and smaller local regions
surrounding the object. This latter approach is more robust, but
it is computationally more intensive as it includes an instance of
the first approach for each subregion (of which there are many).

1) SB-FB: Each motion and spatially clustered sets of image
features are grouped and enveloped together by an alpha shape
or hull. An alpha shape is assumed to completely surround a set
of coherently moving image features and define the region of
interest (ROI) T of the image. ¥ not only contains foreground
§, exhibiting photometric statistical properties of the object to
be tracked, but also pixels corresponding to the immediate back-
ground ‘B, i.e.,

C(FuUB). 3

A further region surrounding %, i.e., narrow background band
I, can be defined, as illustrated in Fig. 4. 91 will almost cer-
tainly contain a majority of pixels exhibiting photometric statis-
tical properties of the background in the immediate pixel neigh-
borhood as follows:

N CB. “)

Each pixel in these regions will then possess some photo-
metric information.

Let I : RZ x Rt — R™ be an n-dimensional image intensity
at pixel x € R? in the image frame ¢t € R*, where, e.g.,n = 3
for RGB color images. Also consider the binary mask functions
f : R? — {0,1} for the foreground and b : R* — {0,1} for
the background, referred to here by f, and by, related by b, =
1 — fx (for each image frame ¢, although ¢ is not included to
shorten the formulations). The set of foreground pixels is given
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Fig. 4. Tllustration of the bootstrap regions. The labels in (a) are applicable to
SB-FB and MB-FB and in (b) is applicable to the regions for MB-FB only.
(a) illustrates the global ROI ¥ C (F U B), narrow background band 91, and
background B regions with the true foreground § enveloped in the ROI %. (b)
illustrates an example of one of the many localized ROIs centered at points x.
along the boundary of the ROI ¥. These points are the centers of disks that are
used to create localized ROIs ¥(x.). Also illustrated is the local background
region N(x.) and the medial axis of ¥ used to identify suitable radii for the
disks that define the localized ROIs.

by § = {x|fx} and background pixels B = {x|by}, resulting
in Q = §F U B as the set of pixels in the image space.

The foreground probability density function (pdf) p(Ix|§),
the background pdf p(7x|B), and the corresponding prior prob-
abilities P(§) and P(‘B) can be associated with the foreground
and background pixels, respectively. The probability of a par-
ticular pixel intensity corresponding to a foreground or back-
ground pixel can be then calculated via the Bayes theorem as
follows:

PUx|T)P(3) p(1<|B)P(B)

P(§|Ix)= d P(B|lx)=
(811x) o) and  P(B|Ix) o) o
where the marginal pdf is defined by
p(x) = p(Ix|F) P(F) + p(Ix|B) P(B). (©)

p(Ix|®B) is approximated by learning the statistics in the
narrow band, i.e., p(Ix|B) = p(Ix|91), which is a reasonable
approximation because: the narrow band 91 is by definition a
subset of the background by (4); 91 is immediately adjacent to
(envelopes) the object of interest so that the pdf of the intensi-
ties of the pixels in 91 should be very similar to the pdf of the
pixels in 91 combined with the remaining relevant background
pixels in %.

This means that all analysis can be limited to a subset of the
image space, i.e., the ROI ¥ in combination with the narrow
band 1. The advantage to this is that it increases the foreground/
background class separability because nonrelevant background
information is automatically excluded, and in practice, all cal-
culations are limited to the ROI and a small region surrounding
the ROI. Therefore, the marginal pdf p(Ix), which is valid for
the entire sample space under consideration, is defined over the
ROI and the narrow band so that p(Ix) = p(Ix|T, M), resulting
in the statistical properties of the ROI being learned directly.
Furthermore, by using Bayes in (5), the following can be stated:

_ p(Ix|B)P(B)
p(Ix)

which, using the approximations now defined, can be calculated
with

P(8|Ix) =1-P(B|lx) =1 )

pU|M)P(B)

PG = 1= e -

(®)

The background prior probability P(‘8) is the only unknown
term, which cannot be measured or estimated directly from the

local region
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Fig. 5. SB-FB versus MB-FB. (a) Test shape with distinctive global charac-
teristics. (b) ROI mask. (c) Test shape with variable local characteristics. (d)
Medial axis of the ROI mask. (¢) SB-FB result applied to (a). (f) MB—FB result
applied to (a). (g) SB-FB result applied to (c). (h) MB-FB result applied to (c).

data. However, the above model is the two-class mixture model
(B, %) [see (5) and (6)]. Therefore, P(B) can be estimated
using maximum likelihood (ML) for a two-class mixture model
where P(B) = > cx o P(B|Lx)/|T U N (see, e.g., [31],
for a detailed explanation and derivation of ML parameter es-
timation for mixture models in general). Thus, an initial value
for P(B) is selected, e.g., P(B8)1) = 0.5. Setting the iteration
variable I = 0, P(B|I, )] = P(F|I,)™ is then calculated
using (8). Then, an updated value for the background prior prob-
ability is calculated via

2, P(B|l)
vxeT,MN

1 _ Yx€IM
P(B) ITUN

©)
where | UM is the number of pixels in the ROI and the narrow
band combined. The iteration variable [ is next incremented,
and (8) and (9) are repeatedly applied until convergence. After
convergence, the foreground region can be defined as the set F’
of pixels that have higher probability of being foreground over
the probability of being background, i.e.,

F={x|P(§|Lx) > P(B|L), xeT}. (10

This result suggests that ' = §, which would imply a recur-
sive formulation. However, (8) removes the need to calculate
P(F|Ix) directly.

A check can be made to determine if a foreground object has
successfully been extracted by assessing the number of pixels
in F'. If the following is true:

IF| < |%] x v (11)
where -y is a weight, then the algorithm is likely to have success-
fully extracted the pixels of the foreground. An obvious disad-
vantage of this test is that the algorithm may completely fail
in providing an estimate of the foreground. This can be under-
stood because if the number of pixels in F' are similar to the
number of pixels in T, then that might indicate that either the
ROI was not well defined or the background pixels might pos-
sess similar photometric properties in conparison with the fore-
ground. The next section describes an alternative approach that
overcomes this limitation by analyzing the ROI in multiple over-
lapping small regions. The overall foreground is then calculated
from all the successful individual subregions so that individual
subregions that fail to provide a valid foreground estimate for
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their respective subregions do not immediately affect the final
result.

2) MB-FB: The nonlocal (but object specific) approach de-
scribed above is sufficient for many situations, particularly when
a sparse-in-time shape extraction approach is required. How-
ever, some parts of a tracked object will often possess similar
photometric properties in conparison with the background that
immediately surrounds the object.

A more localized approach described here identifies the local-
ized probabilistic differences between the background and the
foreground. This is done by estimating the foreground from the
foreground—background mixture in local regions surrounding
the tracked object.

The local and global shape extraction techniques are illus-
trated in Figs. 4 and 5. The local regions are defined here with
centers X, on the boundary of the alpha shape by circular re-
gions with radii given by twice the distance to the closest point
on the medial axis of the alpha shape as follows:

(12)

Tx, = 2. min(X., X;)
Vx4

where x; is a point on the medial axis of the alpha shape. The
area defined by each disk with center x. and radius ry, will
cover a subregion of the alpha shape (i.e., T(x.) C %, see
Fig. 4) and a further region outside of the alpha shape ' (x,.).
This exterior region is reduced in size (to minimize the possi-
bility of including extraneous background) via intersection with
a global narrow band, as used previously, i.e.,

MN(x.) = M(x.,)NN, sothat N(x.) C M. (13)
These boundary-based subregions can be used as part of the
foreground—background model so that (8) and (9) can be applied

to obtain a local foreground estimate as follows:

Fy, = {x|P(3x.

Iy) > P(B«, |Ix), x € T(x.)} (14)
where P(§x, |Ix) is calculated with the analogous local form of
(8).

A check can be made to determine if the pixels of the fore-
ground object subregion have successfully been extracted by as-
sessing the number of pixels in Fx_, similar to (11), i.e.,

if Y P(Fx I) < ()] x 7,
xET
otherwise.

true
C(x.) = { (15)

false

If (15) returns “false,” the algorithm is unlikely to have suc-
cessfully extracted the pixels of the foreground subregion. Pre-
viously in (11), if the foreground had not been extracted suc-
cessfully, then the entire foreground was rejected. Now, because
subregions are being extracted, only the subregions that sat-
isfy (15) are included in the final foreground estimate. Each
pixel x may then have multiple foreground probability estimates
{P(Fx.|Ix)|C(x.)} whenever C(x.) is true. The mean of these
foreground estimates can then be used as an estimate of the fore-
ground posterior probability P(§|Ix) = E[P(Fx. |Ix)] at a par-
ticular pixel location x. Regions not satisfying (15) are consid-
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ered zero foreground probability and are automatically excluded
as follows:

S Pl
_ Vx.|C(xc)
PO = ok, xesny 09

where the denominator is the number of foreground subregions
with x € Fx,_ that satisfy C(x.). As shown in Fig. 4(b), there is
a substantial overlap between adjacent foreground subregions so
that the result of (16) should be robust even for situations where
C(x.) is false for many x..

C. Building a Collection of Plausible Object Shapes

The foreground extraction techniques described in the pre-
vious section are used to automatically extract the foreground of
tracked objects from crude estimates of the regions surrounding
the moving objects. These foreground shapes F¢ (where ¢ is
sampled real time) are estimated from the alpha hull of the out-
lier motion features T¢.

However, many frames may not result in useful object shapes
due to a number of reasons, e.g., the alpha hulls are not guar-
anteed to cover the entire object all of the time, or individual
features may be tracked inaccurately, which may result in erro-
neous alpha hulls; furthermore, photometric information may be
ambiguous even in the locally defined approach. For these rea-
sons, F* should only be remembered for some time instances.
The first test for remembering a given shape is given by (11).
A further test is also performed to determine if the shape at the
time instance ¢ is similar enough to the corresponding extracted

shape at time instances t —n, . .. ,t — 2, ¢ — 1. The similarities of
the shapes are calculated using the Dice coefficient as follows:
. 2|17 N F
D(F'.F) = it 7)
S = e

where §'~7 is translated to have the same center of gravity as § t,
Obviously, this measure is not rotation or scale invariant, but it
is used here to show that if a shape has relatively high similarity
with the shapes from the last n time instances, then §° must
be a reasonably representative shape. Shape §* is included in
memory §¢ € @ if the following is true:

D(§) = {true ifDF 3 >0 Vi, 1<i<n

false otherwise.
(18)
Threshold 6 is set low enough to enable shapes that have un-
dergone some deformation or rotation to be included, and it is
set high enough to prevent completely erroneous shapes from
being included.

D. Shape Memory for Object Tracking

Prior shape information is particularly useful in active-con-
tour models to reduce the likelihood of the active contour de-
forming to unlikely configurations of shape. However, the prior
shape information is difficult to obtain without manually seg-
menting and preparing suitable templates to be used for statis-
tical modeling.

Despite this, the initial definition of the shape memory @ =
(gx = fx|x € §,D(F"),Vt) (as a tuple) can be used as a first
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estimate of a sequence of shapes that an object tracker requires
for full object tracking and segmentation. The foreground ex-
traction stage can be run in batch mode across a set of images to
provide an initial shape memory estimate. Alternatively, it can
be run simultaneous to a shape-based active-contour model.

Furthermore, an object tracking process is highly likely to
generate new configurations of shape that have not been previ-
ously observed, i.e., either as part of the training stage or in ac-
tual object tracking. It is therefore prudent to also remember this
online information to enhance future object tracking. Thus, for
a given time instance ¢, the shape-based active-contour frame-
work tracks the object, resulting in a partition of the image space
Pt = (F*,B"). The first element of the partition defines a new
object shape ¢y = fx|x € F* that is included in the shape
memory as follows:

QM =Q'U(gx=TxlxeF, FeP) 19
However, continually including every tracked shape in the
shape memory (from the shape-based active contour) is a po-
tentially hazardous process as errors in object shape are likely
to propagate into the object tracking process. If this occurs, the
shape memory is likely to become dominated by nonrelevant
shapes, resulting in a degeneration of the shape memory. To pre-
vent this, a more selective shape memory can be designed.

Some observations regarding the object tracking process in
relation to a more useful shape memory are the following.

1) At the start of object tracking, we have a somewhat (but
limited) representative shape memory of the object being
tracked.

2) Atany time instance, shapes recently included in the shape
memory are likely to be representative of the object being
tracked recently.

3) Shapes found to be repeatedly similar to the object being
tracked may continue to be similar to the shape of the ob-
ject being tracked.

4) Some observed shapes may never be similar to a future
object shape.

5) Computer memory and processing power are finite.

These observations enable us to build shape memory online
that prioritizes recently observed and recently similar object
shapes.

Therefore, the definition of the shape memory Q! can be ex-
tended to include variables for each object shape ¢ € Q*. These
variables are t; = t, t», and h, which are the time when it was
generated, the time when it was last used, and a count of the
number of times an object shape has been recalled for use in the
tracking framework, respectively. This last discrete frequency
variable h is incremented if the currently tracked object shape
is similar to a past observed shape.

The parameters enable some shapes to be prioritized over
other shapes in terms of importance in the object tracking frame-
work. A simple approach to ordering the object shapes is given
by

O(t17t27 h) =11+ 12 X h. (20)

This order function o gives high priority to recently generated

or observed shapes and shapes that have been used many times.
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The shape memory can then be redefined as an ordered sequence
€1y .., G of n four tuples ¢, = (¢¥,tY,tY, h"), where (, de-
notes the vth tuple. Each tuple includes an object shape ¢ and
the three parameters. The ordering of the tuples is defined by
0((y) > o(Cw) or equivalently o(¢Y,t5,h") > o(t¥,t¥, h"),
where v and w are integer shape-order indicators so that v > w
if G > Cu-

The final two observations indicate that some shapes can be
forgotten, and this ordering provides a simple approach to for-
getting. If there are n + 1-ordered shapes and only n object
shapes should be remembered, then shape (,,+1 is forgotten as

o(Cat1) = mino(C,) @
i.e., 0((y) > 0((ny1)Vo. Hence, the shape memory has constant
length #Q = n.

The construction of this heuristic helps to fulfill the five ob-
servations regarding the useful shape memory defined earlier.
The principal idea of prioritization of some shapes over others,
i.e., accomplished via (20), contributes to implementing obser-
vations (2) and (3), i.e., time sensitivity and repeated observa-
tions. The forgetting part not only helps to meet the requirement
of finite memory in observation (5) but also helps to eliminate ir-
relevant shape information so that observations (2)—(4), i.e., the
removal of irrelevant shapes, are also assisted by the forgetting
part. The remaining observation (1) is a necessary requirement
of a memory associated with a particular type of tracked ob-
jects where the initial memory content is provided here (fully
automatically) by the sparse-in-time shape extraction technique
described earlier.

E. Shape-Based Active Contour

The active contour is evolved using a combination of prior
shape information )¢ (i.e., learned online, as described above)
and the image information I* for each individual frame ¢. The
partition of the image space P! = (F*, B") into foreground and
background pixels is dependent on the contents of the current
shape memory Q?, and the current image frame ILVx € 2. P?
is obtained here by maximizing the probability density of the
partition given the shape memory and the image data as follows:

max p(P'1Q", IY). (22)
This is achieved here by four steps (dropping %).

Step 1) Predict: Find the shape in the memory with the max-
imum probability given the following current parti-
tion:

max {p(¢"|P)} - (23)

Step 2) Estimate: Evolve the contour toward shape ¢” as fol-

lows:
max {p(Plg”, I)} . (24)

Step 3) Update: Update the shape memory using (19).

Step 4) Forget: Forget the lowest priority shape ¢"*! in the
shape memory using (21).
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The prediction stage can be considered equivalent to finding a
shape in the shape memory, which is most similar to the current
partition. Therefore, (23) can be given by (see, e.g., [32])

max {p(q"[P)}
2}7 / (@0 (x) — @ - A(x))? da

Q

= max ¢ exp 25)

where @ - A(x) is the signed distance of the currently evolving
shape aligned to the signed distance of shape ¢*, i.e., ®,(x),
and o is a measure of variation between the shapes. Gradient
descent is used to optimize the alignment of the shapes .A(x) in
(25), where the negative logarithm is taken similar to [32] and
optimized with respect to rotation and translation but not scale
due to difficulties with the convergence.

Using the Bayes theorem and assuming conditional indepen-
dence of the image data I from shape ¢” due to the current parti-
tion information P, i.e., p(|v, P)p(v, P) = p(I|P)p(v, P), the
pdf to be maximized in the estimation stage (24) is then given
by

p(Plq", 1) o< p(I|P)p(q"|P)p(P) (26)

where the partition pdf p(P) enforces smoothness of the parti-
tioned image space using an exponential distribution with expo-
nent given by the gradient magnitude of the level set |V ®(x)|
calculated along the boundary of the level set § - P(x) (see, e.g.,
[33]), i.e.,

pP) e (<A [ 6 200 Ivoal) @1
where )y, is a contour length weight and § is the Dirac delta func-
tion. The smoothness on the labeling enforced by p(P) helps to
condition the overall posterior distribution toward a unique so-
lution so that the individual image intensities Ix in the image
likelihood p(I|P) can be assumed to be distributed indepen-
dent of neighboring image intensities p(I|P) = [y, p(Ix|P).
Furthermore, the image intensities at each pixel x are consid-
ered to be generated by either foreground fx = 1 or back-
ground b, = 1 so that the individual intensity likelihoods can
be split into a product of a foreground and a background term
p(I|P = F U B) = p(Ix|F)=p(Ix|B)°=. Thus, the overall
image likelihood p(I|P) is given by

Hp1|&

The shape prior p(¢¥|P) needs to pull the currently evolving
partition P to a partition with a shape similar to the model shape
q". This can be done via a pdf based on the sum of squared
differences between the two sources of shape information. The
two sources of shape information therefore have to be converted
to the same form. The signed distance form is not closed under
addition or subtraction and is therefore not suitable for use in
a sum-of-squared-differences operation. Therefore, we use the
Heaviside function of the signed distances to create two binary

p(I|P) = Hp (I|P) = (I|B)=.  (28)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 3, MARCH 2012

maps, where H : R — {0, 1} is the Heaviside function with
H - ®(x) = 1if &(x) > 0. The shape prior is then given by

p(q"|P) = Hexp( (H-0(x) - H- 0, - A(x))’)
(29)

where \; is the shape weight that can be used to control the
contribution of the model shape information. A prior based on
the sum of squared differences of the Heaviside functions of the
level sets has been used previously by other authors, e.g., Cre-
mers et al. [34]. This prior is particularly attractive here because
it contributes a single constant factor to or from points in the
level set; as a result, the changing level set is likely to remain a
valid level set even after a number of iterations. Other calcula-
tions based on the raw level-set values may not always produce
a valid contribution to the changing level set, resulting in rapid
nonregular degeneration of the level set.

1) Initialization and Tracking: The shape and position of the
evolving contour encapsulated by the signed distance function
®(x) has to be initialized at the arrival of every new image frame
t =t+ 1,7 = 0, where 7 is the gradient-descent optimiza-
tion time variable. As 7 — oo, the active contour converges
to a region in the image space ®%7—°°, This region typically
surrounds the object being tracked. However, often the contour
converges to a local minima, thereby producing an erroneous
track of the object shape. Despite this, the converged contour
may overlap the region occupied by the object to be tracked. Fur-
thermore, the regional information provided by the alpha hull
9M!+1 will likely contain the entire object to be tracked.

Therefore, the initialization of the object contour for every
new image frame is a combination of the alpha hull for the new
frame 9t*+! and the converged active contour for the previous
frame

q)t+1,7=0(x) =f ((Dt,7—>00 - Ak (%), mt+1(X)) (30)

where Ak (x) is a Kalman-filtered translational motion estimate
calculated from the mean of the optical flow weighted by the
spatially normalized image gradient magnitude (as a measure
of confidence in the optical flow values) along the boundary
of the contour (i.e., the zero level set) (see [12]). The motion
estimate A (x) provides a useful initial location from which
the active contour can evolve, and (30) can be interpreted as
providing a useful initial estimate of object shape and location
or as an interframe shape prior, so that ®'+1 = $!+1.7=0_ A
linear function is used here with proportions 0 < A < 0.5 so
that

P = ) (D177 Ak (x)) + (1 - ) (M (x)).

2) Implementation: The expectation—maximization algo-
rithm [35] in combination with a finite Gaussian mixture model
is used to learn the photometric properties of the foreground
and background regions.

The image model described by (26) can be transformed into
a level-set-based active-contour formulation by taking the neg-
ative logarithm, the variational derivative, and then performing

3D
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gradient descent. This is equivalent to maximizing (26) to obtain
an object segmentation that closely matches the image informa-
tion and the shape model.

Taking the negative logarithm converts the probabilistic form
of (26) into energy £ = —Inp(P|, ¢", I) so that

&€= —Inp(I|P) = Inp(¢"|P) - lnp(P) + C
= - / (fx In p(Ix|T) + bx In p(Ix|B)

x'GQ

— X\ (H-®(x) - H - ®, - Ax))”

—Apd - O(x)) [VO(x)| + C) dx (32)
where C'is a constant and \; and \j are weights for the shape
and regularization of the length of the contour, respectively. The
first two terms can be reformulated in terms of the Heaviside and
level-set functions: H - ®(x) = fx, and (1 — H - &(x)) = by.
Minimization of the energy can then be performed via gradient
descent on the variational derivative with respect to the gradient-
descent time parameter 7, 9 /0P = — (0P /07), i.e.,

2 =0+ 000~ mp(L[5) + I p(1|)
F2N, (H - ®(x) — H - &y - A(x)) + As - IC) (33)

where K = V - V®(x)/|V®(x)| is the curvature. Finite differ-
encing with a nonoscillatory upwind scheme is used to perform
the gradient descent (see, e.g., [36]).

To overcome potential difficulties with the stability of the nu-
merical scheme, the Courant-Friedrichs—Lewy (CFL) condition
is used to control the time step in the gradient-descent process.
A secondary effect of using the CFL condition is a more ro-
bust object tracking framework overall. Weights controlling the
relative contribution of the different components in (26) can
be set constant across a wider variety of data sets where the
system remains stable despite potentially large variations in the
object tracking problem, such as variations in image properties
or varying deformations of shape.

A slight modification to the CFL condition was introduced to
provide improved robustness to variations in initial conditions,
i.e., the initialization contour derived from the alpha shapes.
This was due to a potentially very different shape prior from the
initialization contour. If the shape prior is very different, then the
CFL condition will enforce a very small time step to ensure sta-
bility. However, a small time step reduces the power of the force
generated by the image likelihoods, i.e., p(I|§) versus p(I|B),
and the contour motion in a single time step becomes very small.
This in turn results in the system identifying positive conver-
gence criteria such as constant contour length. Therefore, the
CFL condition was modified to enforce a minimum time step.

F. Overall System and Algorithm

The overall system can be summarized by the predict, esti-
mate, update, and forget steps described in Section II-E and in
particular by (19), (21)—(24). The system is also summarized
here in algorithm form. Initially, the image frames are processed
by the bootstrap-stage algorithm shown in Algorithm 1.
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Algorithm 1 Bootstrap algorithm

Let time ¢ = 0 and the first shape detection time ¢’ = —1.
loop
Fetch image frame I°.
Compute feature points F¢.
Compute feature point sets r} using spatial clustering.
Compute regions via alpha shapes over the point sets.
Determine corresponding regions 7.~! and r}
using D(]—"ft__l1 ,Fr)in (D).
Compute foregaround ghapes using (10) and (11).
Determine plausible object shapes for inclusion in
shape memory using D(F*~7, §*) from (17).

ift! == —1 && #(Q == 1 then
Set t’ = t (the first frame with an extracted shape).
end if
Lett =1¢+ 1.
end loop

Following the bootstrap stage, the online shape-based active
contour, which is shown in Algorithm 2, is applied using the
generated image masks and the initial shape memory, which is
then updated as each frame is processed.

Algorithm 2 Online shape-based active contour.

Let ¢t = ¢’ the first shape detection time.
loop
Fetch image frame I?.
Initialize level set ®¢+17=C(x) using (30).
while Contour length not constant do
Evolve the level set with the gradient descent 9P /97
in (33) using Finite Differencing (FD).
Every 10 FD iterations:
Update foreground and background
likelihoods p(I|¥) and p(I|B).
Update model shape using max, {p(¢"|P)}
from (25).
end while
Update the shape memory using (19).
Forget lowest priority shape using (21).
Lett =¢+ 1.
end loop

III. RESULTS AND DISCUSSION

A. Shape Extraction Testing

The two shape extraction techniques, i.e., SB-FB and
MB-FB, described in Sections II-B-1 and II-B2 were tested
using a variety of test images, with some results shown in Fig. 6.
For comparison, results are also shown for the region-based
active-contour (RAC) technique in [33], except extended to a
full probabilistic model of the foregrounds and backgrounds.
The probabilistic models are used instead of just the foreground
and background mean values, increasing the ability to model
complex variations in the foreground or background color
distributions. Also shown are the manually created foreground
masks used to initialize the three techniques.
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E n

Fig. 6. Shape extraction using three different region-based methods. Column 1: original images. Column 2: the initial foregrounds. Column 3: RAC[33] results.
Column 4: SB-FB results. Column 5: MB-FB results. Original data in row 5 is from [37] and rows 4 and 6 from [38].

These results appear to demonstrate that MB—FB generally the best mean Dice coefficient (77.9%) compared with MB-FB
performs better, at least qualitatively. Quantitatively, SB-FB has  (72.1%) and RAC [33] (77.5%). Howeyver, the true positive rate
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TABLE 1
COMPARISON OF SHAPE EXTRACTION COMPUTATION TIMES FOR STILL IMAGES
(ALL COMPUTATION TIMES IN SECONDS)

SB-FB MB-FB RAC[33]
traffic | 0.30 36.72 77.00
person with plant | 0.36 63.83 34.43
person in office | 0.34 27.30 6.31
cheetah | 0.26 15.57 21.38
backpack in park | 0.13 12.33 18.43
walking right to left | 0.33 44.84 82.51

Fig. 7. Results for tracking a walking person. Time instances (frame number)
are shown below each frame. (a) t = 0. (b) * = 50.(c) + = 100.(d) t = 150.
(e)t = 200. (f) t = 250. (g) t = 300. (h) t = 319.

or sensitivity of MB—FB (94.3%) is significantly better than the
sensitivity for SB—FB (84.5%) and RAC[33] (72.6%).
Computation times for the static single-image shape ex-
traction processes are shown in Table I. All techniques were
implemented in C++ on a notebook running an Intel Dual-Core
1.7-GHz processor with 3-GB random access memory. The

1241

=
0
o
@
o
o
[0
Q
e 0.20
- 20 memory shape prior
no forgetting -------
0.00 1 1 | ) | :
0 50 100 150 200 250 300
frame

Fig. 8. Performance characterization on the object tracking result shown in
Fig. 7 in conparison with object tracking utilizing a full memory (without for-
getting).

shapes to forge
: memory at frame 25  ctive memory ‘

memory at frame 50

memory at frame 75

Fig. 9. Contents of memory (#¢ = 20) for the sequence shown in Fig. 7.
Each row corresponds to the contents of the memory at particular time instances
or image frames.

computation times for SB-FB are significantly lower in con-
parison with the other techniques. The (qualitative) accuracy
of SB-FB was found to be somewhat inferior for many test
images (in relation to MB-FB), but the improvements in the
computation times of SB-FB over MB-FB combined with the
dynamic nature of the shape memory resulted in SB-FB being
used to build the initial shape memory in the experiments that
follow.

B. Object Tracking and the Shape Memory

The length of the finite memory #() was determined by ob-
serving the dominant frequencies in shape similarity matrices
such as those shown in Fig. 2. Many shapes are repeatedly ob-
served at least twice over a window of length 20, corresponding
to just under a second for a 25-frames-per-second video. There-
fore, in the experiments that follow, #@Q = 20.

The results for tracking a person walking can be seen in
Fig. 7. Performance characterization using the Dice coeffi-
cient in combination with the ground truth of the moving
object (Dice mean = 0.68, standard deviation = 0.11) is
shown in Fig. 8. Also shown is the performance characteri-
zation on a tracked object without forgetting any information
(Dice mean = 0.68, standard deviation = 0.12), illustrating
that the forgetting part proposed here enables the object to
be tracked without having to utilize all past object shape
configurations.

The contents of the memory for results shown in Fig. 7
at a number of corresponding time instances are shown in
Fig. 9. This illustration includes the contents of the active shape
memory and the candidate shapes to be forgotten. The shapes
to be forgotten are poor representations for the object being
tracked. Note that many of the early erroneous shapes shown
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Fig. 10. Attempt to provide an objective assessment of the usefulness of the sha

pe memory for a number of different sequences calculated using the mean of the

maximum Dice coefficients (34), where the Dice coefficient is calculated between every ground-truth shape and every shape in the memory at every time instance
where #¢) = 20. Also shown (data points) are Dice coefficient values for individual frames. These plots help to demonstrate that the shape memory continues to
contain shapes that are representative of shapes that will be seen in the actual video data, i.e., the ground truth. The straight lines indicate that the maximum Dice

coefficient does not change over time and that the shape memories for each data
sets shown here.

for the memory at frame 25 are no longer in the shape memory
at the later time instances.

a) Shape memory usefulness: An objective assessment of
the usefulness of the shape memory is difficult to achieve, as
can be seen by the evolving contents of the memory in Fig. 9.
However, it is possible to compare the contents of the memory at
different time instances with the best match (in terms of shape)
and with the ground truth of the tracked object in that video
sequence. This is shown in Fig. 10, where the mean of max Dice
coefficients is calculated with

#QZmang,)

VqeQ

(34)

where g is a ground-truth shape for the particular image se-
quence being assessed. As can be seen from these plots, the
value of d' appears to converge to an approximately constant
Dice coefficient value of between 0.6 and 0.8, i.e., d' — C,
where C' € [0.6,0.8] when ¢ > #Q. This appears to suggest
that the contents of the shape memory converges to a constant
level of apparent usefulness.

Also shown are data points representing Dice coefficient
values for corresponding time instances. These data points
have quite significant variation in Dice coefficient values, but
the contents of the memory remains relatively constant. This
demonstrates that the memory contains a consistent represen-
tation of shape irrespective of individual variations in object
segmentation performance.

C. Occlusion Handling and Other Object tracking Results

An object tracking result for a person walking with an almost
complete occlusion can be seen in Fig. 11, where tracking
continues successfully through the occlusion. A comparison
was made with RAC[33], except that it was extended to object
tracking in video by including a Kalman-filtered optical flow
tracker (see Section II-E1) (KOFTRAC). Performance charac-
terization was then undertaken with the Dice coefficient. The

set could be considered as stable and converged to a similar point for all the data

Fig. 11. Tracking result for person walking with a close-to-complete occlusion.
Data from [38].

1.00

0.80

€
2
S 060 f-v.. " By |
§ =*4.4 m»_v, ~ \'",o LN
g 0.40 |
a occlusion

0201 20 memory shape prior 4

no shape prior =======
0.00 ! I f ~ .
160 180 200 220 240 260
frame

Fig. 12. Performance characterization for the result shown in Fig. 11. Also
shown here is a comparison with KOFTRAC demonstrating that the shape prior
enables the object tracking to continue despite the tracked object almost disap-
pearing completely from view.

result of this comparison is shown in Fig. 12. Various other
object tracking results can be seen in Fig. 13.
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tracking animals

tracking people

A

Fig. 13. Various object tracking results.

D. Comparison With Nonadaptive Shape Priors and Various
Other Configurations

Active-contour techniques need to use shape priors to im-
prove the accuracy of object segmentation. This is particularly
relevant for object tracking, where the tracked object may
change significantly in appearance and or shape. However,
an object may transform into a shape or a set of shapes that
are quite different from the shape priors that are provided via

manual supervised training methods (see, e.g., [3], [4], and
[32]). In Fig. 14, we show a comparison of our method to when
the shape prior is fixed.

The fixed-shape prior contained only a single template, which
was a manually defined object shape. This is an oversimplifi-
cation of many proposed techniques, but it does demonstrate a
possibility for when supervised training of the shape informa-
tion is not sufficient for the range of possible deformations that
might occur for some types of objects, e.g., for animals or other



1244

1.00 T T T T T
& 0.80
o
' 0.60
o
38
5 040
8
o 0.20
€
0.00
walking right cheetah giraffe backpack plant
toleft data set
20 memory prior C— fixed prior no mask
IRPCA — mask initialize only —m

fixed prior === no prior no mask —

Fig. 14. Comparison of a number of configurations of object segmentation
and tracking techniques using the mean of the Dice coefficients for each image
frame. Error bars are one standard deviation of the Dice coefficient values. The
20 memory prior is the technique proposed here. IRPCA has been used recently
for online learning of shape memory by [10], which provides slightly reduced
performance over two of the data sets.

highly deformable objects. The fixed-shape prior provides good
object segmentation and tracking performance only when it is
combined with the initialization prior at the start of every frame
(901). Furthermore, the use of a manually defined template and
an initializing contour mean that it is no longer an automatic
technique.

Results for a shape memory based on an incremental and ro-
bust PCA (IRPCA) feature space are also shown in Fig. 14. The
shape memory based on IRPCA has been used recently by [10].
The results obtained for the IRPCA-based memory appear to be
either similar or not as good as the results obtained for our pro-
posed system.

a) Overall robustness of object segmentation and tracking:
The overall performance for tracking with and without the finite
dimensional shape prior can be assessed, which is also shown in
Fig. 14. In particular, the effect of the alpha hulls or ROIs as the
initializing prior contour that is combined with the contour from
a preceding iteration provide an excellent initialization for the
contour for each tracked frame. Also shown are results for the
case of no shape priors. These results indicate the importance of
good initialization, which is provided by the initializing shape
prior. However, the intraframe finite memory shape prior pro-
vides improved overall performance.

E. Length of Shape Memory and Alternative Shape Ordering

The effect on the performance of the object tracker re-
garding the length of the shape memory was also investigated
in combination with an alternative approach to prioritizing
the shapes. Assessment was undertaken using various sizes of
shape memory and then compared with a completely random
ordering of the shapes in the shape memory. The tracking
system with these different configurations was applied to a
number of different video data sets. These tests revealed that
the length of shape memory had little effect on the overall
performance of the system with slight preference for shape
memories with length 20 for a number of the data sets. The
alternative ordering of the shapes in the shape memory also
had little effect on the overall performance of the system. The
exception to this was for the data set with an almost complete
occlusion where the completely random ordering of the shape
memory failed to retain the important shape information over
the number of frames that the occlusion occurred. This can
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be understood because, normally, the shape memory keeps
including reasonably good instances of the shape into the
memory during normal tracking for both approaches, but the
ordering becomes particularly important when an event such as
an occlusion occurs.

FE. Computation Times

The same computing platform that was used for the tests
shown in Section III-A was also used for all the other ex-
periments shown here. These experiments have shown that
the system requires substantial computation time (mean com-
putation time for a number of sequences is 60 seconds per
frame). This is mostly due to the requirement to align the shape
information and optimization of the active contour.

IV. DiSCUSSION AND CONCLUSION

A new fully automatic object segmentation and tracking
framework has been proposed consisting of new techniques
applicable not only to object tracking in video data but also
to static image object segmentation. The results show that
the system is capable of automatically detecting and tracking
moving objects in video data without any manual intervention.
Furthermore, comparison with other existing techniques or
configurations of techniques demonstrate similar or superior
object tracking performance for the work described here. These
developments proposed are not only theoretically interesting
as the potential applications for such a system are quite wide,
including security and multimedia.

All of the tests performed here utilized the same settings or
parameter values, demonstrating fully automatic object segmen-
tation and tracking performance, although manual parameter
setting may be necessary for other data. In general, parameters
and various other configurations can severely affect the perfor-
mance of object segmentation and tracking systems. This can
be a source of incredible difficulty in developing and/or imple-
mentation of these systems. Nevertheless, the contributions de-
scribed here help toward fully automating the object segmenta-
tion and tracking process.

Future work will include finding ways to reduce computation
times and to improve the accuracy of the system. Extension of
our system to multiple object tracking is also ongoing. Multiple
object tracking is an important research topic in the computer vi-
sion field, e.g., in [39], and in human visual experiments, e.g., in
[40]. Level-set techniques have been proposed that provide con-
venient and even satisfying formulations for multiple regions,
e.g., in [10]. This paper will also necessarily combine feature
tracking; all of which will require methods involving accurate
correspondence analysis.
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