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Abstract. We present a novel HMM based approach to simultaneous
segmentation of vessel walls in Lymphatic confocal images. The vessel
borders are parameterized using RBFs to minimize the number of track-
ing points. The proposed method tracks the hidden states that indicate
border locations for both the inner and outer walls. The observation for
both borders is obtained using edge-based features from steerable fil-
ters. Two separate Gaussian probability distributions for the vessel bor-
ders and background are used to infer the emission probability, and the
transmission probability is learned using a Baum-Welch algorithm. We
transform the segmentation problem into a minimization of an s-excess
graph cost, with each node in the graph corresponding to a hidden state
and the weight for each node being defined by its emission probability.
We define the inter-relations between neighboring nodes based on the
transmission probability. We present both qualitative and quantitative
analysis in comparison to the popular Viterbi algorithm.

1 Introduction

Tracking object contour is usually carried out for complex and nonrigid shapes
where a contour provides more accurate representation than a bounding box. In
this paper, we propose a hidden Markov model (HMM) based approach to track
lymphatic anatomical borders over the cross-sectional images in order to achieve
coherent segmentations in 3D. HMM is a stochastic model in which the Markov
property is assumed to be satisfied in a finite set of states and these states are
hidden. Many applications have demonstrated the advantages of HMM in deal-
ing with time-varying series, such as [3,4,14]. In [11], the authors used HMM
to detect abnormal local wall motion in stress echocardiography. In [5], HMM
is used in conjunction with a particle filter to track hand motion. The particle
filter is used to estimate the hand region that is most likely to appear. HMM
estimates the hand shape using the Viterbi algorithm where the hidden state is
a set of quantized pre-learned exemplars. However, the number of exemplars can
grow exponentially depending on the complexity of the object. In [2], the authors
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Fig. 1. (a) an illustration of segmenting border St based on St−1. The border is divided
into M points with RBF interpolation and at each point a normal line is drawn with
length K. (b) conventional HMM construction. (c) proposed HMM construction.

used the Kalman filter with pseudo 2-dimensional HMM to perform tracking.
The Viterbi algorithm is used to find the best sequence of states to perform ob-
ject and background classification. However, this system becomes increasingly
more complex and time-consuming with the increase of object size. In [3,4], the
authors incorporated region and edge features in HMM. The contour is sampled
as a set of discrete points, and the features are extracted along the normal direc-
tion at each contour point. An ellipse is fitted to the contour and the unscented
Kalman filter is used for tracking. Sargin et al. [14] extended the work to deal
with variable length open contours and investigated using arc emission instead
of traditional state emission in defining the observational probabilities for the
HMM. Notably, Viterbi algorithm is commonly used to find the best sequence
of hidden states. However, the search process can be hampered by occlusions in
the image where the emission probability is not reliable and transition probabil-
ity does not guarantee smooth transition of the border. Moreover, the Viterbi
algorithm cannot handle the case when starting and ending points are the same.
Nor does it work well to simultaneously search multiple borders.

In this paper, we propose a multi-border segmentation and tracking method
based on HMM, and we demonstrate the technique through simultaneously delin-
eating the inner and outer borders in lymphatic vessel images that are corrupted
by noise, intensity inhomogeneity and occlusions. A new optimization method is
proposed to find the optimal sequence of the hidden states based on the mini-
mization of an s-excess graph. Instead of using the traditional Viterbi algorithm,
we transform the problem into finding the minimum-cost closet set graph that
corresponds to the desired border and can be efficiently solved in polynomial
time. The emission probability is defined based on two probability distributions
of the vessel border and background respectively that are derived directly from
edge-based features. The training of the transition probability is achieved by
using the Baum-Welch algorithm.

2 Proposed Method

2.1 Border Parameterization

The border of interest can be either an open curve/surface or a closed con-
tour/surface. For the purpose of efficient graph optimization, we unravel the



30 E. Essa, X. Xie and J.-L. Jones

images so that the border of interest appears to be an open contour in 2D or
an open surface in 3D. The first columns and the last columns of the image
data are connected so that the continuity of the original data is unaffected. In
effect, the images are transformed from Cartesian coordinates to polar coordi-
nates. This is particularly suitable for vessel segmentation. We thus treat the
segmentation of the two vessel walls in 3D as tracking two non-overlapping and
non-crossing contours in the longitudinal direction. Compared to the optimal
surface method [9], which also adopts image unravelling, our approach has very
limited computational overhead when dealing with 3D data in that only adjacent
cross sections are needed to construct the graph for segmentation. We further
simplify the border of interest in 2D cross sections through radial basis function
(RBF) based parameterization, since it is unnecessary to track each every point
along the boarder. As illustrated in Fig. 1(a), the border of interest is approx-
imated by RBFs where the hidden states of the HMM are considered as the
potential RBF centers. The border is evenly sampled into M points and at each
point a line segment is drawn perpendicular to the tangent line of the border and
each line segment has K points. The RBF centers are indexed by φ ∈ {1, . . . ,M}
and points on perpendicular line segments are indexed by ψ ∈ {1, . . . ,K}. The
initial RBF centers for the current cross section or frame are defined using the
result from the previous frame, see Fig. 1(a).

2.2 HMM Formulation

The segmentation of both vessel walls in 3D is then transformed into track-
ing of two sets of RBF centers in longitudinal direction. For the proposed
HMM, we denote all possible sequences of hidden states as Q = {q}, where
q = {q1, . . . , qφ, . . . , qM} is one possible state sequence and qφ is the state on
the normal at φ. These sequences correspond to possible RBF center locations.
The HMM observations O = {O1, . . . , Oφ, . . . , OM} are extracted from the nor-
mal lines. HMM is specified by three probability measures λ = (A,B,π), where
A,B and π are the probabilities for the transition, emission and initial states.
The transition between states q at two normals φ and φ + 1 are governed by
a set of probabilities, i.e. transition probabilities P (qφ|qφ+1), and any state can
only be observed by an output event according to associated probability dis-
tribution, i.e. emission probabilities P (Oφ|qφ). The output event is the image
features extracted from each state at the normal line.

Image observations are modeled by two probability density functions: one
for the vessel wall and the other for the background. Let Oφ = {oφ,1 , . . . ,
oφ,ψ, . . . , oφ,K} be a set of features along the normal φ and oφ,ψ a feature
extracted from point ψ on the line. P (oφ,ψ|F ) and P (oφ,ψ|B) represent the
probabilities of that feature belonging to the border of interest and the back-
ground respectively. The state-emission probability is defined as: P (Oφ|qφ) ∝
P (oφ,ψ|F )

∏
ψ ̸=qφ

P (oφ,ψ|B). The likelihood of the observed variables Oφ from a

state qφ is computed by measuring the likelihood of each feature oφ,ψ at index
ψ on the line φ belonging to the contour and all the rest of features on that
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line belonging to the background. From a set of training data with a manually
labeled borders of interest, we use first order derivatives of Gaussian filters [6]
in six different orientations to highlight the edge features along the border, and
extract features that correspond to the border and the background, in order to
learn the mean and variance of two Gaussian distributions P (F ) and P (B).

For the transition probability, we use the Baum-Welch (Forward-Backward)
algorithm [13] to learn both the transition and initial probabilities. The process
is iterative and each iteration increases the likelihood of the data P (O|λ̂) ≥
P (O|λ) until convergence. Note the emission probability is already computed
as described before and there is no need for it to be re-estimated. The initial
probability is only needed in case of Viterbi algorithm is used.

2.3 Minimum S-Excess Graph Optimization

Minimization of closure graph and s-excess problems have been applied in im-
age segmentation, e.g. [9,15]. In [9], the authors formulated the problem as a
minimization of a closed graph to find the optimal surfaces on d-dimensional
multi-column graphs (d ≥ 3). However, only weighted graph nodes is used in
the segmentation by assuming the surface is changing within a global constant
constraint which is difficult to define and may lead to abrupt changes of the
surface due to its sensitivity to nodal weights. Recently, its graph construction
has been extended to handle volumetric data without image unravelling. For
example, in [12], Petersen et al. proposed to use graph columns defined from
non-intersecting, non-parallel flow lines obtained from an initial segmentation.
In [15], prior information is incorporated by encoding the prior shapes as a set
of convex functions defined between every pair of adjacent columns. Our work
is similar to Song et al. [15] in that aspect. However, we formulate the problem
as tracking borders in consecutive frames, i.e. defining the pair-wise cost based
on the transition probability learned from the training data and treating it as
a stochastic process, whilst the optimal surface method searches the border as
a surface in volumetric image, which is much more computationally expensive.
Moreover, the proposed method can tackle more complex shapes, such as open,
closed, and variable length contours.

The minimum s-excess problem [8] is a relaxation of minimum closure set
problem. A closed set is a subset of graph where all successors of any nodes in the
set are also taken in the set. The successors of nodes may not be contained in the
set but with their cost equal to the edge costs heading to such successors. Given a
directed graphG(V,E), each node v ∈ V is assigned to a certain weight w(v) and
each edge e ∈ E have a positive cost. The task is to obtain a subset of graph nodes
S ⊂ V where the total nodal cost and the cost of separating the set from the
rest of the graph S′ = V −S are minimized: E =

∑
v∈S w(v)+

∑
(u,v)∈E

u∈S,v∈S′
c(u, v).

For each border of interest S, a graph Gs is constructed in M×K. Each node
in the graph corresponds to one hidden state and each normal line is referred
to as a column chain. We have three type of graph arcs: intra-chain, inter-chain
and inter-border arcs as shown in Fig. 1(c). For intra-chain, along each chain
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C(φ,ψ), every node v(φ,ψ) (φ ∈ {1, . . . ,M}, ψ ∈ {1, . . . ,K}, and here ψ > 1)
has a directed arc to the node v(φ,ψ−1) with +∞ weight assigned to the edge to
ensure that the desired border intersects with each chain once and once only. In
the case of inter-chain, for every pair of adjacent chains C(φ1,ψ1) and C(φ2,ψ2),
a set of directed arcs are established to link node v(φ1,ψ1) to nodes v(φ2,ψ′

2)
in C(φ2,ψ2), where 1 ≤ ψ′

2 ≤ ψ1. Similarly, directed arcs are used to link node
v(φ2,ψ2) to node v(φ1,ψ′

1) in the C(φ1,ψ1) where 1 ≤ ψ′
1 ≤ ψ2. Since each

hidden state is represented by a node in the graph, the cost of arcs between a
pair of adjacent chains is defined by the HMM transition matrix A(qφ1,ψ1 , qφ2,ψ2).
The last row of each graph is connected to each other to form the base of the
closed graph. Since the images are unravelled into the polar coordinates, the first
and last chains are also connected in the same manner as the inter-chain arcs to
ensure connectivity. Inter-border arcs are defined to impose the non-overlapping
constraint between two vessel borders, i.e. ∆ ≤ S1 − S2 ≤ ∆̄. Let C1(φ,ψ) and
C2(φ,ψ) denote two corresponding chains from G1 and G2, ψ̂ be the spatial
coordinate equivalent to ψ in the graph domain, and X × Y denote the spatial
domain size. For any node v1(φ, ψ̂) in C1(φ,ψ), a direct arc is established between
v1(φ, ψ̂) and v2(φ, ψ̂ − ∆̄) where ψ̂ ≥ ∆̄ and v2 ∈ C2(φ,ψ). Also, nodes v2(φ, ψ̂)
in C2(φ,ψ) are connected to v1(φ, ψ̂ +∆) where ψ̂ < Y −∆ and v1 ∈ C1(φ,ψ).
The cost of these arcs is assigned as +∞ such that the minimum and maximin
distances are imposed as hard constraints.

Fig. 1(b,c) shows the comparison between the conventional HMM and the
proposed HMM construction. The intra-chain arcs and the arcs in the last row
are necessary in order to compute the closed set graph. The transition between
states is defined as a set of inter-chain arcs from left-to-right and right-to-left
to ensure that the cost of cut is proportional to the distance of border location
between two neighboring chains.

The emission probability for every node is converted to graph cost according to
W (φ,ψ) = −log(P (oφ,ψ|qφ,ψ)) and it is inversely proportional to the likelihood
that the border of interest passes through the node (φ,ψ). The weight for each
node w(φ,ψ) on the directed graph is defined as w(φ,ψ) = W (φ,ψ)−W (φ,ψ−1),
except for the bottom chain, i.e. w(φ, 1) = W (φ, 1). Hochbaum [7] showed that
the minimum s-excess problem is equivalent to solving the minimum s − t cut
[1] defined on a proper graph. Hence, the s-t cut algorithm is used to find the
minimum closed set in polynomial time. The cost of the cut is the total edge
cost in separating the graph into source and sink sets.

Table 1. Inner border quantitative results (mean value and standard deviation).

AMD HD AO Sens. Spec.
Optimal Surface [9] 7.1± 3.5 50.6 ± 22.1 90.1± 5.6 91.2 ± 5.6 99.3 ± 0.6
Using Viterbi Alg. 35.4± 18.5 82.2 ± 17.7 53.1± 20.9 53.2 ± 21.0 99.9± 0.1

Single border s-excess 4.9± 3.2 15.6 ± 10.0 93.0± 4.9 93.6 ± 4.9 99.6 ± 0.6
Double border s-excess 3.1± 1.9 9.8± 4.3 95.5± 3.2 96.9± 3.1 99.2 ± 0.8
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Table 2. Outer border quantitative results (mean value and standard deviation).

AMD HD AO Sens. Spec.
Optimal Surface [9] 7.0 ± 5.9 54.9± 26.1 91.7± 7.3 92.7± 7.5 99.2 ± 0.5
Using Viterbi Alg. 3.2 ± 1.2 13.6± 5.6 96.4± 1.3 97.6± 1.3 98.9 ± 1.3

Single border s-excess 2.4 ± 0.8 8.1± 3.7 97.2± 1.2 97.8± 1.3 99.5± 0.5
Double border s-excess 2.0± 0.8 7.4± 3.1 97.6± 1.0 98.7± 1.1 99.1 ± 0.6

3 Application and Results

The proposed method is applied to segmenting lymphatic vessel images that are
obtained using confocal microscopy. Confocal microscopy is a method that al-
lows for the visualization and imaging of 3D volume objects that are thicker than
the focal plane of a conventional microscope. For the purpose of our evaluation,
a total of 48 segments were obtained from in vitro confocal microscopy images
and 16 of those were randomly selected for training the HMM. Anisotropic ves-
sel diffusion [10] was applied to enhance image features and to improve vessel
connectivity, as well as to reduce the amount of image noise that is typical in
this type of images. Each 3D segment is measured at 512×512×512 voxels. The
evaluation was carried out on every frame where manual labeling was performed.
Five different evaluation metrics were used, i.e. absolute mean difference (AMD),
Hausdorff distance (HD) in pixel, sensitivity (Sens. %), specificity (Spec. %), and
Area Overlap (AO %). The inner region is considered as positive for Sens. and
Spec. measurements. The normal line segments were measured at a length of 101
pixels, and 42 RBF centers in polar coordinates were used, i.e. one RBF centre
every 30 pixels. The minimum and maximum distance between two borders, ∆
and ∆̄, are fixed to 5 and 25 respectively.

Tables 1 and 2 present the quantitative results of segmenting both the in-
ner and outer vessel walls, respectively. Some typical segmentation results are
shown in Fig. 2. The proposed s-excess optimization clearly outperformed the
Viterbi algorithm in tracking both borders. The Viterbi based method was eas-
ily distracted by lymphatic valves attached to the inner wall and produced high
distance error and low sensitivity. It also requires a much larger amount of data
to train the transition and prior probabilities. The proposed method was also
compared against the optimal surface segmentation [9]. The results of the op-
timal surface method were found sensitive to the distance parameters between
columns. The proposed method has full connection of arcs between chains and
produced better and more consistent results. The result of simultaneous segmen-
tation of both borders was found better than segmenting the borders separately.
Particularly for inner border segmentation (shown in Table 1), the inter-border
constraint significantly improved its performance against distraction from lym-
phatic valves. The proposed s-excess optimization also achieved much smoother
border transition, particularly when there was an occlusion or missing feature
(see Fig. 2). Fig. 3 shows 3D visualization of some segmentation results.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Comparison between ground-truth (green) and segmentation results (red: inner,
blue: outer). (a,d) original image (b,e) proposed single border method. (c,f) proposed
double border method.

Fig. 3. Visualization of the results in 3D by the proposed method (inner wall: yellow,
outer wall: red).
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4 Conclusions

We presented an HMM based method for simultaneously segmenting the inner
and outer lymphatic vessel borders in confocal images. The method searches for
the border along a set of normal lines based on the segmentation of the previous
frame. Boundary based features were extracted to infer the emission probability.
We show that the optimal sequence of the hidden states corresponds to RBFs of
the border can be effectively obtained by solving a minimum s-excess problem.
Qualitative and quantitative results on lymphatic images showed the superior
performance of the proposed method.
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