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Abstract—In this paper, we propose a unified approach to de-
formable model based segmentation. The fundamental force field
of the proposed method is based on computing the divergence
of a gradient convolution field (GCF), which makes full use of
directional information of the image gradient vectors and their
interactions across image domain. However, instead of directly
using such a vector field for deformable segmentation as in
conventional approaches, we derive a more salient representation
for contour evolution, and very importantly we demonstrate that
this representation of image force field not only leads to global
minimum through convex relaxation but also can achieve the
same result using conventional gradient descent with an intrinsic
regularization. Thus, the proposed method can handle arbitrary
initializations. The proposed external force field for deformable
segmentation has both edge-based properties in that GCF is
computed from image gradients, and region-based attributes
since its divergence can be treated as a region indication function.
Moreover, nonlinear diffusion can be conveniently applied to
GCF to improve its performance in dealing with noise inter-
ference. We also show the extension of GCF from 2-D to 3-
D. In comparison to state-of-the-art deformable segmentation
techniques, the proposed method shows greater flexibility in
model initialization and optimization realization, as well as better
performance toward noise interference and appearance variation.

Index Terms—Deformable models, gradient convolution diver-
gence, initialization invariance, global minimization, nonlinear
diffusion, level set method.

I. INTRODUCTION

CONVENTIONAL image gradient based active contour
models, such as [1], [2], rely on contour fittings using

local intensity discontinuity and generally have difficulties in
dealing with boundary concavities, weak edges and image
noise. In particular, this local optimization approach is highly
initialization dependent and prone to local minima [3]. There
have been a multitude of works on the improvement of these
gradient based approaches. Often they are based on edge
strength or magnitude of image gradient. However, gradient
direction or orientation contains important information in de-
scribing object boundaries. For example, its spatial coherence
can effectively suggest whether an edge is present. Strong
gradients with large directional variation are more likely
caused by noise than object boundaries. Image gradient vectors
with small magnitude but strong spatial conformity are in fact
a good indication of weak edges, which can be crucial to
preserve in object segmentation using active contours. In [4],
Xu and Prince proposed to use a vector diffusion equation that
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diffuses the gradient of an edge map to increase the contour
capture range and also to reduce noise interference. However,
it has convergence issues caused by saddle or stationary points
in the vector field [5], [6], e.g. the active contour will not
be able to propagate further once it becomes tangent to the
underlying gradient vectors. Kimmel in [7] proposed a region
and edge combined approach, where an alignment measure is
used to optimize the orientation of the contour with respect
to the image gradients. This alignment is carried out locally
and it may require careful tuning to balance various forces. In
[8], Vasilevskiy and Siddiqi proposed an active contour model
specifically designed to segment elongated, thin structures with
consistent contrast, such as blood vessels in angiograms, by
incorporating the direction of an appropriate vector field in
defining the flux maximization geometric flow. This active
contour model, however, is not suitable for general image
segmentation, where flux variation generally exists inside
object regions.

Recently, there have been a number of research works
on physics-inspired deformable modeling. In [9], a charged-
particle model (CPM) based on electrostatics was applied
to localize object boundaries by assigning opposite charges
to edge pixels and free particles so that the particles are
pulled towards edges while repelling each other. Although
this approach does not suffer from those convergence issues,
the fact that particles on weak edges may be attracted to
nearby strong edges often leads to broken contours. In [10],
the authors adapted the CPM model into an active contour
model and showed subsequent improvements. However, the
dominant force is static and its dynamic behavior due to
repulsion force can be difficult to predict. Similar work based
on electrostatics has been reported in [11]. In [6], instead of
assigning fixed charges, the authors allowed the charges flow
through the edges which generates a magnetic field that can
be used as an external force to drive deformable contours that
carry similar flow of charges. The MAC model showed signif-
icant improvements on the convergence issues, e.g. reaching
deep concavities, and in handling weak edges and broken
boundaries [6]. Derived from a different physical phenomenon,
the long range interaction force based on the elastic interaction
between line defects in solids in the model proposed by
Xiang et al. [12] is similar to the magnetic force used in
the MAC model. Yeo et al. [13] presented a generalized
formulation of the MAC model to 3D. However, the presence
of image noise will inevitably disturb the gradient vectors and
cause irregularities in the estimated edge orientation, which
in turn affects the magnetic field computation. The authors
in [6] proposed a scalar field diffusion to refine the magnetic
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field. However, this approach is problematic since there is a
great risk of positive and negative magnetic flux canceling
out each other which prevents the desired diffusion at strong
edges from propagating into noise dominant regions. The
denoising strategy proposed in [12] requires either multiple
trial segmentations or independent contour shrinking.

The solution schemes used in deformable model based
segmentation are typically nonconvex and are thus prune to
local minima. Recently, a number of schemes were proposed
to formulate convex energy functional by regularizing model
parameters and designing appropriate objective function that
involves, for instance, prescribing the elasticity and rigidity of
the deforming contours, e.g. [14]–[18]. In [14], based on the
earlier work of [19], the authors proposed to use the upper
level sets to formulate the functionals with weighted co-area
formula and layer-cake formula [20]. The minimization of the
functionals is carried out in a way such that the minimizer of
the derived functionals can be subsequently interpreted into
the minimizers of the original deformable model (such as
the Chan-Vese model [21]) by using a thresholding scheme.
Thus, a nonconvex deformable problem can be globally solved
using a standard convex minimization scheme, i.e. L1−norm
convex energy minimization. Inspired by this work, several
global minimization schemes have been proposed, notably
[15]–[17] for deformable segmentation. These methods al-
lowed the unification of the conventional edge based geodesic
model and region based Chan-Vese model, and they have
been shown outperforming the method presented in [14]. In
the case of known piecewise constant values, the authors
in [15], [16] proposed different numerical schemes that can
solve the non-convex Chan-Vese problem globally, but their
overall performances can vary substantially due to difference
in numerical schemes, i.e. a dual formulation of the TV-
norm for fast minimization is used in [15] (DFCV) and
[16] (SBCV) applies the split Bregman method [22], [23]
for overcoming the drawbacks, such as penalty issue and
expensive computation, of the previous globally regularized
schemes [14], [15] . On the other hand, in order to deal
with the issue of unknown piecewise constant values, the
authors in [17] presented a completely convex formulation
(GCCV) that the non-convex Chan-Vese problem is solved
in a higher-dimensional space by applying a TV-based vector-
valued minimization scheme [16], [24]. This method however
is computationally expensive.

In this paper, a novel deformable model is proposed based
on a gradient convolution field that makes the full use of image
gradient information. This vector field is unique in that its
divergence can be used directly as an image feature to drive
deformable models to their global solution using conventional
gradient descent optimization with modified level set regular-
ization. Segmentation result can be independent to its initial-
ization. More formally, the energy functional of this model
can be described by a total variation flow and a weighted area
minimization flow. Thus, using convex relaxation, a global
minimizer is proposed to solve the energy functional to achieve
initialization independence. Furthermore, this vector field can
be effectively enhanced using tensor diffusion to deal with
noise interference. The model can be conveniently extended to

higher dimensional space with substantially less computational
overhead, compared to some other convex formulation, e.g.
[17]. We compare our method against MAC and a number
of state-of-the-art global minimizers, i.e. [15]–[17], on both
synthetic and real world data in 2D and 3D.

The main contributions of this work can be summarized as:
• We propose to use the GCF and its divergence as an

image feature, which can be considered as a region
indicator and has explicit relationship to the MAC model.

• A deformable model is derived using the divergence of
GCF as its external force. The 2D evolving curves can be
naturally generalized to higher dimensional spaces, e.g.
active surfaces in 3D.

• A tensor diffusion scheme is proposed to diffuse the GCF
in order to improve the performance of the deformable
model, where the edges are better preserved and image
noise can be more efficiently removed even though they
may appear far from strong edges.

• Even with conventional gradient descent minimization,
the proposed method can achieve initialization invariance
in practice by using intrinsic level set regularization.

• The global minimizer of the proposed deformable model
is achieved by applying convex relaxation to formulate
the energy functional, where the level set implementation
can be readily extended from 2-D to 3-D with small
computational overhead.

• An intrinsic level set regularization scheme is alterna-
tively used for performing its numerical implementation
in 2-D, which is originally motivated from smoothing
the transition between different level sets [21], [25].
Moreover, we show it is in fact functionally analogous
to the global minimizer of the proposed model.

II. PROPOSED METHOD

Briefly, in Section II-A we derive the gradient convolution
field (GCF) by convolving the image gradient field with an
inverse distance kernel function and propose a deformable
model based on the divergence of GCF. A nonlinear diffusion
method is presented in Section II-B in order to refine GCF. To
demonstrate the uniqueness of the GCF, both gradient descent
and convex relaxation techniques are developed to minimize
the energy functional. As shown in Sections II-C and II-D,
both approaches lead to global solutions. Finally, in Section
II-E, we extend the model to high dimensional spaces and
provide the level-set solution scheme for the 3D case.

A. GCF and its deformable model

In [26], Li and Acton used a vector field convolution of
the image edge map as an external force to attract the active
contour towards image boundaries. The vector field kernel
k(x) consists of radial symmetric vectors pointing towards the
center of the kernel, and is given as k(x) = m(r) r̂, where
m(r) is the magnitude, r = |x| is the distance from the kernel
origin, and r̂ = −x/r is the unit vector pointing to the origin.
The force derived from this vector field convolution at x can
then be written as:

Fv(x) = f(x) ∗k(x). (1)
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The magnitude m(x) of the vector field kernel should be a
decreasing positive function of distance from the origin, and
can be defined as m(r) = (r + ε)−ζ , where ε is a small
constant to avoid division by zero and ζ controls the speed of
spatial degradation. When choosing ε = 0 and ζ = 2, the force
between edge pixels and active contour conforms to Newton’s
law of universal gravitation in physics [26], and (1) can be in
effect computed as:

Fv(x) =
∑
s6=x

f(s)
R̂xs

R2
xs

. (2)

This external force is in fact equivalent to the fundamental
force interaction used in [9] where the electrostatic theory is
applied.

As demonstrated in [9], [10], [26], these inverse distance
kernel based techniques performed much better than con-
ventional edge based deformable models in, for instance,
reaching concavities. However, none of these methods takes
into account the edge orientation or gradient direction in
deriving the external force fields. Moreover, the deformable
models are directly based on these force fields and since they
are static the models inevitably suffer from convergence and
initialization issues that have been well documented in the
literature [5], [6]. We propose a similar kernel convolution
process but it takes place on the image gradient vector field,
instead of the edge map which only contains its magnitude
information. We also show that instead of using the vector
field directly its divergence is far more robust and versatile in
deformable segmentation.

Let I denote an image, ∇iI = f Îx and ∇jI = f Îy denote
the two components of the image gradient ∇I in the image
coordinates (i, j), respectively, i.e. ∇I = (∇iI,∇jI)T . We
carry out the convolution computation on both components.
Note, since we are not going to treat the convolution results
directly as force field to evolve the active contour as in [9],
[26], a scalar kernel function is used. It simply takes the form
of k(x) = m(x). Moreover, we choose the magnitude function
m as an inverse of distance, i.e. m(r) = 1/rζ with ζ = 1,
instead of inverse of squared distance. However, we show
later that since we further compute the spatial derivatives of
the convolution results, the spatial decay is actually raised to
power of two, i.e. ζ = 2. Thus, the result of this convolution
process can be expressed as: Ei(x) = ∇iI ∗ k(x) =

∑
s 6=x

∇iI(s)
Rxs

=
∑

s6=x f(s)
Îx(s)
Rxs

,

Ej(x) = ∇jI ∗ k(x) =
∑

s 6=x
∇jI(s)

Rxs
=

∑
s 6=x f(s)

Îy(s)

Rxs
,

(3)

where E = (Ei, Ej) is referred to as the GCF. Due to
the smoothing effect when applying the kernel function, the
original image gradient vectors have extended their influence
from immediate vicinity of edge pixels to much larger neigh-
borhood. In fact, the computation in (3) is across the whole
image domain. It takes similar form to [26], but with more
extensive spatial smoothing. We may directly use this vector
field GCF as an external force to evolve the active contours.
However, this will lead us to those similar convergence
problems that GVF/GGVF [4], vector kernel convolution [26]
and many other vector field based methods have suffered

from as mentioned earlier. Instead, we show its fundamental
relationship to the MAC model [6] and formulate a new
deformable model with this vector field. We also demonstrate
later how we can further refine this gradient convolution field
in order to achieve more robust segmentation.

In the MAC model [6], the direction of the currents, flows of
charges, running through object boundary is estimated based
on edge orientation, which is obtained by a 90◦ rotation in
the image plane of the normalized image gradient vectors
(Îx, Îy). The image plane is considered as a 2D plane in
a 3D space whose origin coincides with the origin of the
image coordinates and the third dimension of this 3D space is
considered perpendicular to the image plane. Thus, the object
boundary current direction, O(x), is estimated as:

O(x) = (−1)λ(−Îy(x), Îx(x), 0), (4)

where x denotes a point in the image domain, λ = 1 gives an
anti-clockwise rotation in the image coordinates, and λ = 2
provides a clockwise rotation. Since the active contour is
embedded in a signed distance function while using the level
set representation, the direction of current for the contour,
denoted as Υ, is similarly obtained by rotating the gradient
vector ∇Φ of the level set function Φ. Let f(x) be the
magnitude of image gradient or edge strength; usually, the
magnitude of boundary current is considered proportional to
edge strength. The magnetic field B(x) generated by gradient
vectors at each pixel position is computed as:

B(x) =
µ0

4π

∑
s6=x

f(s)O(s)× R̂xs

R2
xs

, (5)

where µ0 is the permeability constant, s denotes an edge pixel
position, R̂xs denotes a 3D unit vector from x to s in the
image plane, and Rxs is the distance between them. The active
contour is assigned with unit magnitude of electric current.
The force imposed on it is derived as:

Fm(x) ∝ Υ(x)×B(x). (6)

The magnetostatic active contour (MAC) model is then for-
mulated as [6]:

Ct = αg(x)κN̂ + (1− α)(Fm(x) · N̂)N̂, (7)

where g = 1/(1+f), κ denotes the curvature, and N̂ is inward
unit normal. Note, Fm lies in the image domain and its third
element equals zero, which is thus ignored.

As shown in Appendix A, the magnetic field B in (5) can
be derived from the proposed GCF:

B(x) =
µ0

4π
(0, 0, B), B = ∇ ·E(x) = ∇ · (Ei, Ej) (8)

where B is the divergence of GCF, and actually is the third
component of the magnetic field B which is the external
force in the MAC model (7). In addition, the B value can
be geometrically interpreted as the change rate of the GCF
along the normal direction.

Thus, the divergence of GCF, i.e. B, can be seen as the
evolution velocity (external force) for attracting the contour to
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the boundary. The contour evolution under B can be described
as:

Ct = −B(x)N̂. (9)

where N̂ is the unit inward normal. For contour smoothing,
the curvature flow is added to (9). Thus, the deformable model,
based on the proposed divergence of GCF, can be formulated
as follows,

Ct = αg(x)κN̂− (1− α)B(x)N̂. (10)

B. GCF tensor diffusion

Due to the inherent relationship between the evolution
velocity B and GCF, i.e. B = ∇ · E, we can enhance B by
refining GCF, E = (Ei, Ej). By considering the directional
role in diffusion process, we present a nonlinear diffusion
method to refine the vector field GCF in order to enhance
object boundaries and reduce noise interference. We first
examine the role of magnetic field B in the MAC framework
and the limitation of magnetic field post-processing in [6],
which then leads to the proposed diffusion scheme.

Let us incorporate (6) into (7) and re-write (7) as:

Ct = αg(x)κN̂ + (1− α) (B(x) ·M) N̂, (11)

where M = (N̂, 0)×Υ is a binormal unit vector (this forms
the image plane), which is computed as the cross product of
level set normal and its tangent vector, and it is perpendicular
to the image plane. The external force in the second term
is thus a projection of the magnetic field B onto the image
plane, i.e. B in (8). A positive projection will force the contour
to expand and a negative projection will shrink the contour,
which act in a similar way as what a region indication function
does in a region based approach, however, this is derived from
the edge based assumption.

This fundamentally explains why the MAC model does
not suffer from those convergence issues related to other
vector field based methods, such as GVF [4]. It is also
evidently clear that B plays the dominant role in the MAC
segmentation. From (3) and (8), we can see that the success
in finding meaningful B largely depends on the conformity of
image gradients, not only in their magnitude but also in their
orientation. The presence of image noise will inevitably disrupt
the gradient orientation, as well as magnitude, which creates
fluctuations in the magnetic field B. It is also worth noting that
regions away from strong edge pixels suffer more from image
noise due to spatial decay of image gradient interactions.

Since B = µ0

4π (0, 0, B) as shown in (8), the authors in [6]
argued diffusing the scalar field B in the image domain was
sufficient:
∂

∂t
B(x) = p(B(x))∇·∇B(x)−q(B(x))(B(x)−B(x)), (12)

where the initial state B(0,x) is set to B(x), and functions
p and q are given as: p(B(x)) = e−

|B(x)|f(x)
K , q(B(x)) =

1 − p(B(x)), where K is the diffusion parameter. Weighting
the flux density magnitude with f in the diffusion term, p,
attempts to ensure there is as little diffusion as possible at
object boundaries, while homogeneous areas will generally

(a) (b) (c) (d) (e) (f) (g)

Fig. 1: (a) a test image contains a horizontal edge; (b) its
divergence of GCF visualization; brightness corresponds to
magnitude. Blue color indicates positive (source), and red
indicates negative (sink). (c) a vertical profile of the divergence
values. (d) a noisy image; (e) initial divergence; (f) diffusion
result using [6]; (g) diffusion result (B̃) using the proposed
method.

have small flux density due to a lack of support from edges,
resulting in substantial diffusion.

However, this diffusion has an unintended effect of cancel-
ing out positive and negative values on strong edges, which are
supposed to be preserved. Let us consider a simple horizontal
edge as shown in Fig. 1(a). From Figs. 1(b)&(c), we can see
that the center of the edge has divergence value (or magnetic
field) close to zero. Image gradient vectors on the opposite
side of an edge produce opposing magnetic field. This means
that the preserving term q is ineffective as the cancellation of
positive and negative magnetic flux inevitably occurs around
the edge. It creates a dilemma when strong diffusion is needed
to overcome noise interference further away from edges.
A larger diffusion will introduce more diffusion at strong
edges, causing them diminishing at a faster speed due to the
cancellation which restrains their ability to influence regions
further away from edges. A smaller diffusion, however, may
not meet the desired diffusion effect. Figs. 1(d) and 1(f) give
an example when noise interference is strong. The diffusion
in [6] is no longer effective.

For our proposed method, as described in (3), the direction
of the vectors E is along image gradient direction and the
divergence of E correlates to the edge strength. In addition, (8)
presents a clear quantitative relationship between the external
force B in the deformable model (10) and the GCF E. Thus,
instead of post-processing B, we propose a nonlinear diffusion
of E before computing its divergence for obtaining the external
force B. Nonlinear diffusion, e. g. [27], has been found useful
in a range of applications, such as image denoising [28] and
vector flow visualization [29]. Consider a class of nonlinear
parabolic differential equations of the following kind:

∂

∂t
u−∇ · (D(∇u)∇u) = F(u0), (13)

where u(t,x) is the diffused version, t can be considered as

the scale parameter, D =

(
a b
b c

)
is the diffusion tensor (a

positive definite symmetric matrix), F can be considered as a
penalty function which forces the diffusion result to conform
to certain criteria, and u0(x) = u(0,x) denotes the initial
state. In our case, E = (Ei, Ej) is a vector filed. Thus, the
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Fig. 2: First row from left: an noisy image, result obtained
using the method in [6], result based on the proposed method.
Second row from left: the initial B field, diffused B using
Laplacian diffusion in [6], and finally the diffused result (B̃)
using the proposed method.

nonlinear diffusion takes the following coupled form:{
∂
∂tEi −∇ · (D(∇Ei,∇Ej)∇Ei) = F(Ei),
∂
∂tEj −∇ · (D(∇Ei,∇Ej)∇Ej) = F(Ej),

(14)

where Ei(0,x) = Ei(x), Ej(0,x) = Ej(x). The diffusion
tensor can be decomposed into two orthogonal components,
one of which is parallel to the local vector field and the other is
perpendicular to the local vector. The orientation of a vector in
the E field can be denoted as (− sin θ, cos θ) and its orthogonal
unit vector can be obtained as (cos θ, sin θ). The mapping
R from image coordinates to this orthogonal coordinates is

computed as R =

(
cos θ sin θ
− sin θ cos θ

)
. Thus, (14) can be

re-written as:
∂

∂t
E −∇ ·

(
RT

(
ω 0
0 γ

)
R∇E

)
= F(E), (15)

where ω is the diffusion function in the direction of the vector
field E and γ denotes the diffusion function orthogonal to
the field. Note that the divergence and gradient operations are
applied to each spatial component of E separately.

A linear diffusion can be applied in the direction per-
pendicular to E that is along the edge direction. However,
considering the fact that we aim to have larger diffusion
where field vectors have smaller magnitude and preserve large
vectors that are spatially consistent, we select the weighting
function ω(E(x)) = e−

|E(x)|3

K′ , where K ′ is the parameter
controlling the amount of diffusion and |E| ∈ [0, 1]. However,
the magnitude of field vectors is raised to the third order,
since the vector field spatially varies over several orders of
magnitude. Additionally, image noise introduces relatively
larger (often isolated) E vectors. This nonlinear transformation
thus introduces more effective diffusion.

The diffusion along local vector field (gradient direction)
plays a critical role in propagating the field vectors from
strong edges to regions further away from them, which may be
dominated by image noise. Similar diffusion function can be
adopted, e.g. let γ = ω. Alternatively, if we wish to increase
the diffusion in this gradient direction, we can first compute
the magnitude of the directional gradient, |∇(|E|) · v̂⊥|, as a

Fig. 3: Effectiveness of the proposed tensor diffusion. (a)
an ideal image, (b) GCF of the clear image, (c) the noise
corrupted version (d) GCF of the noisy image, (e) diffused
GCF using the proposed method. The vector fields are zoomed
in at the location highlighted in (a) for clear visualization.

measure of degradation along this gradient direction, v̂⊥, and
then similarly define the diffusion function γ as:

γ = e|∇(|E|)·v̂⊥|. (16)

The conformity function F on the right hand side of (15)
can be defined as F(E(x)) = E(x) − E(x) so that the
solution to (15) has a nontrivial steady state and it eliminates
the problem of choosing a stopping time [30]. Moreover,
we can add a weight to this term so that for regions that
require substantial diffusion, i.e. where ω is large, there is
less constraint on conformity. Thus, F can be defined as:

F(E(x)) = (1− ω(E(x)))(E(x)− E(x)). (17)

The divergence of this nonlinear diffused vector field E
provides a better attraction force, particularly in the presence
of image noise and/or textures. Fig. 1 shows a comparison
of the proposed diffusion against that used in [6] on a noise
corrupted image. In Fig. 2, the original B field, the diffused
B using Laplacian and the tensor diffusion are visualized in
the second row respectively. The first row shows the noisy
image, the result using the method in [6] and the result using
the proposed method. Also, note that the divergence of GVF
is a signed scalar field (as shown in Fig. 1, red denotes
sink/negative and blue denotes source/positive). A vertical
profile of the divergence values clearly show that it exhibits
characteristics of a region indication function. This makes
it different to conventional edge based methods, although
it is derived from simple image gradients. Thus, with GCF
it is possible to achieve global solutions and initialization
independence.

The following summarizes the uniqueness of proposed
image feature. Firstly, the GCF computation takes into account
both gradient direction and edge strength in a global fashion,
unlike the previous methods that often only make use of edge
strength such as VFC [31] or are merely based on local fittings
of gradient information such as GVF [32]. Secondly, we em-
ploy tensor diffusion to refine the GCF to cope with excessive
image noise. We apply linear diffusion in the direction of the
vector field for enhancing the edge continuity and a Perona-
Malik type diffusion orthogonal to the field for reducing the
noise interference. Fig. 3 shows an example of the vector field
diffusion and its effect on noisy data. Finally, unlike previous
works such as GVF [32] and VCF [31], GCF is not directly
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used in energy minimization. Thus, the proposed method does
not suffer from those various convergence issues that are well
documented in the literature. The divergence of GCF provides
a more reliable geometric feature to drive the contours towards
object boundaries. In the following sections, we show two
different approaches to energy minimization in order to show
the unique properties of the proposed GCF.

C. Level set implementation with a regularized scheme

To demonstrate the uniqueness of the GCF, we provide a
gradient descent optimization scheme with level set regulariza-
tion that leads to global minima so that the proposed method
can handle arbitrary initializations. It is worth noting that the
conventional edge based techniques, such as [4], [5], [10],
[26], can not achieve such results even using the proposed
gradient descent method.

The first term in (10) is effectively a weighted length
minimization flow and the second term can be viewed as a
weighted area minimization flow. Thus, the contour evolution
can be realized by minimizing the following energy functional:

E = α

∫
Ω
g(x)|∇H(Φ)|dx + (1− α)

∫
Ω
B̃(x)H(Φ)dx, (18)

where Ω is an open set representing the image domain and
B̃ is the refined divergence of GCF (B̃ = ∇ · E and E is
found by solving (15)), and H(.) is the Heaviside function.
Minimization of this energy functional is possible via gradient
descent using variational calculus:

∂

∂t
Φ = αg∇ ·

(
∇Φ

|∇Φ|

)
δ(Φ)− (1− α)B̃δ(Φ), (19)

where δ(.) is the Dirac delta function. As in [21], we choose
δε(z) = ε/(π(ε2 + z2)), with ε = 1 so that its discretization
has a support larger than zero which permits the perturbation
away from zero level set.

However, without conventional level set periodic re-
initialization level sets close to zero level update much faster
than others due to the use of the delta function. This results in
steep gradient around zero level set, which causes irregulari-
ties, and can slow down the contour evolution as more levels
are pushed away from zero level set. Here, we impose intrinsic
regularization by explicitly smoothing the level set surface
using anisotropic diffusion. Consider the following Perona-
Malik [28] type diffusion equation:

∂

∂t
Φ = ∇ · (c(Φ, t)∇Φ), (20)

where c(.) denotes a diffusion function. Conventionally, level
set function is initialized as a signed distance field, which has
the characteristic of unit gradient magnitude [33], i.e. |∇Φ| =
1. Since we are only interested in reducing steep slopes and
flat level set surfaces away from zero level are encouraged
in order to develop new contours, we hence follow [34] and
define the diffusion function as c = H(|∇Φ| − 1). Thus, the
level set diffusion can be formulated as:

∂

∂t
Φ = ∇ · (H(|∇Φ| − 1)∇Φ) . (21)

The diffusion is largely inactive when |∇Φ| <= 1 and actively
takes place when |∇Φ| > 1. The regularized Heaviside
function Hε = 1

2 (1 + 2
π tan−1( zε )), can be used to ensure

a smooth transition between different level sets. It is different
from [33] where level set is forced to conform to unit gradient
magnitude across the domain, which will prevent it from
developing new components. This diffusion predominantly
takes place around zero level set, where steep surface most
likely appears. It effectively minimizes steep surfaces and also
smooths the contour. Thus, we can replace the curvature term
and re-write the level set formulation as:

∂

∂t
Φ = α∇ · (Hε(|∇Φ| − 1)∇Φ)− (1− α)B̃δε(Φ), (22)

This intrinsic regularization allows the level set function to
evolve without reinitialization and to efficiently develop more
sophisticated topological changes, i.e. initialization indepen-
dent.

In the following subsection, it can be revealed that this
regularized version of the derived deformable model is actually
an analogue of a global minimizer with a smoothing scheme
of preserving a signed distance function.

D. Global minimizer with convex relaxation

The energy functional (18) of the deformable model is
homogeneous of degree one in the level set function (weighted
length/area minimization flow) and the relevant minimization
problem is non-convex, which cannot guarantee its gradient
descent to a stationary state in a conventional scheme. Recent
advances in optimization theory [19] allow us to apply convex
functionals [14] in order to achieve global minima. In the
following, we infer how the global minimizer of the derived
deformable model can be achieved by following an inference
fashion similar to [14].

Without loss of generality, we use a length minimization
flow (total variation flow) instead of the previous weighted
one in (18). The contour evolution can therefore be described
by minimizing the following energy functional:

E1 =α

∫
Ω

|∇H(Φ)|dx + (1− α)

∫
Ω

B̃(x)H(Φ)dx, (23)

where H(.) is the Heaviside function. Minimization of this
energy functional is carried out using gradient descent:

∂

∂t
Φ = α∇ ·

(
∇Φ

|∇Φ|

)
− (1− α)B̃δ(Φ), (24)

where δ(.) = H′ is the Dirac delta function. In fact, this
gradient descent equation has the same stationary solutions
as the following one:

∂

∂t
Φ = α∇ ·

(
∇Φ

|∇Φ|

)
− (1− α)B̃, (25)

where the delta function is simply omitted. Conversely, this
equation can be derived from the following energy functional:

E2 = α

∫
Ω

|∇(Φ(x))|dx + (1− α)

∫
Ω

B̃(x)Φ(x)dx. (26)
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Consequently, the minimizer of the energy functional (23)
can be obtained by minimizing the functional (26). Unfortu-
nately, this energy functional will merely correspond to local
minima due to the following reason: for a long curve evolution,
the level set function could go to +∞ when it is positive, and
to −∞ when it is negative. To address this issue, we restrict
Φ in a closed set [0, 1] for functional minimization. Thus, this
can convert the energy functional (26) to a convex functional
according to the following theorem.

Theorem 1:1 The global minimizer for the energy func-
tional (23) can be obtained by solving the following convex
minimization in the image domain Ω:

min0≤Φ≤1{E3 := α

∫
Ω

|∇Φ(x)|dx + (1− α)

∫
Ω

B̃(x)Φ(x)dx}
(27)

where B̃(x) is the diffused refined divergence of GCF (B̃ =
∇·E) and then setting Σ = {x : Φ(x) ≥ µ} for a.e. µ ∈ [0, 1].

Following Theorem 1, the global minimizer of the de-
formable model (10) can be found by solving (27). In [35],
the projected gradient flow is proposed to carry out this
minimization scheme. We apply this solution scheme in the
minimization functional (27). Thus, the global minimizer is
obtained as the solution of the projected gradient flow:

∂Φ

∂t
=


max{α∇ · ( ∇Φ

|∇Φ| )− (1− α)B̃, 0} if Φ = 0,

min{α∇ · ( ∇Φ
|∇Φ| )− (1− α)B̃, 0} if Φ = 1,

α∇ · ( ∇Φ
|∇Φ| )− (1− α)B̃ otherwise,

(28)

where Φ is normalized to keep 0 ≤ Φ ≤ 1 during the curve
evolution.

For numerical reasons, an isotropic Gaussian filtering of
the level set function is used to constrain it close to an signed
distance function (SDF) in the evolution, i.e. Φσ = Φ ∗ Gσ ,
which is similar to the method proposed in [36]. This regular-
ization based on two considerations. One is that the curvature
term is degraded as a Laplacian function when the SDF
condition (|∇Φ| = 1) is satisfied. Thus, it is feasible that a
Gaussian filtering is used instead of the Laplacian operation
in (28) due to their equivalence [28]. The other is that the
Gaussian filtering can help smooth the level set function while
keeping it close to an SDF during the evolution. Consequently,
the curvature term in (28) can be actually omitted because
of the utilization of the Gaussian filtering in the algorithm
implementation. Thus, (28) can be simplified as:

∂Φ

∂t
=

 max{−(1− α)B̃, 0} if Φ = 0,

min{−(1− α)B̃, 0} if Φ = 1,

−(1− α)B̃ otherwise.

(29)

It is worth noting that the regularized solution scheme
(22) in Section II(C) is in fact functionally analogous to this
global minimizer, where the LSF regularization is achieved
by employing a Heaviside function to keep the SDF of the
level set function in the context of local minimization that
helps enhancing the capture range. The regularization in (22)
improves the local minimization scheme presented in (19).
With the regularized Heaviside function, the right side of (22)
is approximately equivalent to (29) when |∇Φ| <= 1. When

1The proof of Theorem 1 is similar to that of Theorem 2 in [14].

|∇Φ| > 1, the regularization in (22) becomes a Laplacian
diffusion, which is similar to the isotropic Gaussian filtering
of the curve front used in (29).

E. Active surfaces using GCF

In the higher dimensional cases, the GCF can be obtained
by extending the definition in (3) with an appropriate kernel.
For n dimensions, the kernel k(x) : Rn → R is defined as:
k(x) = 1/rζ with ζ = n− 1, r = |x| is the distance from the
origin. Given the image gradient ∇I : Rn → Rn generated
from the n-D image I , the GCF is calculated as follows:

E = (Ei1 , ..., Ein) = (∇i1I ∗ k(x), ...,∇inI ∗ k(x)). (30)

where (i1, ..., in) are the image volume coordinates.
For 3-D case, accordingly, E = (Ei, Ej , Ek) is obtained

with the following equations:
Ei(x) = ∇iI ∗ k(x) =

∑
s 6=x

∇iI(s)

R2
xs

=
∑

s 6=x f(s)
Îx(s)

R2
xs
,

Ej(x) = ∇jI ∗ k(x) =
∑

s6=x
∇jI(s)

R2
xs

=
∑

s 6=x f(s)
Îy(s)

R2
xs
,

Ek(x) = ∇kI ∗ k(x) =
∑

s 6=x
∇kI(s)

R2
xs

=
∑

s 6=x f(s)
Îz(s)

R2
xs
.

(31)

Then, by generalizing (8) to the 3D case, the change rate of the
GCF along the surface normal direction, i.e. B its divergence
of GCF, in 3D is given as:

B = ∇ ·E(x) = ∇ · (Ei, Ej , Ek). (32)

Thus, by combining (32) with (29), a level set solution of
surface evolution is naturally formulated for the 3D extension
of the deformable model (10). The GCF refinement in higher
dimensional spaces can be similarly applied to that in 2D.

III. EXPERIMENTAL RESULTS

The proposed method was tested on a variety of synthetic
and real data in both 2D and 3D. Both qualitative and
quantitative comparison were carried out against a number of
state-of-the-art techniques, namely MAC, GCCV and SBCV.

Fig. 4: Results using the proposed method for weak bound-
aries. Row 1 shows various initializations and Row 2 presents
the converged results.
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TABLE I: Quantitative results of GCCV, SBCV and the proposed method in 2D (unit: %.)

Ring GacGray Fourcircles Diversity
SD Bg Fg Overall Bg Fg Overall Bg Fg Overall Bg Fg Overall

0.1
GCCV 94.6 99.5 95.6 94.7 86.8 92.4 38.3 95.7 47.2 93.9 99.1 94.7
SBCV 99.5 98.5 99.2 99.8 92.9 97.8 99.6 71.9 95.3 99.1 93.1 98.2

Proposed 99.6 98.7 99.4 99.9 95.6 98.8 95.9 93.7 95.6 99.6 95.9 99.0

0.2
GCCV 85.1 96.3 87.4 85.7 78.8 83.7 44.5 86.5 51.0 79.7 96.0 82.2
SBCV 99.1 97.0 98.4 99.6 93.3 97.8 99.1 71.7 94.9 99.3 91.1 98.0

Proposed 99.4 97.4 99.1 99.9 91.9 97.6 96.3 85.1 94.5 99.6 94.5 98.8

0.3
GCCV 78.9 92.6 81.6 79.7 72.6 77.6 35.7 85.6 43.4 71.1 92.7 74.5
SBCV 98.5 96.3 97.9 98.9 89.3 96.1 99.8 42.5 90.9 99.3 79.0 96.1

Proposed 98.5 97.0 98.2 99.7 92.7 97.6 99.3 78.7 94.5 99.8 86.7 97.7

0.4
GCCV 75.4 89.0 78.1 75.4 69.7 73.7 37.7 82.3 44.6 66.8 89.9 70.4
SBCV 96.9 97.2 97.0 99.3 87.2 95.8 99.9 21.7 87.8 99.0 77.7 95.3

Proposed 97.8 97.6 97.7 99.5 92.6 97.5 96.0 80.1 93.8 99.5 82.6 96.8

0.5
GCCV 70.6 83.2 73.5 73.0 66.7 71.1 39.3 78.1 45.3 64.2 86.6 67.7
SBCV 95.1 96.2 95.2 99.1 83.0 94.4 99.9 11.7 86.2 99.2 79.5 96.1

Proposed 97.2 97.1 97.1 99.4 91.8 97.2 99.4 75.6 93.6 99.1 87.2 97.2

Overall
GCCV 80.9 92.1 83.2 81.7 74.9 79.7 39.1 85.6 46.3 75.1 92.9 77.9
SBCV 97.8 97.0 97.5 99.3 89.1 96.4 99.7 43.9 91.0 99.2 84.1 96.7

Proposed 98.5 97.6 98.7 99.7 92.9 97.7 97.4 82.7 94.4 99.5 89.4 97.9

Fig. 5: Example results of the proposed method with random
initializations.

SBCV MAC GCCV

Fig. 6: Results of SBCV, MAC and GCCV for the images
used in Figs. 4 and 5.

(a) (b) (c) (d)

Fig. 7: Results without initialization. (a) original image, (b)
SBCV, (c) GCCV and (d) the proposed method.

A. Parameter Setting

For the computation of GCF in (3) and (31), the kernel
radius is set to N/2 (N is the smallest coordinate of the image
size); the parameter K ′ in (15) is set to 0.5; the balancing
parameter α in (22) and (29) is uniformly set to 0.1. The
kernel radius does not require tuning, and its only requirement
is that the kernel size needs to match or to be bigger than
the image domain. The diffusion parameter takes its value
generally between 0 and 1. The larger the value, the more
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(a) Image (b) SBCV (c) GCCV (d) Proposed

Fig. 8: Results on noisy images. (a) original image, (b) SBCV,
(c) GCCV, (d) the proposed method.

Fig. 9: Some example images used for quantitative analysis as
shown in Table I. Row 1: sd = 0.3 and Row 2: sd=0.5.

the diffusion. In our experiments we fixed it in the mid range,
i.e. 0.5. The curvature weighting coefficient is always kept
small since it only locally smooths the contour or surface,
and typically it is not considered as a tuning parameter. For
obtaining the best performance for GCCV and SBCV, a series
of fidelity values are used for identifying the best result as
advised in [16] for SBCV and the most appropriate parameters
are set as suggested in [17], [15] for GCCV. Note that, in
some cases, the relevant parameters for these methods are
carefully adjusted for better adaptive to actual modalities such
as β = 1/2552 used in the images with poor contrast rather
than the suggested β = 50/2552 for SBCV.

B. Arbitrary Initialization

With its ability of create new components away from zero
level set, the gradient descent scheme (22) of the proposed
deformable model performed very similarly to the global
minimizer in (29). The deformable model can be implemented

Fig. 10: Results using the proposed method on the fuel
injection data (64×64×64). Row 1 shows the original dataset
and the result. The datasets in Rows 2 and 3 are corrupted
the Gaussian noise (SD=0.01, 0.05). Column 1 shows the 3-D
view of example slices; the initial surface is shown in Column
2; the converged result is in the final column.

Fig. 11: Results using the proposed method in the Daisy Pollen
Grain data (192 × 180 × 168). Row 1 is with the original
dataset; Rows 2 and 3 are with the noisy datasets (SD=0.05,
0.1). Column 1 shows the 3-D view of example slices; Column
2 presents the initial surface; the final column is the converged
result.



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

SB
C

V
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C
V

Fig. 12: Results obtained using SBCV for the Daisy and
Fuel volumes. Column 1: noise free; Column 2: the data
with the Gaussian noise of SD=0.01 (Fuel Injection) and
SD=0.05 (Daisy); Column 3: the data with the Gaussian noise
of SD=0.05 (Fuel Injection) and SD=0.1 (Daisy).

Fig. 13: Results using SBCV (Column 2), and the proposed
method (Column 3) for Slice 28 in Fuel Injection and Slice
44 in Daisy.

and applied with arbitrary initializations. We apply a variety
of initializations including initialization-free to both of these
two implementations, see the examples in Figs. 4, 5, 7 and 8.
The results show both implementations perform robustly with
arbitrary initializations and consistently converge to the object
boundaries.

C. Weak Boundary

The proposed method can effectively deal with incomplete
edge information in the images, where the performance of
the traditional global minimizers [15], [16] are affected. Fig.
4 presents the results by applying the proposed method to
a weak edge/poor contrast case with various initializations
including circle, rectangle, random and initialization-free. It is
shown that our method can extract the features properly and
handle weak boundary robustly with arbitrary initializations. In
contrast, the results in the first row of Fig. 6 illustrate that the
performance of SBCV, MAC and GCCV are seriously affected
by incomplete boundary information and poor contrast even
though the running parameters are carefully tuned. It is worth
noting that GCCV is much more time-consuming. We discuss
the computational issue in Section III-H.

Fig. 14: Results using SBCV (Column 2), and the proposed
method (Final column) in the biomedical datasets of the Knee
(379 × 229 × 305), Foot (256 × 256 × 256), Lobster (301 ×
324 × 56) and Tooth (92 × 78 × 161). Column 1 shows the
3-D view of example slices.

D. Complex Geometry and Deep Concavity

In the situation of complex geometries and deep concavities,
thanks to global interaction for the GCF computation, our de-
formable model shows much better performance in comparison
with the traditional methods. In Fig. 5, three real images are
used to demonstrate this. The delicate structural details of the
objects were well captured, such as the shapes of tail and neck
in “tiger”, the shapes of small items in “miscellany” and the
shapes of nose and legs in “elephants”. In comparison, Fig.
6 shows that the performances of SBCV, MAC and GCCV
were all seriously affected by complex geometries and deep
concavities, in that either the object geometries could not be
efficiently preserved or the concavities were not effectively
detected.

E. Poor Contrast

In the case of poor contrast, such as vessel imaging and
magnetic resonance imaging as shown in Fig. 7, the traditional
methods usually suffer from the blurred features and result
in spurious edges. Our proposed method benefits from the
global gradient interaction and the adaptive tensor diffusion.
Its superior performance of boundary capture in poor contrast
is demonstrated in Fig. 7. The results in Fig. 7(b)(c) show that
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Fig. 15: Results using SBCV (Column 3) and the pro-
posed method (Final column) in the synthetic noisy datasets
(128 × 128 × 64, sd = 0.03) of Star, Molecule, Naval-string
and DNA. Column 1 shows the 3-D view of example slices
((25,64,64),(64,64,25),(64,64,25),(32,32,64)); Column 2 is the
ground truth.

the performance of both SBCV and GCCV were significantly
compromised by the low image contrast.

F. Noise Sensitivity

Noise interference is a critical factor to affect the capture
range of object boundaries using the edge-based approach. In
the proposed method, the GCF nonlinear diffusion scheme en-
hances the ability of dealing with noise interference. To study
the performance towards noise interference, five synthetic
images with various noise conditions are used, as shown in Fig.
8. It can be seen that our method can successfully extract the
object boundaries even though the excessive amount of noise
and artifacts lead to very low contrast or insufficient boundary
information. The performances of SBCV and GCCV were in
varying degrees affected by the noise, particularly when noise
level is high.

For quantitatively comparing with GCCV and SBCV, four
series of synthetic noisy datasets (Gaussian noise: zero mean,
standard deviation (SD) ranging from 0.1 to 0.5) were gen-
erated. Example noisy images from the dataset (SD=0.3,
SD=0.5) are shown in Fig. 9. The results are presented
in Table I. On noisy images SBCV performed better than
GCCV. SBCV relies on known region constants as a prior,
whilst GCCV uses K-means clustering to estimate the region
constants. These unknown constants, in GCCV, are represented
in a vector-valued function and subsequently in the derived
energy function. The iterative optimization is taken place in
a higher dimensional space. Any errors in estimating those
constants are thus carried forward to optimization and to the

segmentation results. In the case of excessive image noise, the
K-means estimation may not be reliable, which in turn affects
the final result. The proposed method performed better than
SBCV and significantly outperformed GCCV.

G. 3D Active Surfaces

In the experiment of active surfaces, the volumetric
image data used is courtesy of the Volume Library (
http://www9.informatik.uni-erlangen.de) and the Volvis medi-
cal datasets (www.volvis.org). In Fig. 10, a CT Fuel Injection
scan (Row 1) and its generated noisy datasets (Rows 2-3) are
used for surface reconstruction using our deformable model.
Column 1 illustrates the 3D view of the example slices.
Column 2 presents the initial surfaces created by initialization-
free surface evolution. Column 3 shows the converged surfaces
that demonstrate our model can recover the 3D structures
properly and deal with noise effectively. Another example of
dealing with noise interference is shown in Fig. 11, where
the image data is acquired for Daisy Pollen Grain using a
confocal laser scanning microscopy. Similarly, the original
dataset and two generated noisy datasets are presented in
Column 1. The initial result and the converged result are
illustrated in Columns 2 and 3, respectively. For comparison,
Fig. 12 shows the surface reconstruction using SBCV. It can
be seen that SBCV was severely affected by noise and weak
edges, and failed to recover the object shape accurately. Two
slices in the resulting volumes are shown in Fig. 13. Note, the
computation of GCCV in 3D is extremely demanding, which
makes it impractical to implement and compare in 3D. This
will be discussed in detail in Subsection III-H.

To further demonstrate its ability in surface reconstruction,
the proposed method was applied to recover the surfaces of
several biomedical datasets. In Fig. 14, the dataset contains the
Knee, Foot, Lobster and Tooth scans. For each volume, its 3D
slice view, the converged results for SBCV and our method
are presented. These recovered surfaces in Column 4 show that
our method is capable of capturing the complex structures of
the objects, and obtain much better results than SBCV.

In addition, for quantitative comparison, four series of
noisy 3D datasets, namely ‘star’,‘molecular’, ‘navalstring’ and
‘DNA’, are generated by using the known ground truth datasets
at the SD levels of 0.01,0.02,0.03,0.04,0.05. Fig. 15 shows the
converged results using SBCV (Column 3) and our method
(Column 4) in the dataset with SD=0.03. 3D slice view and
the ground truth are presented in Columns 1 and 2 respectively.
Table II provides the details of SBCV and our method on all
noisy datasets, which includes the segmentation accuracies in
background, foreground and overall datasets. It is shown that
our method outperformed SBCV in almost all cases except the
background segmentation of ‘DNA’ at SD=0.02.

H. Computational Complexity

In regard to the computational complexity of our methods,
for the 2D case, the main computation comes from the
calculation of the GCF and its diffusion process. For the
calculation of the GCF ((3) and (8)), it is performed by
convolving the image gradient (N × N ) with an inverse
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TABLE II: Quantitative comparison between SBCV and the proposed method in 3D (unit: %).

Star Molecule Navalstring DNA
SD Bg Fg Overall Bg Fg Overall Bg Fg Overall Bg Fg Overall

0.01 SBCV 98.1 85.7 97.6 98.9 80.1 97.5 99.2 91.3 98.7 98.2 50.5 96.6
Proposed 99.8 98.6 99.8 99.8 97.2 99.6 99.2 94.9 98.9 98.1 94.6 98.0

0.02 SBCV 96.6 85.9 96.1 97.6 80.3 96.3 99.2 91.3 98.6 99.7 47.9 97.9
Proposed 99.8 99.8 99.8 99.8 99.3 99.5 99.1 95.6 98.8 98.1 94.6 97.9

0.03 SBCV 96.1 85.9 95.7 98.8 80.3 97.4 96.8 91.4 96.4 92.9 59.4 91.8
Proposed 99.5 100.0 99.5 99.9 96.3 99.6 99.5 95.6 99.3 98.1 94.7 98.0

0.04 SBCV 95.6 86.0 95.2 98.7 80.4 97.3 97.9 91.5 97.4 95.8 56.1 94.5
Proposed 99.8 99.9 99.8 99.8 96.4 99.6 99.2 97.5 99.0 98.1 94.7 97.9

0.05 SBCV 94.9 86.1 94.6 96.4 80.8 95.2 96.4 91.6 96.0 93.6 59.3 92.4
Proposed 99.7 99.9 99.7 99.8 96.4 99.6 99.9 96.5 99.7 98.1 94.7 97.9

Overall SBCV 96.3 85.9 95.8 98.1 80.4 96.7 97.9 91.4 97.4 96.0 54.6 94.6
Proposed 99.7 99.6 99.7 99.8 97.1 99.6 99.4 96.0 99.1 98.1 94.7 97.9

TABLE III: Computational time comparison.

Image size GCCV SBCV Proposed
Itr CPU(s) Fidelity CPU(s) Itr CPU(s)

307 × 432 500 18 032 1 × 10−3 2.8 20 6.2

868 × 551 200 12 302 1 × 10−4 4.1 35 11.3

579 × 481 200 6430 1 × 10−3 3.4 30 6.7

917 × 582 150 29 344 1 × 10−4 4.5 15 9.1

distance kernel ((2R+ 1)× (2R+ 1))). By using fast Fourier
transform (FFT) in the frequency domain, this can be effi-
ciently conducted. The computational order are then estimated
as O((N+2R)2log(N+2R)2) = O((N+2R)2log(N+2R))
[37]. Due to the typical values of the kernel radius R being
O(N), the complexity of this part in the proposed method is
O(N2logN). For tensor diffusion, the numerical implementa-
tion is performed using the additive operation scheme (AOS)
and its computational complexity is O(N2) [27]. Therefore,
the proposed method is totally computational of the order
O(N2logN). Similarly, the computational complexity in 3D
is O(N3logN).

The computational complexity of SBCV is O(N2) in 2D
and O(N3) in 3D. As described in [17], the computation using
GCCV is very expensive because GCCV has to search the
solution in a higher dimensional space. In fact, the image size
(N ) in computation is the actual size multiplying Nu × N2

v

where Nu, N
2
v are the numbers of vector fields used in the

searching space. Therefore, it is very time-consuming although
the computational complexity is also O(N2) for the two-phase
case in 2D.

For quantitative comparison of computational complexity,
Table III shows the consumed time by applying different
methods for the images in Fig. 6, using a computer with Intel
i7-3770 CPU, 32 GB RAM. In Table III, “Itr” stands for
the converged iterations. “CPU” is the computational time.
For SBCV, “Fidelity” is the parameter used to control the
convergence. The proposed method is close to SBCV and
is much more efficient than GCCV. In fact, GCCV is so
inefficient that it is impractical to perform in 3D. Also, note
that the proposed method converges much faster than GCCV.

IV. CONCLUSION

We proposed a novel gradient convolution field GCF, whose
divergence, can be effectively used as an external force for

formulating a deformable model. The GCF utilizes both edge
strength and edge orientation and it has been shown that its
divergence carries the characteristics of a region indication
function. This feature allowed us to employ global minimizers
in order to achieve initialization dependence that arguably has
been an open challenge for edge based deformable models.
GCF can be easily extended to high dimensional space with
limited computational overhead. Moreover, we have shown
that by diffusing the GCF, instead of its divergence, it handles
image noise rather well. For solving the deformable model,
a global solution scheme is obtained by using convex relax-
ation. We also showed that it is possible to achieve similar
results using a gradient descent with level set regularization.
This demonstrates the unique characteristics of the proposed
method. Both qualitative and quantitative comparisons were
carried against GCCV, SBCF, and MAC. The proposed method
consistently achieved better performance, particularly if im-
ages contain intensity inhomogeneity, noise, weak edge, and
complex geometry.

APPENDIX A
THE RELATIONSHIP BETWEEN THE MAGNETIC FIELD B

AND THE GRADIENT CONVOLUTION FIELD GCF E

The magnetic field B has the relationship with its magnetic
vector potential A(x) as follows:

B(x) = ∇×A(x), A(x) =
µ0

4π

∑
s6=x

f(s)
O(s)

Rxs
. (33)

The magnetic vector potential in the image plane can be
similarly decomposed into two orthogonal terms in the image
coordinates and zero component in the coordinate perpendic-
ular to the image plane, i.e. (Ai(x), Aj(x), 0):

Ai(x) =
µ0

4π

∑
s6=x

f(s)
−Îy(s)

Rxs
, Aj(x) =

µ0

4π

∑
s 6=x

f(s)
Îx(s)

Rxs
,

(34)
where we consider λ = 1 (see (4)). It does not make any
theoretical difference if λ = 2 is used, which simply leads
to B(x, λ = 2) = −B(x, λ = 1). Obviously, Ei = Aj and
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Ej = −Ai. Then, the following can be derived:

B(x) = ∇×A(x)

= (0, 0,
∂Aj
∂x
− ∂Ai

∂y
)

= (0, 0,
∂Ei
∂x

+
∂Ej
∂y

)

= (0, 0,∇ ·E)

(35)

Thus, we have: B = ∇ ·E
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