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In this work, we investigate whether it is possible to distinguish conversational interac-
tions from observing human motion alone, in particular subject specific gestures in 3D.
We adopt Kinect sensors to obtain 3D displacement and velocity measurements, followed
by wavelet decomposition to extract low level temporal features. These features are then
generalized to form a visual vocabulary that can be further generalized to a set of topics
from temporal distributions of visual vocabulary. A subject specific supervised learning
approach based on Random Forests is used to classify the testing sequences to seven dif-
ferent conversational scenarios. These conversational scenarios concerned in this work
have rather subtle differences among them. Unlike typical action or event recognition, each
interaction in our case contain many instances of primitive motions and actions, many of
which are shared among different conversation scenarios. That is the interactions we are
concerned with are not micro or instant events, such as hugging and high-five, but rather
interactions over a period of time that consists rather similar individual motions, micro
actions and interactions. We believe this is among one of the first work that is devoted
to subject specific conversational interaction classification using 3D pose features and to
show this task is indeed possible.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Human motion capture and activity recognition have
proved viable in, for example, computer graphics, media
production, robotics, and video surveillance applications
throughout the years [25,20,1,27,5,26,18,7,8], though it
still remains an open and challenging problem. There is
however already a body of work interested in the detection
and recognition of social interaction between multiple
people [11,14], which is particularly difficult since the ac-
tions of multiple subjects must be inferred and understood.
Example work can be found in the literatures which at-
tempt to estimate 3D human pose for single image [6,26]
or multiple cameras [9,18,25]. However, advances in inter-
action modeling is of great interest to computer graphics
and visual media production.

From the feature selection perspective, both low level
appearance features, such as color, dense optical flow, spa-
tio-temporal interest point, and high-level human pose
features have been investigated. However, initially, the
dependence on low level features has meant that the class
of social interactions examined thus far typically have been
limited to those that can be readily identified and most
easily described by a particular set of motions or poses,
e.g. handshake or high-five. Alternatively, observation is
made at a coarse level to recognize interactions, which
are only dependent on high-level tracking of entire indi-
viduals, e.g. in a surveillance setting. Furthermore, Yao
et al. [2] have shown that pose-based features outperform
low level appearance features to some extent in the short-
time action recognition task. However, the estimation of
human pose, particularly in 3D that is considered as a
strong cue to action and activity recognition, is
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problematic and inaccurate, which directly leads to little
attention to the pose-based action and activity recognition
methods in last decades.

In this work, we propose to leverage recent advances in
technology in extracting 3D pose using a consumer sensor
(Microsoft Kinect) to examine the feasibility of detecting
much more high-level behavioral interactions between
two people. Rather than recognizing just key social events,
we attempt to analyze and detect different conversational
interactions. We investigate whether just by observing the
3D pose of two interacting people we can recognize the
type of conversation they are conducting. This work is in
part motivated by recent work that showed features de-
rived from 3D human pose are much more discriminative
than their low level image based counterparts e.g. [2].
Therefore, we believe that having access to these features
provides the capacity of detecting and classifying much
more subtle interactions than currently possible. Often
the differences between the interactions examined in this
work are not themselves intuitive. Hence, our emphasis
in this work is to classify, in a subject specific supervised
fashion, short clips of conversational interactions into
seven different categories that are defined based on indi-
vidual tasks, such as debate a topic and problem solving,
rather than primitive interactions, such as monologe and
exchange. Each clip in our case may contain multiple prim-
itive interaction types. We examine the extent of the visual
cues provided by humans in recognizing conversational
interactions. We thus employ discriminative methods to
carry out the classification, i.e. to identify the content of
a conversation using pose features only.

The rest of the paper is organized as follows. Section 2
gives details of data acquisition. The proposed method is
presented in Section 3, which includes low level feature
extraction, feature generalization and classification. Exper-
imental results and discussions are in Section 4. Section 5
concludes the paper.
2. Data acquisition

Action recognition systems can often be built on rela-
tively easy to extract low level features such as temporal
SIFT features [24] or temporal Harris corner features [17].
Typically, those actions can be easily distinguishable from
a visual perception point view, e.g. waving, jumping, and
punching. The dataset used for training and evaluation
can thus be labeled using those action types. More subtle
behaviors, such as grooming, drinking and eating, can also
be distinguished [10,15]. These primitive action and short
time span behavior can be well defined, semantically. Thus,
the data can be labeled to individual, relatively short se-
quences. However, social interactions are more complex
and difficult to recognize since the actions, motions and
motivations of multiple people must be understood. Each
of those interactions can contain multiple types of
primitive actions. Often, it is the temporal dynamics of
those primitive motions, actions and interactions that dif-
ferentiate one from another. For example, two people hav-
ing a debate may have very similar primitive motions and
actions to having a discussion a topic, although the event
as whole can be considered different in the context of con-
versational interaction. Thus, it is unrealistic to label each
and every primitive action in the sequences of conversa-
tional interactions since the sequences are usually thou-
sands of times longer. It is also not necessary as those
primitive action labeling alone doe not describe the whole
event. Hence, in this study we directly use the conversa-
tional topic or the nature of the conversation to label the
whole sequence and pose the question that whether it is
possible to distinguish different types of conversation
using 3D gesture alone. The conversational categories are
subtly different to each other, which poses a great chal-
lenge for recognition.

In this work, we choose seven categories and use a two-
Kinect set-up to record 3D human pose. Each person was
recorded using a Kinect Sensor, which captured pose at
30 fps. Each of the cameras was slightly offset from a direct
frontal view so that the participants did not occlude one
another. The participants were given seven tasks to com-
plete. The first task was to discuss an area of their current
work. The second task was to prepare an interesting story
to tell their partner, such as a holiday experience. The third
task was to jointly find the answer to a problem. The fourth
task was a debate, where the participants were asked to
prepare arguments from opposing view points on an issue
we gave to them. In the fifth task they were asked to dis-
cuss the issues surrounding a particular statement and
come to agreement whether they believe the statement
is true or not. The participants were asked to trying to
reach an agreement through discussion; hence, it is differ-
ent to the debate task. The sixth task was to answer a sub-
jective question, and the seventh task was to take it in turn
telling jokes to one another. A full description of the differ-
ent tasks are provided in Table 1.

Each set of seven tasks took about 50 min. They were
told roughly how long each task to take as a guide, however,
they were not being timed or interrupted. Before each task,
there were given the opportunity to reread any associated
material with the task that they may have forgotten. At
the end of the session, participants were generally sur-
prised by how much time had passed. A sample of the data
collected for each conversational interaction is presented in
Fig. 1. The full dataset used in this study is available for
download from this address http://csvision.swan.ac.uk/
converse.html.
3. Proposed method

The proposed method first extract displacement and
velocity measurements from the Kinect output. Wavelet
decomposition is then applied to extract low level features
from each of those measurements. The wavelet coefficients
represent sudden changes in measurements at different
temporal scales, and they are treated as the low level mo-
tion features. A temporal generalization of those features
are then carried out to encapsulate temporal dynamics,
which first produces a visual vocabulary and then further
generalized them to visual topics through Latent Dirichet
Allocation analysis. A discriminative model based on Ran-
dom Forests is then trained and applied to classify different
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Table 1
Description of each of the tasks given to the participants to perform.

# Task name Description

1 Describing
work

Each participant was asked to describe to their partner their current work or a project they have involved with. Following this
each participant then repeated it back so as to confirm they had understood

2 Story telling Each participant was asked to think of an interesting story they could tell their partner, such as a holiday experience or an
experience of a friend

3 Problem
solving

The participants were given a problem they were asked to think of the solution of together. The problem was ‘‘Do candles burn
in space and if so what shape and direction?’’

4 Debate The participants were asked to prepare arguments for a given point of view on the topic ‘‘Should University education be free?’’
and then debate this between them

5 Discussion The participants were asked to jointly discuss the issues surrounding a statement and come to agreement whether they believe
the statement is true or not. The statement was ‘‘Social Networks have made the world a better place?’’

6 Subjective
question

The participants were asked to discuss a subjective question which was ‘‘If you could be any animal, what animal and why?’’

7 Telling jokes The participants were asked to take it turn telling jokes to one another, each participant was provided with three different
jokes to learn before attending
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types of conversational interactions in a subject specific
fashion. The flowchart shown in Fig. 2 illustrates the steps
from pose measurements, to wavelet analysis, to unsuper-
vised clustering and generalization, and to supervised
classification.
3.1. Low level feature extraction

3D poses have been shown to be useful in motion cap-
ture data retrieval and action recognition. Motivated by ex-
isted work, such as [2,16,21], we extract three types of
pose measurements to depict the pose and motion of the
body. These geometry measurements extracted from a
kinematic chain are simple but useful for representing hu-
man gesture and motion over time. These measurements
are then decomposed to wavelet coefficients and treated
as low level features. Briefly, the first set of measurements
are the distance between two joints at different time inter-
vals and is depicted in Fig. 3(f). The second set measures
the distance between a joint and reference planes defined
using different parts of the body (see Fig. 3(b)–(e)). The
third set measures the velocity of individual joints (see
Fig. 3(g)).

There are four reference planes used to quantify the
movement of certain joints in the kinematic chain. The first
two reference planes are used to measure the distance and
velocity of joints on the lower arms, i.e. hands, wrists and
elbows. Both planes are located at the same spine point.
One of the two planes is defined by the vector connecting
the spine and left shoulder (Fig. 3(b)), and the other is de-
fined by the vector connecting the spine and right shoulder
(Fig. 3(c)). The former is used to measure the lower arm
joints on the left side and the latter is for right side. The
two vectors connecting hip center from two shoulders de-
fine the third reference plan (Fig. 3(d)), which is used to
measure movements of lower arm joints from both arms.
The overlapping in measurement is to make sure that the
3D motion of those joints are captured among those 2D
measurement combinations. The fourth plan is perpendic-
ular to the third plan and crossing the same spine point
(Fig. 3(e)). This reference plan is used to measure move-
ment of knees and ankles (ankle points are more stable
than feet in Kinect estimation). Next, we provide the defi-
nition for each measurement of joint movement.

The 3D location of a joint at time t is denoted as xi;t 2 R3

and the vector defined by two joints by pij;t 2 R3, where i
and j indicates the identity of the joints. We define two
types of plane /ijk;t which are defined by the joints
xi;t ;xj;t;xk;t , and the plane wijk;t passing through xk;t and
whose normal vector is aligned with pij;t . The normal vec-
tor of the plane /ijk;t can also be represented by pijk;t .

The measurement Fd representing the Euclidean dis-
tance between joints over Dt is defined as:
Fd ¼ Dfðxi;tÞ; ðxj;tþDtÞg. If i ¼ j, then the it measures the dis-
tance of movement of the joint over time Dt, otherwise, it
measures the distance between two different joints sepa-
rated by time.

The measurements Fpd1 and Fpd2 are the shortest dis-
tance from joint xn;t to the plane /ijk;tþDt and the plane
wijk;tþDt , respectively. They are defined as: Fpd1 ¼ Dfðxn;tÞ;
ð/ijk;tþDtÞg and Fpd2 ¼ Dfðxn;tÞ; ðwijk;tþDtÞg.

We also extract Fjv ;Fpv , the component of the joint
velocity along the direction of the vector pij;tþDt and vector
pijk;tþDt , respectively. They are defined as: Fjv ¼
Vfðxn;tÞ; ðpij;tþDtÞg and Fpv ¼ Vfðxn;tÞ; ðpijk;tþDtÞg.

Thus, 42 different low-level pose measurements are ex-
tracted from the Kinect data, with Dt ¼ 1:0s, by computing
the displacement distances, velocity of both left and right
limbs are computed according to these four reference
planes. Table 2 summarizes different types of measure-
ments. It is notable that we selected 34 measurements
from upper body joints, and 8 measurements from lower
body joints.

Although similar features have been found powerful in
classifying primitive actions with short time span [2], what
kind of feature is appropriate choice for conversational sce-
nario classification is still an undetermined question. In
this work, we apply wavelet decomposition to emphasize
sudden changes in those measurements at multiple scales.
Wavelet analysis has been widely used in signal process-
ing, e.g. texture analysis [23], due to its ability to analyze
signal in spatial - spatial frequency domain. Here, we con-
sider the changes of the low level relative motion in local
temporal region can be used as clues for conversational
scenario classification. The strength of the motion in the



Fig. 1. Example images and 3D skeletons from 7 different scenarios. The time difference between each consecutive frame shown is two seconds. Example
videos of seven different scenarios are available online1. Note that the RGB images were captured by separately synchronized cameras at different viewing
angles to Kinect – hence the discrepancy in pose. The RGB data is not used in this study.
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Fig. 2. Flowchart of the proposed method.
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short time window is represented by the coefficients. For
simplicity and in the interest of keeping the feature dimen-
sion space lower, we adopt the Daubechies 2 wavelet
(Haar), whose mother wavelet function is defined as

wðtÞ ¼
1 0 6 t < 1

2

�1 1
2 6 t < 1

0 otherwise

8><
>: ð1Þ

and scaling function is defined as
)b( (c)

Left Shoulder

Hip Center

SpineElbow

Wrist

Hand

(a) Kinect Skeleton Model

Knee
Ankle

Right Shoulder

Fig. 3. Visualization of the pose measurements. (b)–(e) The distance of a joint to a
joint velocity.

Table 2
Pose motion measurements. (b), (c), (d) and (e) denote the reference planes as sh

Joint Reference plane or joint

Hands, wrists, and elbows at t þ Dt Hands, wrists, and elbows a
Hands, and wrists at t þ Dt Shoulders at t
Hands, wrists, and elbows at t þ Dt Reference planes (b & c) at
Hands, wrists, and elbows at t þ Dt Reference plane (b & c) at t
Hands, wrists, and elbows at t þ Dt Reference planes (d) at t
Hands, wrists, and elbows at t þ Dt Reference planes (d) at t
Knees, and ankles at t þ Dt Reference plane (e) at t
Knees, and ankles at t þ Dt Reference plane (e) at t
/ðtÞ ¼
1 0 6 t < 1
0 otherwise

�
ð2Þ

Fig. 4 illustrates an example of wavelet decomposition,
from which we may see that abrupt changes in measure-
ment are highlights in the wavelet coefficients across the
scales. In total, 29 scales are used for each measurement.
That is there are forty-two 29-dimensional feature spaces.

3.2. Dynamic feature descriptors

3.2.1. Visual words
The extracted low level pose features are direct mea-

surements of relative motion at a short time window. In
order to capture the dynamics in interaction, we generalize
those low level features to a middle level to summarize the
distributions of those primitive motions in a reasonable
time span, i.e. 500 frames or 20 s in our case. Furthermore,
since we are classifying conversational scenarios at 20-s
segments, the common approach of appending feature vec-
tors will result in prohibitively long feature vectors for dis-
criminative classifiers to train. In this work, we thus adopt
the bag of words approach to derive middle level features
that are suitable for classification of conversational inter-
actions, each of which may contain various amount of
primitive motions. Different from video analysis where
for instance the spatial–temporal interesting points are de-
tected from sequential images using space–time corner
detectors or separable linear filters, in our case, the raw
data is, for example, the locations of joints in the kinematic
model. Consequently, we are concerned with the distribu-
tions of those features across time. We hence use unsuper-
vised clustering to generate visual words across the whole
sequence and across all subjects to create a visual vocabu-
lary. A further generalization to visual topics is then per-
formed based on the distribution of visual words in an
(f))e()d( (g)

reference plane. (f) Illustrates the distance between joints feature. (g) The

own in Fig. 3.

Type Number of measurements

t t Displacement 6
Displacement 4

t Displacement 6
Velocity 6
Displacement 6
Velocity 6
Displacement 4
Velocity 4
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Fig. 5. Latent Dirichlet Allocation (LDA) model.
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extended time span that is often larger than typical prim-
itive actions.

As a result of low level feature analysis, there are forty-
two 29-dimensional features spaces, each of which
corresponds to one measurement from Kinect sensor. To
generalize visual words in each of the 42 feature space,
we apply the Gaussian Mixture Model (GMM), which is a
common and powerful method in parameterizing complex,
often multi-modal distributions. It approximates the
underlying distribution using a number of Gaussian com-
ponents. A GMM can be formulated as:

pðxÞ ¼
XK

k¼1

pkNðxjlk;RkÞ ð3Þ

where K is the number of the components, pk is the mixing
coefficients and N denotes the normal distribution with
mean lk and covariance Rk. The mixing coefficients pk

must satisfy the constrains
PK

k¼1pk ¼ 1 and 0 < pk < 1.
These components Nðxjlk;RkÞ are combined with differ-
ent weighting pk to provide a multi-modal density.

Given wavelet coefficients X ¼ fx1; x2; . . . ; xn; . . . xNg,
temporally collected into each 29-dimensional feature
space, the parameters of the GMM, p; l and R are esti-
mated by maximizing the log likelihood function given by:

lnpðXjp;l;RÞ ¼
XN

n¼1

ln
XK

k¼1

pkNðxnjlk;RkÞ
( )

ð4Þ

The EM algorithm is the most popular algorithm for finding
maximum likelihood solution to Eq. (4).

For each feature space, one GMM model is fitted across
whole data set, and the Gaussian clusters are used to form
the a visual vocabulary. Each GMM component is consid-
ered as a visual word. A further generalization of these vi-
sual words can be carried out based on the distribution of
visual words in an extended time span that is often larger
than typical primitive action.
3.2.2. Visual topics
In information retrieval and natural language process-

ing, the Latent Dirichlet Allocation (LDA) model has been
widely used to discover abstract ‘‘topics’’ from a collection
of words or low level features. Niebles et al. [22] applied
the LDA model to extract action categories from low-level
spatial–temporal words in an unsupervised fashion. In-
spired this work, we use LDA to generalize the learned vi-
sual words to form visual topics that are learned across
feature spaces, instead of individual feature spaces as in
the case for visual words.

We assume that those learned visual words are gener-
ated by a mixture of visual topics. To learn those visual
topics, we split the sequences into 500 frames (20 s) sec-
tions each of which is considered as a visual document that
contains multiple visual topics. The LDA model with a fixed
number of latent topics is then applied to all documents,
and assigns each visual word in the documents to a poten-
tial topic.

Briefly, the LDA model illustrated in Fig. 5 was firstly
proposed by David Blei et al. [3] in 2003, which is similar
to Probabilistic Latent Semantic Analysis (pLSA) [13], but
with assumption of having a Dirichlet prior. In the LDA
model, the outer plate represents the replicated
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documents (in our case, 20 s clips), and the inner plate rep-
resents the repeated topics and words. It is notable that the
parameters a and b is corpus-level parameters which
determine the mixing proportions of the topics
fhd¼1 . . . hd¼Mg, and the Dirichlet prior on the per topic-
word distribution respectively, where M is the number of
documents. The parameters hd are the document-level
parameter, which are generated once per document. In
each document, the word-level parameters Zn and Wn are
sampled once per word.

In our case, given the model a; b the visual words W can
be generalize in following way:

1. The number of visual words is determined by Poisson
process: N � PoissonðnÞ.

2. The mixture proposition of visual topics hd is chosen
according to Dirichlet process: hd � DirðaÞ.

3. For each of the N words Wn:
(a) Firstly, a visual topics is chosen by multinomial pro-

cess: Zn � MultinomialðhdÞ;
(b) Secondly, a visual word is generated according to

pðWnjZn; bÞ, a multinomial probability with condi-
tion on the visual topics Zn.

Given a corpus, a set of visual documents with a num-
ber of visual words, the latent visual topic for each visual
word can be obtained by applying Bayesian inference.
The joint distribution of a topic h, a set of N visual words
generated according to a set of N visual topics is given by:

pðh; Z;Wja;bÞ ¼ pðhjaÞ
YN

n¼1

pðZnjhÞpðWnjZn;bÞ ð5Þ

The marginal distribution of a visual document can be
computed by integrating over h and summing over Z:

pðWja;bÞ ¼
Z

pðhjaÞ
YN
n¼1

X
Zn

pðZnjhÞpðWnjZn;bÞ
 !

dh ð6Þ

Thus, given a visual words, the posterior probability of its
latent visual topic can be inferred according to Bayesian
theory, as follows:

pðh; ZjW;a;bÞ ¼ pðh; Z;Wja; bÞ
pðWja;bÞ ð7Þ

Approximation inference methods such as variational
inference [3], Gibbs sampling [12], and expectation propa-
gation [19] may be adopted to efficiently solve (7). Next,
we use the distributions of those visual words and topics
to classify different conversational scenarios.
{ V1 }

Sj

Sj
L

{ V2 }

Sj
R

Fig. 6. Random
3.3. Classification

A discriminative classifier, namely Random Forests [4]
is employed in this work, to evaluate the discriminative
power of our features, and to investigate whether classify-
ing conversational scenarios is possible by merely using 3D
pose features.

Random Forests (RF) illustrated in Fig. 6 is an ensemble
classifier consisting of a set of decision trees, which signif-
icantly improves the generalization ability of the classifier
compared to a single decision tree. At the bootstrap aggre-
gating stage (bagging), assuming that the data sample is
independent and identically distributed, new training sets
are generated by randomly sampling with replacement
from the complete training set. For each new training set,
one decision tree is constructed which consists of a set of
split nodes and linking edges. Each non-leaf node stores a
random test function which is applied to the input data,
and leads to the leaf node. In the leaf nodes, the final pre-
dictor is stored. At the prediction stage, all the trees classify
the incoming data independently, the most voted class gi-
ven by the trees is considered as the final classification of
the forest. This is illustrated in Fig. 6.

Subject specific supervised learning is adopted in this
work, i.e., for each pair of subjects we learnt supervised
classifier independently. To train and test the classifiers,
each recorded sequence was split into 150 frames sections.
Each section was labeled as the task from which it was ex-
tracted and used as a single example, both for training and
testing. As described in Section 3.2.1, both visual words
and visual topic were extracted. In order to investigate
the discriminative ability of this two types of features,
we train the RF classifiers on these features separately to
compare the recognition result. Given a set of sections with
class labels, a histogram of visual words and visual topics
are obtained for each section. The parameters of Random
Forests is learned based on those histograms. We learn
100 decision trees for Random Forests by randomly sam-
pling with replacement from the complete training set.
4. Experimental results

The human conversational interaction dataset was col-
lected following the approach described in Section 2, and
used in the presented experiments. All tasks were com-
pleted by 8 different pairs of people in 482 min, which re-
sulted in 869,142 frames in total. The full dataset is
available for download from this address http://csvi-
sion.swan.ac.uk/converse.html. Each class is not obviously
distinct from the others, and although there are some rep-
{ Vn }

Forests.

http://csvision.swan.ac.uk/converse.html
http://csvision.swan.ac.uk/converse.html


Table 3
Average classification results using visual features from only single
participant (K = 5 for K-NN).

Visual words Visual topics

k-NN RF k-NN RF

Describing work 65.8 79.1 62.1 70.0
Story telling 40.4 41.4 39.5 44.4
Problem solving 15.7 11.4 18.6 24.3
Debate 42.7 50.2 37.6 43.8
Discussion 36.1 50.8 39.2 51.1
Subjective question 18.3 12.2 24.9 25.3
Telling jokes 21.9 16.1 23.3 28.0

Average 34.4 37.3 35.0 41.0

Table 4
Average classification results using visual features from paired participants
(K = 5 for K-NN).

Visual words Visual topics

k-NN RF k-NN RF

Describing work 71.0 82.0 64.7 78.1
Story telling 50.5 57.5 44.4 54.3
Problem solving 26.8 14.7 31.2 31.9
Debate 49.8 59.6 48.1 54.9
Discussion 37.7 67.5 41.4 60.5
Subjective question 25.2 16.0 37.1 36.5
Telling jokes 29.9 24.0 27.7 38.6

Average 41.6 45.9 42.1 50.7
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resentative poses of each class it would be extremely diffi-
cult to determine the class using only pose from a single
frame. Another major challenge of the data set is the sheer
variation in the types of motion and gestures performed by
each participant during the task.

The 3D pose measurements were exacted directly from
the Kinect output. Wavelet decomposition was then ap-
plied to individual measurement and each produced a
29-dimensional feature space, 29 wavelet scales, as a low
level representation. As the length of sequences across dif-
ferent tasks and subjects is different, in order to avoid the
bias, the GMMs were fitted to the features that were sam-
pled from these sequence with equal number of samples.
Each feature space produced 10 visual words, and there
Table 5
Confusion matrices by Random Forests classification using visual words.
were 42 features spaces in total. The Kinect sequences
are then labeled by those visual words. These sequences
were partitioned into segments of 5 s long, where the vi-
sual words were collected and form a visual document
for each segment. A total of 25 visual topics from 420 vi-
sual words were inferred by LDA model using Gibbs sam-
pling method. The histogram of visual words and visual
topics for each 5 s segment was then computed, and used
as higher level feature descriptors. To carry out the classi-
fication, 10-fold cross-validation is adopted, that is all the
sequences were sequentially chopped into 10 segments
so that neighboring samples are not distributed across
training set and testing set. This is necessary to avoid
over-fitting. In addition to the Random Forests classifier,
K-nearest neighbor (K-NN) classifier with k ¼ 5 was also
used. Both classifiers were trained on the same training
set independently.

We first test the pose features from only a single person,
that is to understand how much information can be ex-
tracted by observing one participant in order to determine
the topic of their conversation. Table 3 shows the average
performance for each method in classifying the seven sce-
narios using visual words and visual topics as the discrim-
inative feature. When using visual words, an average of
34.4% and 37.3% were achieved by K-NN and RF classifiers,
respectively. The Random Forests classifier outperformed
K-NN. When using visual topics, which produces signifi-
cantly shorter feature vectors (25 vs. 420), there was
noticeable increase in the performance of using both K-
NN and Random Forests. The error were mainly contrib-
uted by the lower true positive rates given by the following
three scenarios: ‘‘Problem Solving’’, ‘‘Subjective Question’’
and ‘‘Telling Jokes’’. On of the possible reason is that those
three scenarios have significantly shorter sequences com-
pared to the rests (on average: 1 min vs. 5 min), which lead
to less training samples. Compared to the true positive
rates given by random chance (14.3%), these results, how-
ever, are interesting, as they suggest that there are repeat-
able patterns which could be used to distinguish different
types of conversation just by observing single participant.

For the next experiment we combine features from two
participants by concatenating their features before feeding
into the classifiers. The results are summarized in Table 4.
There were improvements reported by both classifiers. The
confusion matrix given by the Random Forests classifier



Table 6
Confusion matrices by Random Forests classification using visual topics.
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using visual words descriptor is shown in Table 5. The
averages are 41.6% and 45.9% by K-NN and Random For-
ests, respectively. For visual topics, the length of each
descriptor is 50 which is far more less compared with the
visual words descriptor, 840. However, as shown in Table
6 and the Random Forests confusion matrix in Table 6,
the best result, 50.7% were achieved, which means the dis-
criminative power of visual topics is preserved and en-
hanced after temporal generalization. The moderately
overall performance increase compared to using feature
from single participant clearly highlights the benefit of
having multiple streams of information when observing
people during an interaction.

The results we have achieved suggested that it is feasi-
ble to discriminatingly classify conversational interactions
based on human poses. Whilst the Kinect sensor permits
direct estimation of 3D pose that is currently more robust
and accurate than RGB camera methods, the data collected
still contains some noise, as does the features extracted.
Meanwhile, compared to other datasets for activity recog-
nition which have fairly clear repeatable patterns within
short time period, in our dataset, there is no definition
for the scenarios in terms of elementary actions. However,
despite these we have shown that recognition of conversa-
tional interactions with subtle differences can still be
achieved with acceptable accuracy. More participant data
is necessary to analyze the effectiveness of generalized fea-
tures, and this is leading to a new type of interaction
analysis.
5. Conclusion

We presented a comprehensive study on gesture cues in
understanding human conversational activity. The differ-
ence among the seven scenarios are rather subtle, and
the primitive actions and interactions are commonly
exhibited across different scenarios. Middle level motion
descriptor were generalized from low level pose features
obtained from Kinect output. Random Forests was applied
to classify different types of conversational interactions.
The results also suggest that it is possible to distinguish
conversational topic based on the pose movement. It is
however more challenging to generalize different scenar-
ios. An even larger data set and perhaps more sophisticated
modeling techniques should be investigated as future
work. However, we believe this work offer a somewhat dif-
ferent perspective to action and interaction analysis.
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