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Active Contouring Based on Gradient Vector
Interaction and Constrained Level Set Diffusion

Xianghua Xie, Member, IEEE

Abstract—This paper presents an extension of our recently
introduced MAC model to deal with the initialization dependency
problem that commonly appears in edge-based approaches. Its
dynamic force field, unique bidirectionality, and constrained dif-
fusion-based level set evolution provide great freedom in contour
initialization and show significant improvements in initialization
independency compared to other edge-based techniques. It can
handle more sophisticated topological changes than splitting and
merging. It provides new potentials for edge-based active contour
methods, particularly when detecting and localizing objects with
unknown location, geometry, and topology.

Index Terms—Active contour, edge based, initialization flexi-
bility, level set method, object segmentation.

1. INTRODUCTION

EPENDING on the assumption of how object boundary

D is described, active contours can be classified into edge
based [2]-[5], region based [6]-[8], and hybrid approaches
[9]-[11]. For edge-based methods, it is assumed that object
boundaries collocate with image intensity discontinuities which
is widely adopted, for example, in depth estimation from stereo
[12]. Region-based techniques, on the other hand, assume that
object boundaries collocate with discontinuities in regional
characteristics, such as color and texture. In other words, each
object has its own distinctive and continuous regional features.
Region-based techniques have some obvious advantages over
edge-based methods in that object boundary description based
on image gradient can often be compromised by noise and weak
edges. They are also less sensitive to initialization, while edge-
based active contours are prone to local minima. Thus, it is often
desirable for edge-based techniques to carefully place the ini-
tial contour. This assumes that the prior knowledge of the ob-
ject location is available, which is not always true in reality.
Existing techniques can only reduce this initialization depen-
dency to a very limited extent. The balloon force [2] can only
expand or shrink the contours. The bidirectionality of GVF can
sometimes cause the contours to collapse on approach to the
same boundary. Moreover, it has convergence issues caused by
critical points. [1], [4], [13]. It is evidently clear that initializa-
tion invariance is particularly difficult to achieve for edge-based
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methods. More recent attempts, such as [4], [5], [13], and [14],
showed promising but limited success [1].

In [1], Xie and Mirmehdi proposed a novel active contour
model based on hypothesized magnetic interactions among gra-
dient vectors and contours. This edge-based method showed
significant improvements on convergence issues, e.g., reaching
deep concavities. This paper extends the method so that the
active contour can be randomly initialized and still be able to
localize objects of interest. It can even perform segmentation
without placing an initial contour. Fig. 1 gives an example of lo-
calizing two objects with internal holes and inhomogeneous in-
tensity using an initial contour placed outside the objects. Only
the proposed method successfully localized both external and
internal boundaries. This initialization flexibility is particularly
useful when prior knowledge of object location is not available
and/or the initial contour is occluded from the object bound-
aries. We show in fact initial active contour is not necessary
with the proposed method. This enhanced edge-based approach
provides an effective alternative to region-based methods which
may have difficulty in handling, for example, intensity inhomo-
geneity [e.g., see Fig. 1(d)].

II. PROPOSED METHOD

A. Basic MAC Model

Fittings based on local intensity discontinuity can often lead
to undesired local minima. The CPM [14] assigns opposite
charges to edges and free particles so that the particles are
pulled towards edges while repelling each other. This global
interaction provides much freedom of initialization. However,
particles on weak edges can be gradually pulled towards
neighboring strong edges, resulting in broken boundaries [see
Fig. 13(d)]. Particle addition and deletion and contour recon-
struction can also be difficult in practice.

Instead of assigning fixed charges, we allow the charges flow
through the edges. These flows of charges will then generate
a magnetic field. The active contour, carrying similar flow of
charges, will be attracted towards the edges under this magnetic
influence. Without losing generality, let us consider the image
plane as a 2-D plane in a 3-D space whose origin coincides
with the origin of the image coordinates. Additionally, the third
dimension of this 3-D space is considered perpendicular to the
image plane.

The direction of the currents, flows of charges, running
through object boundary can be estimated based on edge ori-
entation, which can be conveniently obtained by a 90° rotation
in the image plane of the normalized gradient vectors (fr, fy),
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Fig. 1. Recovering objects with internal holes and inhomogeneous intensity. Row (a): Geodesic active contour [2]. ; Row (b): Generalized GVF (GGVF) active
contour [3], [15]. Row (c): Geodesic GVF (GeoGVF) active contour [4]. Row (d): Chan—Vese model [6]. Row (e): Proposed method (K = 0.02). Each row, from

left to right, shows initial contour, intermediate stages, and stabilized result.

where I denotes an image. Let x denote a point in the image
domain. Thus, the object boundary current direction, O(x),
can be estimated as: O(x) = (—=1)*(—1,(x), I.(x),0), where
A = 1 gives an anti-clockwise rotation in the image coordi-
nates, and A = 2 provides a clockwise rotation. However, we
show later by using the proposed level set updating scheme
different X values lead to the same result. Since the active con-
tour is embedded in a signed distance function, the direction of
current for the contour, denoted as Y, can be similarly obtained
by rotating the gradient vector V& of the level set function.
Similar to 0; Tis a}so 3-D and lies in the image domain, i.e.,
T(x) = (b, (x), 9. (x). 0).

Let f(x) be the magnitude of edge pixel and the magnitude
of boundary current be proportional to edge strength, that is, the
electric current on object boundary is defined as f(x)O(x). The
magnetic flux B(x) generated by gradient vectors at each pixel
position x can then be computed as

B Y f(5)0(s) x 1 m

SES,s#X

where s denotes an edge pixel position, S is the set containing
all the edge pixel positions across the image, Ry denotes a
3-D unit vector from x to s in the image plane, and R is the
distance between them. Thresholding can be applied to remove
some erroneous edge pixels with very small gradient magnitude

[1], [14]. The active contour is assigned with unit magnitude of
electric current. The force imposed on it can be derived as

F(x) x T(x) x B(x). 2)

From (1) and (2), we can see that B intersects the image plane
perpendicularly and F is always perpendicular to both T and
B. Thus, F also lies in the image domain and its third element
equals to zero. For simplicity, from now on, we shall ignore its
third dimensional component and denote F(x) as a 2-D vector
field in the image domain. The basic model can then be formu-
lated as

Cy = ag(x)kN + (1 — a) (F(x) . N) N 3)

where g(x) = 1/(1 + f(x)),  denotes the curvature, and N is
inward unit normal.

We can see from (1) and (2) that the image force is derived
from global interactions among rotated gradient vectors, i.e.,
f(x)O(x). Thus, it is more robust than fittings based on local
gradient towards weak edges (where f(x) is small) and noise
(where O(x) is locally inconsistent). It is worth noting, how-
ever, that general contrast consistency along the object bound-
aries is important to the model. Large contrast variation can
disrupt the force field, e.g., half of the object appears brighter
than background and the other half appears to be darker. How-
ever, this does not mean that the entire object has to be brighter
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or darker than background. Those regions away from object
boundary can be continuously varying in intensity. The model
also can tolerate a fair amount of local contrast inconsistency,
in the same way as to image noise and weak/broken edges.

B. Level Set Regularization and Improved Initialization
Independency

As aforementioned, due to cross product computation the ex-
ternal force, F, is always perpendicular to Y which is tangent to
the contour, i.e., the external force is imposed along the normal
direction. Note the internal force due to curvature flow is en-
forced in the inward normal direction. Thus, the total force is
always perpendicular to active contour. In other words, it dy-
namically updates itself according to contour evolution to push
and pull the contours along the normal direction until they reach
object boundaries where forces from both sides are in balance.
As a result, the propagating contour will not suffer from those
convergence issues related to static force fields, such as GVF,
in which evolving contours may become tangent to underlying
force vectors resulting in false convergence. This force field
is also significantly different from others used in edge-based
methods. For example, in CPM, the force between an edge pixel
s and an infinitesimal contour segment c lies in a straight line
between these two, regardless the orientation of the contour seg-
ment. In our model, the orientation of the edge pixel and the
contour segment also have influence on the resulting force in-
teraction. This ability to adapt is very important since it ensures
the active contour, once initialized, overcome deep concavities
and narrow regions to reach object boundaries.

By incorporating (2), (3) can be re-written as

Oy = ag(x)sN+(1-a) (r(x) xB(x) - (N, o)) N

= ag()rN+(1-0) (B() - (N,0)xT(x)) ) N. @)

The external force in the second term is in fact a projection of
the magnetic flux onto a binormal unit vector which is com-
puted from a cross product of the contour inward normal and its
tangent vector. A positive projection will force the contour to
expand and a negative projection will shrink the contour, which
acts in a similar way as what a region indication function does
in a region-based approach, however, this is derived from the
edge-based assumption. Thus, an edge can attract or push a con-
tour which may lie either side of the edge. However, this bidi-
rectionality is fundamentally different from that in, for example,
GVF. In GVF, the force imposed on the contour is independent
of the contour itself, which can cause the contours to collapse
to each other when reaching to the same object boundary. For
the proposed method, the force is related to both the image gra-
dient and the contour (which can be clearly seen from (4)). It
has the ability to prevent the contour from reaching to the same
boundary and disappearing after merging together. This is illus-
trated in Fig. 2 with different initialization conditions and dif-
ferent topologies (see Fig. 2 for a detailed explanation of each
scenario). This unique bidirectionality is very important in order
to improve initialization independency. The active contour is al-
lowed to be initialized across the object boundary without the
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Fig.2. Preventing contour collapsing. (a) Two contours, C'; and C'», are placed
on each side of an object boundary with current directions indicated by arrows.
Contour C'; is attracted by the object boundary and expands itself in the out-
ward normal direction. It eventually will wrap around and capture the object
boundary. Contour C', however, is repelled and forced to shrink in the inward
normal direction. Thus, two contours will not collapse to each other. (b) Sim-
ilar to (a), however, contour C'; is placed across the object boundary. Those
contour segments of C'; that are inside object boundary will be pulled towards
object boundary and the rest of contour C'; will expand and wrap around the
object boundary. The segments inside object boundary and outside will not col-
lapse to each other. (c) The object in this case contains an internal boundary.
The behavior of C'; and C is similar to that in (a). Contour C'3 will expand
itself to capture the internal boundary. Three contours will not collapse to each
other, while capturing both boundaries. (d) Contours C; and C> are now initial-
ized across external and internal boundaries, respectively. The behavior of C'y
is similar to that in (b). The contour segments of C> that are inside the object
(gray area) will be attracted to the object internal boundary that is initially inside
contour C. The other contour segments of C'> will expand to capture the rest
internal boundaries. No contour collapsing will occur, either. GVF contours, as
an example, will collapse to each other in all above scenarios.

danger of collapsing to itself. Meanwhile, it still has the flex-
ibility of splitting and merging. Contours or contour segments
inside and outside object of interest freely merge together, while
those in the vicinity of the object boundary are competing for
edges. It thus allows random initialization where multiple con-
tours can be arbitrary placed across the image (e.g., see Fig. 11).

The unique properties of this edge-based force interactions,
i.e., dynamic force field and bidirectionality with anti-collapsing
ability, provide a good foundation to improve initialization in-
variancy. However, in conventional level set methods, active
contour is not able to create new components away from zero
level set (existing contours) since periodic re-shaping the level
set surface is necessary to maintain numerical stability. Ramlau
and Ring [16] suggested to insert new contours once current
contours were stabilized and examine the data fitting to deter-
mine whether to keep the new contour. However, this insertion
and deletion can be difficult for complex images, particularly
when segmenting small objects. Note the first term in (4) is
effectively a weighted length minimization flow which can be
achieved by minimizing this energy

&= a/g(x) [VH(P)| dx 5)

where H(.) is the Heaviside function. The second term in (4)
can be viewed as an area minimization flow weighted by a triple
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Fig. 3. From left: Initial level set surface, Chan—Vese level set surface after a
few iterations, and level set surface using constrained level set updating after
the same number of iterations.

product. Thus, the corresponding energy functional can be ex-
pressed as

(1) /(B(x) R)H(®)dx ©)

Q

x ‘r(x)>> H(®)dx

where R is a binormal unit vector, which is computed from the
cross product of level set normal and its tangent vector, and it is
perpendicular to the image plane. The active contour partition
can then be carried out by minimizing the combined energy £ =
&1 4 &. Minimization of this energy functional is possible via
gradient descent using variational calculus

Vo
¢, = ag(x)V- (|V<I>|
where 6(.) is the Dirac delta function. Following [6], we choose
the regularized delta function as 6.(z) = ¢/(m(e? + 22)), with
e = 1 so that its discretization has a support larger than zero
which permits the perturbation away from zero level set. This
updating scheme allows our active contour to create new con-
tours away from existing ones, which gives great flexibility in
initialization. To the best of our knowledge, there is no edge-
based approach reported in the literature that has such degree of
initialization independency.

However, also due to that delta function, 6.(.), level sets close
to zero level update much faster than others. This results in steep
gradient around zero level set, which causes irregularities, de-
stroys surface smoothness, and can slow down the contour evo-
lution as more levels are pushed away from zero level set (see
Fig. 3 as an example). An intuitive way to alleviate this problem
is through constrained level set updating, that is, we empirically
restrain the speed of level set updating for each iteration, i.e.,
|®(x,t 4+ 1) — ®(x,t)| < 7. From our experiments, we have
found that using the level set time step as a guidance for the
updating constraint, i.e., 7 = At, provides a good tradeoff be-
tween the degree of constrain and the speed of level set updating.
It significantly reduces the risk of steep gradient. Fig. 3 shows an
example of level set updating. Moreover, we propose to reduce
the number of level set levels to a narrow band of zero level set,
i.e., limit the range of the level set values by thresholding the
level set to a narrow band. This significantly speeds up the con-
vergence, particularly for creating new contours far away from
existing ones.

This empirical approach, however, cannot guarantee the
smoothness of the level set surface. Instead of implicitly
imposing level set smoothing constraint, alternatively, we
can explicitly smooth the level set surface to remove sharp

) 5(®)— (1—a) (B(x) - R) 6(®) (7)

Fig. 4. First row: Steep level set surface and its evolution using proposed con-
strained level set diffusion method. Second row: Significant amount of inde-
pendent noise is added to the level set function and its diffusion result using the
proposed method. The figure in the right end of each row shows the stabilized
diffusion result.

slopes based on anisotropic diffusion, which has been found
very useful in, for example, edge detection [18]. Consider the
following anisotropic diffusion equation:

O, = V- (c(®,1) VD) (8)

where ¢(.) denotes a diffusion function. Thus, ¢ is smoothed
across level sets subject to the condition specified by c. Conven-
tionally, level set function is initialized as a signed distance field,
which has the characteristic of unit gradient magnitude [17], 1.e.,
|[V®| = 1. Since we are only interested in reducing steep slopes
and flat level set surfaces away from zero level are encouraged
in order to develop new contours, the diffusion function can be
specified as ¢ = H(|V®| — 1). To recap, due to the use of delta
function, level sets near zero level are very unlikely developing
any flat slopes. Thus, the constrained level set diffusion can be
formulated as

O, = V- (H([VP| - 1) VD). ©)

The diffusion is largely inactive when |[V®| <= 1 and actively
takes place when |V ®| > 1. Steep surfaces are most likely occur
near zero level set since these level sets updates much faster than
those far away from zero level according to the delta function.
Thus, this diffusion predominantly takes place around zero level
set. It effectively minimize steep surfaces and also smoothes the
zero level set, i.e., contour. The first row in Fig. 4 provides an ex-
ample of constrained diffusion of a steep level set surface, i.e.,
[V®| > 1. The proposed constrained diffusion effectively re-
duced level set gradient where necessary while maintaining its
surface regularity. We also can see that when |[V®| > 1, (9) be-
comes the well studied heat equation with unit diffusivity. One
of its well known properties is that any discontinuity will be
quickly and effectively smoothed out. Thus, the proposed diffu-
sion scheme can prevent the level sets around zero level from de-
veloping any irregularities and maintain their smoothness. The
second row in Fig. 4 demonstrates the smoothing effect of this
level set diffusion. A significant amount of noise was artificially
introduced to a steep level set surface (as shown in the first
row). The proposed method regularized the surface while re-
ducing the level set steepness. Surface irregularities introduced
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by, for example, accumulated numerical errors due to local esti-
mation of gradient using finite difference method or nonuniform
surface propagation due to the use of delta function, can be ef-
fectively removed. This intrinsic regularization allows the level
set function to evolve without reinitialization, which provides
possibilities for more sophisticated topological changes, such
as developing internal boundaries. It also allows the level set
function to update more efficiently since the distortion by the
delta function is constrained. The regularized Heaviside func-
tion H, = (1/2)(1 + (2/7) tan™'(z/€)), as introduced in [6],
can be used so that it is coupled with the regularized delta func-
tion, i.e., H. = 6., and a smooth transition between different
level sets. It is worth noting that this regularized Heaviside func-
tion creates a much larger support. As a result, level sets with
gradient magnitude less than one will also have some diffusion
effect. However, this diffusion is very limited. A smaller € value
can be used, e.g., ¢ = 0.5, to reduce this effect. In practice, the
regularized Heaviside function provides a smoother transition
than a strict step function, which is beneficial for maintaining
surface regularity.

As mentioned earlier, two different A values result in two op-
posite current directions on object boundary, i.e., O(x,\ =
1) = —O(x,A = 2). Following (1) and (2), we then have
B(x,A = 1) = —B(x, A = 2), which further leads to F (x, A =
1) = —F(x, A = 2). In other words, the force is imposed in op-
posite direction along the normal for A = 1 and A = 2. So, as
an example, if A = 1 expands the contour, A = 2 will shrink it.
Since we are using level set, this means if A = 1 lifts up the level
set values to positive then A = 2 will push down the level set
values towards negative. Because the proposed method allows
the level set to continuously evolve itself, the two level set func-
tions eventually will be in the opposite phase. The zero level set,
i.e., contour, however reaches the same place. Fig. 6 provides an
example of level set evolution under different \ values.

Notably, very recently in [17], the authors proposed a level set
diffusion term in order to maintain the level set function close
to the signed distance field, i.e., ®; = V- ((1—(1/|V®]|))VD).
This can be considered as choosing the diffusion function ¢ =
1 — (1/|V®|). Diffusion takes place whenever |V®| # 1. Al-
though this avoids re-initialization, it penalizes perturbations
away from zero level set. It also creates unnecessary peaks and
valleys in the regions away from zero level set in order to confine
it to the signed distance function locally. For our purposes, dif-
fusing level sets where [V®| < 1 is not strictly necessary since
we allow the level set surface to bend over to cross zero level
in order to create new components, during which a decreasing
of level set gradient for those regions is desirable. The risk of
flat level set surface around zero level is very small due to the
use of delta function. Thus, we can incorporate (9) into (7) to
impose constrained level set diffusion. However, for simplicity
and also due to the fact that this diffusion has the effect of con-
tour smoothing, we replace the curvature term by this level set
regularization term

b, =aV - (H(|VP|—1)VP) — (1 — a) (B(x)-R) 6.(P).

(10)
This constrained diffusion imposes inherent level set regulariza-
tion, which ensures level set smoothness and prevents it from
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developing irregular surfaces, particularly, around zero level.
The level set evolution becomes much more efficient. More-
over, it can handle more sophisticated topological changes than
splitting and merging. It allows the active contour to develop
new components, which is critical, for example, to detect in-
ternal boundaries. As a result, this makes it possible for the con-
tours to reach those object boundaries that are occluded from
the initial contour. This significantly improves its initialization
independency.

Fig. 5 provides a comparative example of level set updating
using different schemes. The underlying internal and external
forces are identical. The level set is initialized in a way such
that those levels outside a narrow band of zero level are flat-
tened in order to speed up the convergence as discussed earlier.
As shown in row (a), level set updating using the Chan—Vese
method without regularization quickly developed very steep
slopes and destroyed surface smoothness. The signed dis-
tance-based diffusion method [17], shown in row (b), produced
numerous local peaks and valleys which was not desirable and
could result in erroneous contours. The proposed conditionally
constrained diffusion scheme effectively prevented the surface
from developing steep slopes and maintained smoothness.

Thus, without the need of reconditioning the level set func-
tion, the underlying force field can continuously deform the
level set surface. As a result, the proposed method has a great
freedom in contour initialization, which is a significant improve-
ment for edge-based methods. To summarize, the improvements
on initialization independency are achieved due to the following
three attributes of the proposed method.

1) The dynamic nature of the force field. The image force al-
ways perpendicularly imposes on the active contour and
adapts itself according to contour evolution. This is math-
ematically convenient to prove. According to (2), force F
is always perpendicular to tangent vector of the contour.
Thus, the force is perpendicular to the contour and imposed
along the normal direction, inwardly or outwardly. This en-
sures the contours to be pushed or pulled in their normal
direction until they reach the object boundaries defined by
the interactions among image gradients. The active con-
tour will not suffer from those convergence issues related
to static force field. It thus significantly helps to improve
initialization independency.

Fig. 7 provides a comparative example of the GGVF field
and the dynamic force field of the proposed method. The
testing image consists multiple objects with three different
types of topologies. The first row shows the initial active
contour position and converged result using GGVF. The
contour failed to reach deep concavity. A close examina-
tion of the vector field at the entrance of the concavity,
as shown in the next two images, showed that once the
evolving contour (indicated in white) became tangent to
the underlying vectors it could not propagate further re-
sulting in false convergence. Thus, for GVF or any other
static force field, the initial contour needs to be carefully
placed to avoid such issues. The second row gives the seg-
mentation result using the basic MAC model with the same
initialization. It successfully reached the deep concavity.
The force field at the concavity entrance clearly show its
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Fig. 6. Top two rows: contour and level set evolution when A = 1. Bottom two
rows: contour and level set evolution when A = 2. The two level set evolved
in opposite directions and resulted in opposite phase, with the zero level set
reached the same place.

dynamic nature so that the forces are always perpendicu-
larly imposed on the contour. The MAC model thus will
not suffer from those convergence issues related to static
force fields. However, although it provides great initializa-
tion flexibility, dynamic force field alone does not allow
the active contour to capture all object boundaries, e.g., see
Fig. 7.

Unique bidirectionality. The proposed active contour has
a unique bidirectionality which prevents the contours
from reaching the same object boundaries. This allows
the contour to be initialized across object boundaries
without the danger of collapsing to itself. Thus, the
proposed method can handle random initializations, for
example, as shown in Fig. 11. We can also verify this by

2)

“300

3)

159

00 0o

Fig. 5. Level set evolutions under the same internal and external forces but using different level set updating schemes. (a) Chan—Vese level set updating, (b) signed
distance constrained diffusion [17], and (c) proposed constrained level set diffusion.

examining (1) and (2). Suppose we have two infinites-
imal contour segments, Cx, and Cx,, which are nearest
to an infinitesimal edge segment with edge orientation
O(s), and one on each side of the edge. According to
(1), we have B(Cx,) f( )O(s) x (Rx,s/R% ) and
B(Cx,) o f(s)O(s) x (Rx,s/R%,). For convenience,
we assume Ry,s = Rx,s and take unit value for the
constants. Since the contour segments are on opposite side
of the edge and according to cross product computation,
it is clear that B(Cx,) = —B(Cx,). Thus, according to
(2), the external force is imposed in the inward normal
direction for one contour segment and outward normal
direction for the other. This leads one contour to expand
and capture the edge and the other to shrink and propagate
away from the edge, which effectively prevents them from
collapsing to the same edge segment.

This ability is further illustrated in Fig. 8, where mul-
tiple contours were initialized on both sides of an object
boundary. The bidirectionality of GGVF resulted the
contours collapsed to the same boundary, as shown in the
first row. The unique bidirectionality of the MAC model,
however, prevented them from collapsing to each other
on object boundaries (see the second row). This property
is essential when dealing with arbitrary number of initial
contours. It is necessary in order to improve initialization
independency. Note, however, this bidirectionality and
dynamic force field are still not able to localize all the
objects in the image.

Intrinsic level set regularization for advanced topological
changes. The proposed constrained level set diffusion not
only ensures surface regularity without reinitialization, but
also allows more complex topological changes, such as de-
veloping internal boundaries and creating new components
far away from existing contours. Using regularized delta
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Fig. 7. First row, from left: Testing image with an initial GGVF contour, stabilized GGVF result, close-up of the vector field at the entrance of the concavity, and
the final image shows the GGVF failed to propagate further once the contour (in white) was tangent to the underlying vectors. Second row, from left: Result of the
basic MAC model, initial force field, adapting force field while the contour approaching the concavity, and the last image shows the dynamic force field continued

to push the contour into the concavity to reach the object boundary.

Fig. 8. Bidirectionality—Multiple contours were initialized on both sides of
an object boundary. First row: GGVF contours collapsed to each other while
reaching to the same object boundary from both sides. Second row: Unique bidi-
rectionality of the proposed method successfully prevented contour collapsing.

function allows the evolution acts on all levels, not just lo-
cally, which also helps to achieve global minimum. Note,
since the proposed method uses a single level set function,
it is not possible to handle multiclass segmentation or mul-
tiple junctions. More than one level set functions is needed
in order to handle this kind of topology [19].

In Fig. 9, the initial contour was placed inside one of the
objects. Without the proposed level set evolution scheme,
the MAC could not reach those object boundaries that were
fully occluded from the initial contour (shown in the first
row). The second row shows the proposed method success-
fully localized all the objects. The initial contour can be
placed anywhere across the image, i.e., the placement of
the initial contour does not affect the final segmentation
result. We also show the result using a different A\ value in
the third row, i.e., A = 2 instead of 1. It produced different
contour evolution, however, the same result.

The combination of these three properties gives the proposed
active contour great flexibility in initialization and helps to
achieve significant improvements in initialization indepen-
dency. The nature of its force field serves as the foundation,
whereas the level set updating scheme facilitates the necessary
contour evolution. In fact, we show later that the proposed

Fig.9. Initial contour was placed inside one of the four objects. First row: Basic
MAC model failed to localize other objects which were occluded from the initial
contour. Second row: Proposed level set updating scheme helped the MAC to
localize all the objects (A = 1). Third row: Proposed method with A = 2.

method can be completely initialization-free, i.e., no initial
contour. To the best our knowledge, this degree of initialization
independency for edge-based model has not been reported
before.

C. Anisotropic Force Diffusion

In [1], we proposed to perform nonlinear diffusion of the
magnetic field in order to overcome noise interference when
necessary. Here, we generally follow this approach but also add
an edge saliency measure to the weighting function in order to
better preserve the edges. Let B(x) denote the signed magni-
tude of B(x). The diffused field B(x) is obtained by solving

Bi(x) = p (B(x)) V’B(x) - ¢ (B(x)) (B(x) — B(x)) (11)

where p(B(x)) = e (BGISCGI/E) () = 1 — p(.), and
S(.) is an edge saliency measure which is measured based on
edge strength and orientation coherency, i.e., S(x) = f(x)v(x)
where v(.) is the variance of orientation in a local neighborhood,
e.g., 9 x 9 as used here. More sophisticated saliency measures,
e.g., [20], can be used. Weighting the flux magnitude with S(.)
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Fig. 10. Recovering broken edges—From left: Edge map which has significant amount of weak and broken edges, initial shape, intermediate stages, and recovered

shape (stabilized result) using the proposed method (K = 0).

Fig. 11. Initialization flexibility—Row (a): Proposed method with numerous initial contours randomly placed across the image domain. Row (b): Cross boundary
initialization. Row (c): Single initial contour placed inside one of the two objects; the other object is occluded from the initial contour. Row (d): Proposed method
without any initial contour (A = 1). Row (e): Proposed method without any initial active contour (A = 2). ' = 0.02 for all cases.

further ensures as little diffusion as possible at object bound-
aries, while areas lack of consistent support from edges result
in substantial diffusion.

III. EXPERIMENTAL RESULTS

The parameters involved are: «, A, and K. The value of « is
fixed to 0.25 and A can be disregarded as a parameter since both
values lead to the same result. The diffusion parameter K should
be used when noise interference is significant. We provide the
value of K for each example. Due to the intrinsic level set regu-
larization, the time step for level set updating can be much larger
than that in a conventional method. Following [17], we tested a
wide range of time steps and similarly found that At < 0.25
gave us very stable results.

The proposed method has been tested on a variety of synthetic
and real images. In Fig. 1, to briefly recap, five methods were
tested on a synthetic image containing two objects with internal
holes. Only the proposed method could recover both the outer
and inner boundaries. The ability to localize internal boundaries
is very important in order to improve initialization invariancy.
It also gave an example where the piecewise constant assump-
tion is not sufficient due to inhomogeneity but the edge-based
assumption could still be valid.

Fig. 12. From left: Complex shape with 50% Gaussian noise and the recovery
result using force diffusion (K = 0.2); heavily thresholded edge map with
numerous broken and weak edges and its recovery result without force diffusion,
ie., K = 0.

However, edge-based assumption can often be compromised
by weak edges, where intensity discontinuity is small but still
can be important in localizing the object. In Fig. 10, we arti-
ficially create weak and even broken edges by heavily thresh-
olding the edge map. The proposed method still managed to re-
cover the objects without any dedicated initializations.

Fig. 11 further demonstrates such initialization flexibility. In
row (a), numerous initial contours were randomly placed. The
unique bidirectionality prevented the contours from collapsing
to each other on object boundaries. A cross boundary initial-
ization was shown in row (b). The contour did not collapse to
itself, but split and converged correctly. In row (c), a single ini-
tial contour was placed inside one of the two objects. Despite
the occlusion, the proposed method still localized both objects.
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Fig. 13. Segmentation comparison. Row (a): Geodesic; row (b): GGVF; row (c): GeoGVF; row (d): CPM [14]; row (e): Chan—Vese model; row (f): proposed
method without any initial active contour (/X = 0.03); row (g): proposed method with a cross boundary initialization; row (h): proposed method with horizontal
lines as initial contours. Note the initial contours or particles for all other edge-based methods were carefully placed in order to achieve best results.

In row (d), the initial level set was generated in a way such that
there was no zero level, i.e., without any initial active contour.
New contours were still able to emerge and correctly converged
to the boundaries. In row (e), the same initialization was used
but with opposite edge orientation, i.e., A = 2 instead of 1.
This resulted in a different contour evolution, however, the re-
sult was identical. For example, if A = 1 expands the contour,
A = 2 would shrink the same contour at the same position. In
conventional level set updating, this would be a problem since
the user has to choose an appropriate A value beforehand. How-
ever, with the proposed level set updating scheme, the force field

can continuously deform the level set function without the need
of re-conditioning so that new contours will emerge to localize
the objects.

Fig. 12 shows a complex shape with 50% noise corruption. In
the first row, the force diffusion was applied and achieved good
result. In the second row, we performed heavy edge thresh-
olding, which removed most noise edges but also produced
numerous broken and weak edges. The proposed method still
managed to recover its shape. This demonstrates the flexibility
of the proposed method in dealing with image noise. However,
it is worth noting that this is after all an edge-based method.
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Fig. 14. Segmentation without initial active contour (color images). Top two rows—Segmenting the images without any initial active contour. From left: Skin
lesion image which contains weak edges and image noise (X~ = 0.2); a horse image with large color variations and weak edges (I = 0.2); a blood vessel image
with very complex shape and topology, varying intensity, and weak edges (X = 0); a fish swarm image with inhomogeneous color distribution, complex topology,
and weak edges (K = 0). Bottom two rows—Segmenting the images using horizontal lines as initial contours (with the same parameter settings as used in the
top two rows). Note the result of the horse image is dimmed in order to better visualize the contours.

Overwhelming noise interference will inevitably degrade its
performance.

Fig. 13 gives comparative results on a CT bone scan. Note, for
methods we compared against, the initial contours were care-
fully placed in order to achieve best possible results. However,
due to excessive amount of weak edges, none of those methods
succeeded. The geodesic active contour and CPM method
failed on weak edges. Besides suffering from the convergence
issue, the GGVF active contour failed in neighboring weak
edge and strong edge and contours collapsed to each other. The
GeoGVF active contour showed very limited improvement. The
surrounding soft tissue caused the bone area and the rest regions
statistically inseparable, which led the Chan—Vese model to
over-segment the bone regions. The proposed method achieved
good result even without any initial active contour [row (f)].
In row (g), the result of a cross boundary initialization is also
given. The initial contour was occluded from one of the objects
to be segmented. We further tested the stability of the proposed
method by using horizontal lines as initial contours, see row
(h). There was no discernable difference between the results
obtained using these three completely different initialization
methods.

Examples of the proposed method on color images are given
in Fig. 14. The lesion image contains significant amount of dif-
fused edges. In the second example, there are large color vari-
ations in the horse body region, as well as weak edges. The
blood vessel image is extremely challenging for edge-based ac-
tive contour methods, since it contains numerous thin, complex
structures, which makes it practically impossible for other edge-
based methods, such as GVF. There are also intensity variations
and plenty of weak edges. The proposed method not only lo-
calized distinctive structures with relatively large intensity con-
trast but also complex, detailed structures with much less con-
trast. The final example again demonstrates the initialization
flexibility of the proposed method. The image contains a large
number of objects with inhomogeneous color distributions and
weak edges. The proposed method produced very good results
in all cases, even without any initial contour (top two rows). Ad-
ditional results using horizontal line initialization are also pro-
vided in Fig. 14 (bottom two rows). This again demonstrates the
robustness of the proposed method. Edge detection in color im-
ages was done by following the method in [21].
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IV. CONCLUSION

We presented an edge-based active contour model, which
showed superior performance, particularly, in initialization
flexibility, as well as in handling weak/broken edges and
inhomogeneity. Its novel level set diffusion allows the active
contour efficiently update itself and detect object boundaries
that are initially occluded. It is worth noting that its perfor-
mance relates to the consistency of edge orientation which can
be compromised by excessive amount of noise and busy texture.
However, it does tolerate a fair amount of inconsistency since it
takes into account interactions among gradient vectors, with the
additional help from edge preserved diffusion. Its initialization
flexibility opens new potentials for edge-based methods. It can
be very useful, for example, in automatic object detection and
localization.
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