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 A B S T R A C T

Weakly supervised semantic segmentation (WSSS) aims to achieve pixel-level fine-grained image segmentation 
using only weak guidance such as image-level class labels, thus significantly decreasing annotation costs. 
Despite the impressive performance showcased by current state-of-the-art WSSS approaches, the lack of precise 
object localisation limits their segmentation accuracy, especially for pixels close to object boundaries. To 
address this issue, we propose a novel class activation map (CAM)-based level set method to effectively improve 
the quality of pseudo-labels by exploring the capability of level sets to enhance the segmentation accuracy at 
object boundaries. To speed up the level set evolution process, we use Fourier neural operators to simulate the 
dynamic evolution of our level set method. Extensive experimental results show that our approach significantly 
outperforms existing WSSS methods on both PASCAL VOC 2012 and MS COCO datasets.
1. Introduction

In computer vision, semantic segmentation, that is, classifying pixels 
of an image into predefined categories, is a fundamental and crucial 
task. It plays a vital role in various applications, including environ-
mental perception for autonomous vehicles, lesion detection in medical 
imaging, and object interactions in robotics [1]. Traditional semantic 
segmentation methods rely on pixel-level annotations to be used in a 
fully supervised learning framework, achieving high segmentation ac-
curacy. However, acquisition of precise pixel-level annotations is costly 
and time-consuming in many real-world applications [2–4], rendering 
this paradigm less practical, especially in emerging or specialised fields.

To overcome this limitation of fully supervised methods, weakly 
supervised semantic segmentation (WSSS) exploits more readily ob-
tainable weak labels, such as image-level labels, bounding boxes, or 
scribbles, as supervision guidance. Among these, image-level WSSS 
is particularly appealing due to its minimal annotation requirements. 
An image-level WSSS method typically comprises three processing 
stages [5]: (i) the use of methods such as class activation maps (CAMs) 
to generate initial pseudo-labels guided by image-level annotations; 
(ii) the refinement of these pseudo-labels via methods such as [5,6], 
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and (iii) a re-training stage to train a segmentation model using the 
pseudo-labels.

Recent WSSS work focusses on enhancing the initial label seeds 
generated for the above-mentioned first processing stage. [2,7] extend 
the identifiable regions within CAMs to encompass object parts that are 
less discriminative but semantically relevant, thereby enriching the ini-
tial seeds with more comprehensive semantic information. [8,9] refine 
object boundaries through anti-adversarial manipulations and multi-
scale processing techniques, while [10] integrate auxiliary contextually 
semantic cues to improve the robustness of CAMs and, consequently, 
segmentation accuracy. Despite these advancements, the inherent limi-
tation of CAM-based approaches, namely the lack of distinctive feature 
representations across object boundaries, remains a challenge that 
prevents achieving better segmentation performance. As illustrated in 
Fig.  1, this in turn results in problems, including under-segmentation, 
missing significant parts of an object, and over-segmentation due to the 
CAM region extending beyond the actual object boundaries.

In this paper, we propose a novel CAM-based level set approach 
to address the limitations of existing WSSS methods. Level set frame-
works have been widely applied in unsupervised image segmentation 
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data mining, AI training, and similar technologies. 
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Fig. 1. Over-segmentation and under-segmentation are the main challenging issues in WSSS. Top: input images; bottom: images overlaid with semantic segmentations obtained by 
MCTformer+ [3].
due to their advantage of better boundary convergence driven by an 
energy function minimisation process. A level set approach should 
therefore be suitable to tackle the under/over-segmentation issues in 
WSSS. Meanwhile, the CAMs allow to introduce a better initialisation 
and high-semantic guidance to improve the segmentation quality that 
level set approaches may suffer. Furthermore, we use Fourier neural 
operators (FNOs), originally designed for efficiently simulating partial 
differential equation computations, to improve the convergence effi-
ciency of our level set approach. To our best knowledge, we are the 
first to deploy a level set framework for image-level WSSS.

Our main contributions in this paper are:
• We design the first level set method for image-level weakly su-
pervised semantic segmentation. Our approach is capable of en-
hancing the pseudo-label quality, especially yielding better per-
formance on object boundaries.

• Importantly, our method is model agnostic and can thus be read-
ily plugged into various frameworks for improved segmentation 
performance.

• We introduce Fourier neural operators to accelerate the level 
set evolution process, addressing efficiency issues of traditional 
approaches in big-data applications.

• Extensive evaluation on challenging datasets, such as PASCAL 
VOC 2012, confirms significant performance gains and thus sig-
nificantly improved segmentation accuracy.

The remainder of the paper is organised as follows: Section 2 re-
views related work in the field of weakly supervised semantic segmen-
tation and level sets. Section 3 then introduces in detail our proposed 
CAM-based level set approach. Section 4 presents experimental results, 
demonstrating the effectiveness of our method on benchmark datasets. 
Finally, Section 5 concludes the paper.

2. Related work

2.1. Image-level WSSS

Image-level weakly supervised semantic segmentation approaches 
aim to train semantic segmentation models using only image-level la-
bels. Existing methods typically rely on class activation maps, i.e., heat 
maps derived from a classification network, to produce pseudo-labels 
for segmentation network training. However, these techniques often 
suffer from two significant issues: (i) the generated CAMs tend to cover 
only the most discriminative regions of objects, leading to partial object 
coverage, and (ii) CAMs exhibit pseudo-label ambiguities in regions 
close to object boundaries. Various strategies have been proposed to 
address these problems. Adversarial learning [2] and equivariant regu-
larisation [11] can be used to enhance attention to non-discriminative 
2 
regions. Contrastive learning allows to improve feature representations 
across views [4], while advanced network architectures, such as vision 
transformers and multi-class tokens, can capture global contexts for 
class-specific CAMs [12]. Despite these advancements, the challenges 
of under- and over-segmentation persist.

2.2. Level sets

Level sets have been widely used for image segmentation for over 
three decades [13]. Traditional level set approaches use low-level 
image cues, such as edges and regions, to construct an evolution 
function [14]. However, these methods often struggle to accurately 
initialise and converge to true object boundaries due to the lack of 
high-level semantic information. Deep learning-based methods allow 
to overcome the limitations of traditional level set approaches. On 
one hand, they offer better initialisation of the level set function, for 
example using a deep belief network to predict initial segmentation 
contours [15], while on the other hand, deep learning features can be 
integrated into the level set evolution process, for example by embed-
ding the CNN classification loss into the level set energy function [16], 
initialising the level set function with CNN-predicted edge probability 
maps [17], or incorporating CNN-extracted instance-aware features 
into the level set evolution [18]. By leveraging the obtained high-level 
semantic information, these methods are able to segment images more 
accurately.

In summary, integrating strong semantics from deep learning mod-
els with the flexible geometric representation and evolution mechanism 
of level sets yields a strong foundation for image segmentation. In this 
paper, we propose a novel CAM-based level set approach to tackle the 
challenging image-level WSSS task.

3. Method

3.1. Problem formulation

Given an image dataset containing samples (𝐱𝑖, 𝐲𝑖), where 𝐱𝑖 ∈
R𝐻×𝑊 ×3 is the 𝑖th input image, 𝐲𝑖 ∈ {0, 1}𝐶 is the corresponding 
image-level label indicating the presence of the 𝐶 object categories 
in the image, and 𝐻 and 𝑊  denote the image height and width, the 
goal of WSSS based on image-level labels is to learn a segmentation 
model  that maps an input image 𝐱𝑖 to its corresponding pixel-level 
segmentation mask 𝐬𝑖 ∈ R𝐻×𝑊 ×𝐶 : 

𝐬𝑖 = (𝐱𝑖),  ∶ R𝐻×𝑊 ×3 → R𝐻×𝑊 ×𝐶 . (1)

The three processing stages of WSSS are:
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1. Pseudo-label seed generation: A classification network 𝑓 is trained 
using the image-level labels 𝐲𝑖. The network learns to map input 
images 𝐱𝑖 to their corresponding class activation maps 𝐬𝑠𝑒𝑒𝑑𝑖 ∈
R𝐻×𝑊 ×𝐶 , which serve as pseudo-label seeds: 
𝐬𝑠𝑒𝑒𝑑𝑖 = 𝑓 (𝐱𝑖), 𝑓 ∶ R𝐻×𝑊 ×3 → R𝐻×𝑊 ×𝐶 . (2)

2. Pseudo-label refinement: The pseudo-label seeds 𝐬𝑠𝑒𝑒𝑑𝑖  are refined 
using an optimisation algorithm  to obtain pixel-level pseudo-
labels �̂�𝑖 ∈ R𝐻×𝑊 ×𝐶 : 

�̂�𝑖 = (𝐬𝑠𝑒𝑒𝑑𝑖 ),  ∶ R𝐻×𝑊 ×𝐶 → R𝐻×𝑊 ×𝐶 . (3)

Common optimisation algorithms employed here include PSA 
(pixel-level semantic affinity) [5], IRN (inter-pixel relation net-
work) [6], and dense CRF (conditional random field) post-
processing techniques.

3. Segmentation network training: The segmentation model  is 
trained using the generated pixel-level pseudo-labels ̂𝐬𝑖 as super-
vision signals. The model learns to map the input image 𝐱𝑖 to its 
corresponding pixel-level segmentation mask 𝐬𝑖: 

𝐬𝑖 = (𝐱𝑖),  ∶ R𝐻×𝑊 ×3 → R𝐻×𝑊 ×𝐶 . (4)

3.2. Motivation and method overview

CAMs form a key component in a typical WSSS approach since they 
provide pseudo-labels to train the segmentation network. However, 
the sub-par quality of CAMs limits WSSS performance due to their 
focus on the most discriminant object regions. Intuitively, level sets 
well complement CAMs due to their focus on boundary convergence 
driven by an energy minimisation process. In this paper, we therefore 
design the – to our knowledge – first level set approach for image-level 
WSSS. An overview of our approach is illustrated in Fig.  2, which shows 
that we employ CAMs as an initialisation strategy for our level set 
approach, while the level set convergence process enhances the feature 
quality, which in turn improves the CAM quality to generate better 
pseudo-labels.

Given an image dataset  = {(𝐱𝑖, 𝐲𝑖)}𝑁𝑖=1, we first use a backbone 
network 𝑓 to extract feature maps 𝐅 ∈ R𝐻×𝑊 ×𝑘 for each input image 𝐱
as 
𝐅 = 𝑓 (𝐱). (5)

These feature maps 𝐅 generate CAMs and initialise the level set 
functions. The CAMs 𝐂 highlight the regions most relevant to each 
object category and are obtained as 

𝐂 = ReLU
(

∑

𝑘
𝑤𝑘𝐅𝑘

)

, (6)

where 𝑘 is the index of channels. Simultaneously, the feature maps 𝐅
are fed into the Level Set Initialisation Module 𝑓𝐿𝑆𝐼  to generate the 
initialised level set functions Φ0 as 
Φ0 = 𝑓𝐿𝑆𝐼 (𝐅). (7)

To supervise the initialisation of the level set functions, we trans-
form the CAMs into signed distance functions (SDFs) 𝐃 using a distance 
transform function  . The SDFs serve as labels for the initialised level 
set functions. Next, the initialised level set functions Φ0 are passed 
to the Level Set Evolution Module 𝑓𝐿𝑆𝐸 to obtain the target level set 
functions Φ𝑇  as 
Φ𝑇 = 𝑓𝐿𝑆𝐸 (Φ0). (8)

Here, we use an FNO to simulate and speed up the level set evolution 
process with the FNO parameterising the partial differential equation 
governing the level set evolution. Finally, the evolved level sets are 
used to update our backbone model for better CAM generation.
3 
3.3. CAM-guided level set initialisation

To provide an effective level set initialisation and to accommodate 
the formulation as a signed distance function, we apply a distance 
transform function   that transforms the initial CAM into SDF, guiding 
the generation of the level set initialisation functions.

Given a CAM 𝐂, the class probabilities at pixel (𝑥, 𝑦) are computed 
as 
𝑐(𝑥, 𝑦) = argmax

𝑐
(softmax(𝐂(𝑥, 𝑦))) . (9)

Based on these probabilities, a binary mask for each class 𝑐 is 
obtained as 

𝑀𝑐 (𝑥, 𝑦) =

{

1 if 𝑐(𝑥, 𝑦) = 𝑐,
0 otherwise.

(10)

The SDF for class 𝑐 is defined by applying the Euclidean distance 
transform 
𝑓EDT(𝑥, 𝑦) = min

(𝑥′ ,𝑦′)∈{(𝑥,𝑦)∣𝑀𝑐 (𝑥,𝑦)=1}
‖(𝑥′, 𝑦′) − (𝑥, 𝑦)‖ (11)

to each binary mask to yield 

𝑐 (𝑥, 𝑦) =

{

−𝑓EDT(𝑀𝑐 )(𝑥, 𝑦), if 𝑀𝑐 (𝑥, 𝑦) = 1,
𝑓EDT(𝑀𝑐 )(𝑥, 𝑦), if 𝑀𝑐 (𝑥, 𝑦) = 0.

(12)

3.4. FNO-driven level set evolution

We employ Fourier neural operators (FNOs) in our level set evo-
lution framework due to their ability to parameterise continuous op-
erators, enabling end-to-end training of the evolution process and 
significantly reducing the computational complexity through efficient 
operations in Fourier space.

An object boundary can be defined as a zero level set 𝛤  of 𝜙(𝑥, 𝑦): 

𝛤 = {(𝑥, 𝑦) ∣ 𝜙(𝑥, 𝑦) = 0}, (13)

where 𝛤  represents the contour or boundary of an object, and 𝜙(𝑥, 𝑦)
is a scalar function defined over the image domain.

However, level set methods face challenges when dealing with 
multiple objects and complex shapes. To address this, we introduce 
a set of level set functions, called a level set group (LSG), to handle 
multiple objects. Given an initialised LSG Φ0 = {𝜙0

1, 𝜙
0
2,… , 𝜙0

𝑐}, where 
𝑐 is the number of object categories, our goal is to obtain an LSG 
Φ𝑇 = {𝜙𝑇

1 , 𝜙
𝑇
2 ,… , 𝜙𝑇

𝑐 } through the Level Set Evolution Module 𝑓𝐿𝑆𝐸 .
We further adopt Fourier neural operators for improved efficiency 

of the level set evolution process. An FNO is a type of neural op-
erator, which is introduced to extend neural networks beyond finite 
dimensions and to enable operator learning to efficiently solve partial 
differential equations [19]. FNOs use convolutional kernels in Fourier 
space to significantly improve the efficiency and accuracy of PDE 
solving [20].

In traditional neural operators, the network processes multiple lay-
ers, updating function values in an iterative fashion to approximate PDE 
solutions. This process starts with iterative updates 
𝜙𝑡+1(𝑥) = 𝜎

(

𝐿(𝜙𝑡(𝑥)) +𝐾𝜃(𝑎, 𝜙𝑡(𝑥))
)

, ∀𝑥 ∈ , (14)

where 𝐿() represents a local linear transformation, 𝜎 is a non-linear 
activation function, and 𝐾𝜃() is an integral kernel operator defined as 

𝐾𝜃(𝑎, 𝜙𝑡(𝑥)) = ∫𝐷
𝜅𝜃(𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦))𝜙𝑡(𝑦) 𝑑𝑦, ∀𝑥 ∈ , (15)

where 𝜅𝜃() is a kernel function parameterised by 𝜃.
To enhance computational efficiency, FNOs introduce a Fourier 

integral operator by transforming the kernel operator into Fourier space 
as 
𝐾 (𝜙𝑡(𝑥)) = −1 (𝑅( (𝜙𝑡(𝑥)))

)

, ∀𝑥 ∈ , (16)
𝜃
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Fig. 2. Overview of our proposed approach.
where  () and −1() denote the Fourier and inverse Fourier transforms, 
respectively, and 𝑅() represents a linear transformation in Fourier 
space.

As illustrated in Fig.  2, we introduce a set of FNOs, called an 
FNO group 𝑓𝐿𝑆𝐸 , to handle a level set group. Each FNO consists 
of multiple FNO layers, each comprising three main components: a 
Fourier transform layer, a linear transform layer, and an inverse Fourier 
transform layer. The Fourier transform layer converts the input level set 
function 𝜙𝑡−1

𝑖  from the spatial domain to the frequency domain. The 
linear transform layer is a convolutional layer that applies convolution 
operations in the frequency domain. Finally, the inverse Fourier trans-
form layer converts the responses back to the spatial domain, yielding 
the updated level set function �̂�𝑡

𝑖.
To establish interaction and information exchange within an LSG, 

we introduce a channel attention mechanism after the FNO layers, 
inspired by SE-Net [21]. This generates a set of weights 𝐰 = {𝑤1, 𝑤2,… ,
𝑤𝑐}, which are used to compute a weighted combination of the updated 
results from different level set functions. Furthermore, we introduce 
a residual connection mechanism that adds the output of a linear 
transformation applied to the input level set function 𝜙𝑡−1

𝑖  to the output 
of the FNO. This facilitates gradient propagation and improves network 
training.

The updated level set function 𝜙𝑡+1
𝑖 (𝑥) is thus expressed as 

𝜙𝑡+1
𝑖 (𝑥) = 𝜎

(

𝐿(𝜙𝑡
𝑖(𝑥)) +𝑤𝑖−1 (𝑅𝑖( (𝜙𝑡

𝑖(𝑥)))
))

, (17)

where 𝜎 is a non-linear activation function, and 𝑤𝑖 is the weight, 
obtained from the channel attention mechanism, for the 𝑖th level set 
function.

In an iterative manner, the level set evolution module thus gradually 
optimises the level set functions Φ𝑇 , allowing them to converge to the 
contours of the target objects.
4 
3.5. Energy loss function

In image segmentation, the level set method is used to identify and 
track the dynamic evolution of object boundaries as 
𝜕𝜙
𝜕𝑡

+ 𝐸|∇𝜙| = 0, (18)

where 𝐸 is a function representing the velocity field, and |∇𝜙| denotes 
the magnitude of the gradient of 𝜙.

A prominent application of this method is the Chan–Vese model 
[22], which simplifies the Mumford–Shah function, and employs 

𝐶𝑉 (𝜙, 𝜇, 𝜈) =∫𝛺
|𝐼(𝑥, 𝑦) − 𝜇|2 𝐻(𝜙(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

+∫𝛺
|𝐼(𝑥, 𝑦) − 𝜈|2 (1 −𝐻(𝜙(𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

+𝛾 ∫𝛺
|∇𝐻(𝜙(𝑥, 𝑦))| 𝑑𝑥 𝑑𝑦

(19)

as the energy function for segmenting images, where 𝐻 denotes the 
Heaviside function, and 𝛺 represents the image space. The zero cross-
ing contour 𝛤 = {(𝑥, 𝑦) ∶ 𝜙(𝑥, 𝑦) = 0} of the level set 𝜙 divides 
the image space into two disjoint regions: the inside of the contour 
𝛺1 = {(𝑥, 𝑦) ∶ 𝜙(𝑥, 𝑦) > 0}, and the outside the contour 𝛺2 = {(𝑥, 𝑦) ∶
𝜙(𝑥, 𝑦) < 0}. The first two terms in the energy function aim to fit the 
data by minimising the squared differences between the image 𝐼(𝑥, 𝑦)
and the mean values 𝜇 and 𝜈 inside and outside 𝛤 , respectively, while 
the third term regularises the zero-level contour with a non-negative 
parameter 𝛾. Image segmentation is thus achieved by finding the level 
set function 𝜙(𝑥, 𝑦) = 0 with 𝜇 and 𝜈 that minimise the energy 𝐶𝑉 .

3.5.1. Incorporating class-wise information through CAMs
To incorporate class information into the level set evolution process, 

we use class activation maps to weigh the original input data. In 
particular, we employ a weighting function  , which combines the 
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CAM-generated weights 𝑐 (𝑥, 𝑦) with the input X𝑐 (𝑥, 𝑦) compute the 
weighted input 
I𝑐 (𝑥, 𝑦) = (X(𝑥, 𝑦),𝑐 (𝑥, 𝑦), 𝛼)

= X(𝑥, 𝑦)
[

(1 − 𝛼) + 𝛼𝜎(𝑐 (𝑥, 𝑦))
]

.
(20)

The weighted input I𝑐 (𝑥, 𝑦) is then fed into the energy function to 
compute the loss as 

𝐸(Φ, I) =
𝐶
∑

𝑐=1

(

∫𝑐
|

|

I𝑐 (𝑥, 𝑦) − 𝜇𝑐 ||
2 𝐻(𝜙𝑐 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

+∫𝑐
|

|

I𝑐 (𝑥, 𝑦) − 𝜈𝑐 ||
2 (1 −𝐻(𝜙𝑐 (𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

)

+ 𝛾
𝐶
∑

𝑐=1
∫𝑐

|

|

∇𝐻(𝜙𝑐 (𝑥, 𝑦))|| 𝑑𝑥 𝑑𝑦,

(21)

where 𝜇𝑐 is the within-class mean 

𝜇𝑐 (𝜙𝑐 ) =
∫𝑐 I𝑐 (𝑥, 𝑦)(𝜙𝑐 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

∫𝑐 𝜎(𝜙𝑐 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
, (22)

and 𝜈𝑐 the between-class mean 

𝜈𝑐 (𝜙𝑐 ) =
∫𝑐 I𝑐 (𝑥, 𝑦)(1 − (𝜙𝑐 (𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

∫𝑐 (1 − (𝜙𝑐 (𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦
. (23)

To effectively exploit both low-level information from images and 
high-level information from feature maps, our final energy loss, ob-
tained as 
Energy = 𝐸(Φ𝑇 , 𝐱) + 𝐸(Φ𝑇 ,𝐅), (24)

incorporates contributions from both types of inputs. This compre-
hensive approach allows to leverage the distinct yet complementary 
information from each input type, thereby improving the ability to 
accurately track object contours during the level set evolution.

3.5.2. Overall loss
To effectively guide the level set evolution, our overall loss function 

integrates two key components, a mean squared error (MSE) loss and 
the energy loss. The MSE loss MSE, computed as 

MSE = 1
𝑁

𝑁
∑

𝑖=1
‖Φ0

𝑖 − 𝐃𝑖‖
2
2, (25)

with 
𝐃 =  (𝐂), (26)

supervises the initialisation of the level set group using the SDFs 
transformed from CAMs, while the energy loss Energy further drives 
the evolution process, ensuring accurate object contour tracking.

The overall loss is the defined as 
 = 𝜆1MSE + 𝜆2Energy, (27)

where 𝜆1 and 𝜆2 are weighting factors to balance the contribution of 
each loss component.

4. Experimental results

4.1. Experimental settings

We conduct experiments on the PASCAL VOC 2012 dataset [23], 
which comprises 21 categories including a background category, and 
on the MS COCO 2014 dataset [24], which contains 81 categories 
including a background category. Following [2,5,8,11], the VOC2012 
dataset is augmented with the SBD dataset [25], providing a total of 
10,582 training images, 1449 validation images, and 1456 test images, 
while the COCO2014 dataset contains 82,783 training images and 
40,504 validation images. Only image-level labels are employed for 
5 
Table 1
mIoU results on PASCAL VOC train set with and without our proposed method.
 Seed Pseudo-label 
 SEAM [11] 55.4 63.6  
 SEAM + proposed method 58.5 (+3.1) 66.8 (+3.2)  
 MuSCLe [4] 58.4 66.8  
 MuSCLe + proposed method 60.9 (+2.5) 69.6 (+2.8)  
 MCTformer+ [3] 68.8 76.2  
 MCTformer+ + proposed method 71.1 (+2.3) 77.1 (+0.9)  

WSSS training. All experiments are performed on an RTX 3090 GPU 
using the PyTorch framework [26].

In our FNO implementation, the network architecture consists of 
four Fourier layers, each comprising a SpectralConv2d module with 
modes = 12 and width corresponding to the number of semantic 
categories in the dataset (20 for PASCAL VOC). Each Fourier layer is 
followed by a 1 × 1 convolutional layer (maintaining the category-
specific channel dimensionality) and a channel attention module. As 
activation functions, GELU is used for intermediate layers and ReLU 
for the channel attention modules.

For model training, to ensure a fair comparison, we strictly follow 
the original implementations of the respective baseline methods. Input 
images are resized to 448 × 448 pixels, and we maintain the optimiser 
settings, namely AdamW with an initial learning rate of 5e–4 for 
MCTformer+, 1e–4 for MuSCLE, and 0.01 for SEAM. Similarly, we 
preserve the learning rate scheduling strategies, employing a cosine 
annealing schedule with a 5-epoch warm-up period, as well as the same 
data augmentation techniques including random horizontal flipping 
and colour jittering.

As is standard practise, we use the mean intersection-over-union 
(mIoU) as the performance measure to evaluate our proposed model 
and to compare it with a number of state-of-the-art (SoTA) approaches, 
including the CNN-based IRN [6], SC-CAM [27], SEAM [11], BES [28], 
LIID [29], OAA [30], RIB [31], URN [32], AdvCAM [2], RCA [33], 
LPCAM [34], MuSCLe [4], and MDBA [35], the transformer-based 
AFA [36], MCTformer [12], OCR [8], and MCTformer+ [3], and the 
text embedding-based CLIMS [37] and CLIP-ES [38].

4.2. Model performance and model-agnostic approach

We start by evaluating the performance of our proposed approach 
on the PASCAL VOC dataset. One of the advantages of our method is 
that it is model-agnostic and that it can thus be applied to any WSSS 
method to yield a performance boost. To demonstrate this, we conduct 
experiments using three classical WSSS methods, namely SEAM [11], 
MuSCLe [4], and MCTformer+ [3].

The obtained mIoU results of CAM and pseudo-labels on the VOC 
training set are reported in Table  1.

As we can see from there, our proposed approach improves yields 
improved performance of all models and for both seeds and pseudo-
labels. Compared to the underlying benchmark methods, we boost 
the mIoU by 3.1/3.2 (SEAM), 2.5/2.8 (MuSCLe), and 2.3/0.9 (MCT-
former+) for (seeds/pseudo-labels), convincingly confirming that our 
approach significantly enhances the seed quality and consequently the 
pseudo-labels.

4.3. Ablation study for FNO-driven level set evolution

To evaluate the effectiveness of our FNO-driven level set evolution 
module, including the supervision during initialisation and the energy-
based evolution, we conduct an ablation study which investigates the 
contribution of each component to the overall performance of our 
model. The results on the VOC2012 train set using MCTformer+ with 
different configurations for level set processes are given in Table  2.
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Table 2
Ablation study results on VOC2012 train set using MCTformer+ with different level set 
processes.
 MCTformer+ MSE Energy mIoU 
 ✓ 68.8  
 ✓ ✓ 69.1  
 ✓ ✓ 70.6  
 ✓ ✓ ✓ 71.1  

Table 3
Comparison of computational efficiency between traditional level set evolution and 
FNO-driven evolution (running time in seconds).
 Traditional evolution FNO-driven evolution 
 1 iteration 5 iterations 10 iterations 15 iterations  
 0.3316 1.9541 3.4308 5.6777 1.7832  

Table 4
mIoU results on PASCAL VOC train set.
 Backbone Seed Pseudo-labels 
 IRNCVPR19 [6] ResNet50 48.0 61.0  
 SC-CAMCVPR20 [27] ResNet38 50.9 63.4  
 SEAMCVPR20 [11] ResNet38 55.4 63.6  
 BESECCV20 [28] ResNet50 50.4 67.2  
 RIBNIPS21 [31] ResNet50 62.9 70.6  
 AdvCAMTPAMI22 [2] ResNet50 55.6 69.9  
 MCTformerCVPR22 [12] DeiT-S 61.7 69.1  
 LPCAMCVPR23 [34] ResNet50 65.3 72.7  
 MuSCLePR23 [4] EfficientNet 58.4 66.8  
 MCTformer+TPAMI24 [3] DeiT-S 68.8 76.2  
 MCTformer+ + proposed method DeiT-S 71.1 77.1  

The results there confirm that incorporating level set evolution 
significantly improves the seed quality, with our effective initialisation 
further enhancing performance. The combined use of CAM and level 
set processes leads to an overall improved performance, with the best 
results, an mIoU improvement from 68.8 to 71.1, obtained when both 
components are employed.

To evaluate the computational efficiency gain of our proposed FNO-
driven level set evolution, we compare it to the traditional iterative 
level set evolution process in Table  3. Considering that traditional level 
set methods typically require at least dozens of iterations to achieve 
convergence [39,40], these results demonstrate that our FNO-driven 
evolution process significantly speeds up the level set process. This, in 
turn, also makes our FNO-based approach more suitable than conven-
tional level set methods for tasks where computational complexity is 
important, such as real-time applications or large-scale data processing.

4.4. Seed and pseudo-label performance vs. SoTA

In Table  4 and 5, we compare the quality of the obtained seeds 
and generated pseudo-labels of our method with those of other SoTA 
approaches on the PASCAL VOC and COCO datasets, respectively.

As is evident from Table  4, and as discussed above, integrating 
our approach with existing WSSS methods yields improved seed and 
pseudo-label quality. Our approach achieves an impressive mIoU of 
71.1 for seeds and 77.1 for pseudo-labels, clearly outperforming other 
SoTA methods, including RIB (by 6.5 for pseudo-labels), AdvCAM (7.2), 
MCTformer (8.0), MuSCLE (10.3), and MCTformer+ (0.9).

Our method also yields improved performance on the COCO dataset, 
as seen in Table  5, with an mIoU of 44.6 for seeds and 49.2 for 
pseudo-labels. This represents a clear improvement over MCTformer+ 
(by 1.8 for seeds and 1.1 for pseudo-labels), further demonstrating the 
effectiveness of our approach across different datasets in enhancing 
seed and pseudo-label quality.
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Table 5
mIoU results on COCO train set.
 Backbone Seed Pseudo-labels 
 IRNCVPR19 [6] ResNet50 33.1 42.5  
 SEAMCVPR20 [11] ResNet38 25.1 31.5  
 RIBNIPS21 [31] ResNet50 36.5 45.6  
 AdvCAMTPAMI22 [2] ResNet50 37.2 46.0  
 MCTformerCVPR22 [12] DeiT-S 36.6 41.6  
 LPCAMCVPR23 [34] ResNet50 42.5 47.7  
 MCTformer+TPAMI24 [3] DeiT-S 42.8 48.1  
 MCTformer+ + proposed method DeiT-S 44.6 49.2  

Table 6
mIoU segmentation results on PASCAL VOC val and test sets.
 Backbone val test  
 SC-CAMCVPR20 [27] ResNet101 66.1 65.9 
 SEAMCVPR20 [11] ResNet38 64.5 65.7 
 BESECCV20 [28] ResNet101 65.7 66.6 
 LIIDTPAMI20 [29] ResNet101 66.5 67.5 
 OAATPAMI21 [30] ResNet101 66.1 67.2 
 RIBNIPS21 [31] ResNet101 68.3 68.6 
 URNAAAI22 [32] Res2Net101 71.2 71.5 
 AdvCAMTPAMI22 [2] ResNet101 68.1 68.0 
 RCACVPR22 [33] ResNet38 72.2 72.8 
 MCTformerCVPR22 [12] ResNet38 71.9 71.6 
 AFACVPR22 [36] MiT-B1 66.0 66.3 
 CLIMSCVPR22 [37] ResNet50 70.4 70.0 
 MuSCLePR23 [4] EfficientNet 66.6 68.8 
 MDBATIP23 [35] ResNet101 70.0 70.2 
 OCRCVPR23 [8] ResNet38 72.7 72.0 
 CLIP-ESCVPR23 [38] ResNet101 73.8 73.9 
 MCTformer+TPAMI24 [3] ResNet38 74.0 73.6 
 MCTformer+ + proposed method ResNet38 74.6 74.8 

Table 7
mIoU results on COCO 2014 𝑣𝑎𝑙. set.
 Backbone mIoU 
 SEAMCVPR20 [11] ResNet38 31.9  
 RIBNIPS21 [31] ResNet101 43.8  
 URNAAAI22 [32] Res2Net101 41.5  
 AdvCAMTPAMI22 [2] ResNet101 44.4  
 RCACVPR22 [33] VGG16 36.8  
 MCTformerCVPR22 [12] ResNet38 42.0  
 AFACVPR22 [36] MiT-B1 38.9  
 MDBATIP23 [35] ResNet101 37.8  
 OCRCVPR23 [8] DeiT-S 42.5  
 CLIP-ESCVPR23 [38] ResNet101 45.4  
 MCTformer+TPAMI24 [3] ResNet38 45.2  
 MCTformer+ + proposed method ResNet38 46.1  

4.5. Segmentation performance vs. SoTA

After the retraining phase, we obtain segmentation results on the 
VOC validation and test sets, which we report in Table  6.1 As is ap-
parent from there, our proposed approach achieves mIoUs of 74.6 and 
74.8 on the PASCAL VOC 2012 validation and test sets, respectively, 
surpassing all other methods.

Segmentation results on the COCO 2014 validation set are given in 
Table  7. We can see from there that our proposed method yields an 
mIoU of 46.1, outperforming all other methods.

We also compare with text embedding-based semantic segmentation 
methods [37,38], which leverage large-scale, pre-trained language–
vision models to capture global semantic cues, thereby enhancing 
recognition for complex or ambiguous object categories. However, 

1 Note, that, following the original papers, some models use, compared to 
Table  4, a different backbone here and for the COCO dataset.
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Fig. 3. Example seeds and level set results.
these methods rely chiefly on semantic embeddings rather than bound-
ary features, which can pose difficulties for delineating fine object 
edges. In contrast, our approach employs CAM-driven level set evolu-
tion to refine object boundaries more precisely, although it is sensitive 
to the quality of CAMs and may not fully capture global contextual 
information.

Overall, the results obtained on both the PASCAL and COCO
datasets convincingly demonstrate the effectiveness of our proposed 
method, leading to performance improvements in WSSS tasks across 
datasets.

4.6. Visual examples

Fig.  3 showcases some qualitative segmentation results of our pro-
posed method compared to its MCTformer+ backbone, while Fig.  4 
presents some representative segmentation results for several of the 
evaluated methods, namely RCA, SEAM, MuSCLe, MCTformer+, and 
our proposed method.

As we can observe from Fig.  3, the seeds generated by our method 
are of higher quality and provide more comprehensive coverage of 
object details and boundaries compared to the backbone model, further 
demonstrating the effectiveness of our approach in enhancing seed 
quality.

These improvements in seed generation directly influence the per-
formance of our level-set segmentation process. As we can observe 
from Fig.  4, our method captures more complex boundaries and sig-
nificantly reduces noise around object edges, leading to more accurate 
and detailed segmentations. Furthermore, it demonstrates superior per-
formance in maintaining object continuity and accurately reflecting 
structural variations. These results further validate the effectiveness of 
our approach in improving boundary refinement for weakly supervised 
semantic segmentation.

We also show, in Fig.  5, some examples of challenging scenarios 
where our proposed approach achieves only sub-optimal segmentation 
7 
results. As we can see, our method faces challenges in situations in-
volving multiple objects, complex backgrounds, and intricate contours. 
Despite these difficulties, our approach demonstrates resilience even 
here and consistently outperforms other SOTA methods.

We also show, in Fig.  5, some examples of challenging scenarios 
where our proposed approach achieves only sub-optimal segmenta-
tion results. Specifically, in scenes involving complex backgrounds 
or overlapping objects, the quality of CAMs may degrade, providing 
incomplete or imprecise boundary cues that undermine both level 
set initialisation and energy function guidance. Moreover, since each 
object is tracked by a single level set curve, severe occlusions can result 
in ambiguous overlaps that cannot be adequately separated, leading 
to suboptimal convergence. Despite these difficulties, our approach 
demonstrates resilience even here and consistently outperforms other 
SOTA methods. To address these challenges, potential improvements 
could include region-based initialisation schemes or additional energy 
terms to stabilise the evolution when CAM information is insuffi-
cient. Furthermore, adopting multi-curve processing could incorporate 
complementary boundary cues to reduce errors caused by occlusions.

5. Conclusions

In this paper, we have introduced a new strategy that combines 
class activation maps with level sets and Fourier neural operators 
to improve weakly supervised semantic segmentation, addressing the 
challenges of under-segmentation and over-segmentation in CAM-based 
methods by incorporating the dynamic boundary evolution of the level 
set method coupled with the efficiency of FNOs. Extensive experi-
ment on the PASCAL VOC 2012 and COCO 2014 datasets demonstrate 
our proposed method to improve the quality of pseudo-labels and, 
consequently, segmentation accuracy, achieving excellent WSSS seg-
mentation performance in comparison to other state-of-the-art WSSS 
methods.
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Fig. 4. Example segmentations obtained from our proposed approach in comparison with SOTA WSSS methods.

Fig. 5. Segmentation results for challenging examples from PASCAL VOC2012.
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There are several promising directions for future research. One 
is to combine our approach with recent text embedding-based mod-
els, which could leverage the strengths of both methods. Large-scale 
language–vision models offer robust semantic understanding, which 
could be incorporated into the level set energy function, combining 
global semantics with fine-grained boundary refinement. This inte-
gration could improve performance in scenarios requiring contextual 
awareness and precise edge detection as well as help mitigate our 
method’s reliance on high-quality CAMs. Additionally, exploring the ap-
plication of our level set framework to different backbone architectures 
could lead to even more robust WSSS solutions. These extensions could 
help bridge the gap between the performance of weakly supervised and 
fully supervised semantic segmentation models.
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