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Abstract— Face detection in the wild is a challenging vision
problem due to large variations and unpredictable ambiguities
commonly existed in real world images. Whilst introducing
powerful but complex models is often computationally ineffi-
cient, using hand-crafted features is hence problematic. In this
paper, we propose a nested CNN-cascade learning algorithm
that adopts shallow neural network architectures that allow
efficient and progressive elimination of negative hypothesis from
easy to hard via self-learning discriminative representations
from coarse to fine scales. The face detection problem is
considered as solving three sub-problems: eliminating easy
background with a simple but fast model, then localising the
face region with a soft-cascade, followed by precise detection
and localisation by verifying retained regions with a deeper
and stronger model. The face detector is trained on the AFLW
dataset following the standard evaluation procedure, and the
method is tested on four other public datasets, i.e. FDDB, AFW,
CMU-MIT and GENKI. Both quantitative and qualitative
results on FDDB and AFW are reported, which show promising
performances on detecting faces in unconstrained environment.

I. INTRODUCTION

View-specific face detection under controlled environment
is largely considered a solved problem due to recent advances
in object detection, in particular the work by Viola-Jones
(VJ) [35]. As a typical detection problem, the class distribu-
tion between face and background is extremely unbalanced
and heavily biased towards the background. The traditional
VJ framework uses a multi-stage cascade detector, where
individual stage is a binary classifier separating the face
from a subset of background hypotheses. For efficiency,
the traditional methods use simple visual features or weak
classifiers at multiple stages (typically over 15). However,
they perform poorly on the so-called Face in the Wild
problem, where faces are captured with large pose and facial
expression variations, severe occlusions and clutters, and
poor lighting scenarios. Built upon those classical detection
frameworks, several works have been recently reported in
developing discriminative visual features [29], [6], [38] and
strong classifiers [11], [40], [24] to improve face detection
performances in the wild. Deep learning methods [22], espe-
cially Convolutional Neural Networks (CNNs), have shown
outstanding successes in representative feature learning and
supervised classification for various computer vision prob-
lems. Our work leverages recent advances in deep learning
for efficient face detection. More in-depth discussions to
these related work are presented in the next section.

From image retrieval perspective, face detection can be
considered as a visual matching problem, where a window
candidate is determined as face by successfully finding

reliable correspondences in a pre-built exemplar database.
In [33], [23], exemplar database is constructed using lo-
calised visual words, and detection is obtained by finding
the high confidence regions on the voting map provided
by matched exemplars. The performance of those non-
parametric searching methods can be severely compromised
by the quality of exemplar database, such as the discrimina-
tive power of visual features, and the variation in coverage
of different poses, illuminations, occlusions and so on. In
addition, using a large exemplar database also slows down
the detection speed as exploring large search space is a
time consuming task. Deformable Part Model (DPM) was
originally proposed for object recognition, and can be consid-
ered as an alternative searching based method for detecting
faces [12], [10]. It considers that the target object is consisted
of several deformable parts. The part candidates are proposed
by individual part detectors, and then the entire object can
be found by searching for a most plausible configuration
of displaced parts. DPM helps to overcome the difficulties
introduced by severe occlusion and clutter, provided reliable
performance of part detectors. However, assembling individ-
ual parts into objects is equivalent to solving a combinational
optimisation problem which could also be computationally
expensive even with approximation algorithms.

Computational efficiency is one of the main concerns
for practical detection system, especially when dealing with
large number of hypothesis, complex visual feature, and
strong classifier. For example, to precisely locate faces in
the image, exhaustive search methods, such as sliding win-
dow, are commonly used to generate candidates. However,
examining all hypotheses is computationally expensive, thus
relatively simple features and weak classifiers are typi-
cally used to reduce the complexity [35], [6]. It is worth
noting by taking this approach the detection problem is
divided into a set of sub-problems first and then solved by
combining individual sub-problem solver into a multi-stage
detector [35], [3]. For example, Koestinger [19] trained a
20-stage VJ face detector using Local Binary Patterns (LBP)
features. Object region-proposal methods are popular for
image recognition and object localisation, such as object-
ness [1], selective search [34], category independent object
proposals [8], combinatorial grouping [2], and segmentation
based methods [4]. However, generating object candidates
generally involves region segmentation, classification, and
grouping, which slow down the detection speed drastically.
Furthermore, the recall rate of region proposal is generally
lower than exhaustive search, such as sliding window.

In this paper, we present a multi-resolution face detector,



which embeds 5 shallow CNN classifiers into a nested
cascade framework. Detecting faces in image is carried out in
three phases: (1) A large amount of easy background patches
from the whole hypothesis set generated by sliding window
are eliminated at the very early stage using a shallow but
fast net at a coarse scale. (2) A nested soft cascade with 3
nets is used to further reject hard false positive hypotheses
while keeping a high recall rate. (3) To precisely locate the
face region, all retained hypotheses from previous stages are
verified by a deeper net using higher resolution.

The rest of paper is organised as follows: Sec. II reviews
related works on CNN-based face detection methods. Sec. III
provides detailed descriptions of proposed method, including
network architectures for individual stage. Training strate-
gies, parameter settings, and experimental results on three
public datasets are presented in Sec. IV, and concluding
remarks are provided in Sec. V.

II. RELATED WORK

Applying Neural Networks (NNs) to face detection dates
back to at least early 1990s [17], [39], [13]. Back then,
training a multi-layer neural networks was difficult as the
number of parameters increases exponentially with the num-
ber of layers. However, Deep Neural Network (DNN) is
becoming more and more mainstream [22], as it has been
shown superior over many other methods, especially for
visual recognition tasks. The following can be considered
as three of the key reasons that contributed to the success of
DNNs. First, training a multi-layer neural network involves
finding a local minimum of a highly non-linear function.
In order to obtain a reasonable local minimum, gradient
descent based methods require a good initialisation. Layer-
wise unsupervised pre-training methods [16] were developed
and have been proved to be more efficient compared with
random initialisation. Second, a large amount of labelled
datasets [32], [9], [26] are vitally important to the ad-
vance in supervised training. For example, Microsoft COCO
dataset [26] contains more than 300,000 images, and over
2,000,000 instances from 80 object categories, where each
image has 5 caption labels. Moreover, advances in hard-
ware makes both forward pass and backward propagation
computationally efficient. Especially, with dedicated high
speed memory module and Single Instruction Multiple Data
(SIMD) architecture, General-Purpose Graphics Processing
Unit (GPGPU) are particularly well placed for learning deep
neural network structures [5].

As for face detection, Farfade et al. [11] proposed a multi-
view face detection method, so-called Deep Dense Face De-
tector (DDFD), which uses a fine-tuned 8-layer AlexNet [21]
that was initially designed for object recognition. It has 5
convolutional layers and 3 fully connected layers. A pre-
trained AlexNet was fine-tuned for face detection on 200,000
face patches and 20,000,000 background patches, which were
all resized to 227×227 pixels in order to match the input size
of AlexNet. During the testing stage, the sliding window
approach was used to generate hypotheses. DDFD classifies

each candidates into face or background, and decision confi-
dence scores is obtained. Non-Maximal Suppression (NMS)
was followed to remove redundant bounding boxes. In [40],
the authors introduced a deep CNN based deformable part
model for face detection. The whole face is decomposed into
5 facial regions: hair, eye, nose, mouth and beard. The part
detectors are constructed using 5 binary CNN classifiers that
shared the same deep layers for computational efficiency. The
window candidates are generated using object proposal meth-
ods, such as selective search [34]. The confidence scores of
each candidate can then be inferred via examining the spatial
configurations of part detector responses. Finally, to further
refine the detection results, a CNN with similar architecture
to AlexNet is trained for face-background classification and
bounding box regression.

Very recently, several works have shown that Regions with
CNN features (R-CNN) [14], [30] and Spatial Pyramid Pool-
ing CNNs (SPPnet) [15] are effective in simultaneous object
localisation and recognition. These methods contain four
main components: convolutional feature extraction, obtaining
region proposal, region of interest (ROI) classification, and
bounding box refinement. In [14], the authors showed that the
representation feature learnt with CNN using deep structure
can be effectively used for visual classification and ROI
regression. By introducing spatial pyramidal pooling layer
to generate a fixed length output feature regardless the size
of input image, [15] overcame the limitation of [14] without
cropping or wrapping the images that are problematic as they
result in information loss and distortion. The work in [30]
improved the computational efficiency further by sharing the
deep convolutional layers with region proposal, classification
and regression networks. However, for small objects, R-
CNNs have difficulty to detect them in small scale due to
low resolution and the lack of visual context.

Although deeper models generally outperforms shallow
ones, training complex models is not a trivial task, especially
for binary detection problems where the distribution of target
object and background is extremely unbalanced. Given mil-
lions of parameters to optimise using back-propagation, deep
nets have the tendency to overfit the data, even with strong
regularisations such as dropout and batch normalisation. Due
to the smaller amount of parameters, training shallow nets is
significantly faster. Embedding shallow nets into traditional
cascade framework can also significantly reduce the number
of stages and drastically increase the discriminative power
of the model [7]. One of limitation of shallow nets is that
the recall rate drops quickly with the increase of the number
of stages. In this paper, we introduce a nest soft cascade to
compensate the loss of recall while adding multiple stages
to remove false positives.

The most relevant work to ours is [24], where 3 face-
nonface classification CNNs are used for separating face
regions from background and 3 calibration CNNs are used to
refine the location of detected bounding box. Sliding window
method is used to generate region candidates. These hypothe-
ses pass through 3 classification-refinement components with
different image resolutions, from coarse to fine, and the



retained ones are considered as object regions. However,
cascade based method has to make a compromise between
the number of stages, accuracy and efficiency. For example,
in a hard cascade setting, adding more stages helps to reduce
false positives, while it decreases the detection rate and
speed, especially when a computationally intensive model is
used such as CNN. In addition, refining the detected windows
between stages introduces re-sampling the patches from the
original image, which is non-trivial during the testing phase.

III. METHOD

Fig. 1 shows the basic flowchart of the proposed nested
cascade face detector. It consists three main phases as
follows: fast elimination, nested soft cascade, and precise
detection. Window patches are firstly generated by densely
scanning the input image at multiple scales using sliding
windows. Majority of those window patches are quickly
eliminated as background by an ElmNet using a patch
resolution of 12×12. A soft-cascade is built by combining 3
LocNets in a weighted fashion, which is used to further reject
the hard false positives with a patch resolution of 24×24.
Then, all retained candidates from the previous stages are
verified by DetNet using a patch resolution of 48×48. The
final detections is obtained via removing redundant detec-
tions with Non-Maximum Suppression (NMS).

Fig. 1. The pipeline of the proposed nested cascade face detector.

A. ElmNet: Fast Elimination

A large amount of patch candidates are generated by the
sliding window method. The ElmNet is designed to quickly
eliminate negative patches to reduce the computational cost
for the following phases. Table I and Fig. 2 provide the
details of the architecture for ElmNet, where only one
convolutional layer and one fully connected layer are used.
Adopting such simply CNN structure is motivated by the
following two reasons. Firstly, ElmNet has a small input
size of 12×12, a small kernel size of 3×3, and a small
number of filters of 16. Compared to other nets, ElmNet has
significantly smaller number of parameters, which enables a
lower memory consumption and a much lower computational
cost. Secondly, at this fast elimination stage, low frequency
image features extracted from coarse spatial resolution is
more effective in rejecting easy negative hypothesis. Since
there is no hierarchical feature extraction within ElmNet,
the discriminative power is limited. In order to retain most
positive windows for the following stage, a high recall rate
can be achieved by shifting the decision boundary of Softmax
layer towards zero. For example, using a minimal face size
of 48×48, 87.16% recall can be achieved by shifting the

decision boundary to 0.01, whereas 72.62% recall is achieved
with 0.50.

TABLE I
THE NETWORK ARCHITECTURE OF ElmNet FOR FAST ELIMINATION.

No Layer Type Parameter Setting
1 Image Input 12x12x3 images scaled to the range [0,1]
2 Convolution 16 3x3 filters with stride 1
3 ReLU Rectified linear unit
4 Max Pooling 3x3 filter with stride 2
5 Fully connected Fully connected with 16 outputs
6 ReLU Rectified linear unit
7 Fully connected Fully connected with 2 outputs
8 Softmax Softmax regression for binary classes
9 Classification Classification output

Fig. 2. Network architecture of ElmNet.

B. LocNets: Nested Soft-Cascade

Each stage classifier in cascade is trained using the full
set of true positives and the false positives passed through
previous stages. Although over 90% of negative patches
are eliminated by ElmNet at the first stage, the number of
retained false positives for training following stage is still
considerably large, especially when large negative image set
is used. In our case, 18,089 negative images are used. In
order to retain high recall and remove hard non-face hypothe-
ses further, multiple LocNets are trained on different subsets
of negative images and then assembled in a soft-cascading
fashion, where the final decision confidence is a weighted
sum of all Softmax outputs of LocNets. Within individual
LocNet, see Table II and Fig. 3, there are two levels of feature
abstraction using convolution layers, each of which is fol-
lowed by a non-linear mapping and a spatial down-sampling.
Such hierarchical network enables more discriminative de-
scriptors being learnt through back-propagation, and lifting
up from low-level features to high-level representations. The
weights of each LocNet are estimated using linear regression
by solving an over-conditioned least square problem without
the interception term. This linear regression problem can be
formally defined as

arg min
W

N∑
n=1

‖Ln −
S∑

s=1

Ws × Csn‖2, (1)

where W , C, L, S and N denote the weights, probability
confidences of face category given by Softmax layers, ground
truth labels, the number of LocNet stages, and the number
of training samples, respectively. The decision boundary of



nested soft-cascade is also shifted to 0.01 in order to achieve
a high recall rate.

TABLE II
THE NETWORK ARCHITECTURE OF LocNet FOR PRECISE LOCALISATION.

No Layer Type Parameter Setting
1 Image Input 24x24x3 images scaled to the range [0,1]
2 Convolution 16 5x5 filters with stride 1
3 ReLU Rectified linear unit
4 Max Pooling 3x3 filter with stride 2
5 Convolution 16 5x5 filters with stride 1
6 ReLU Rectified linear unit
7 Max Pooling 3x3 filter with stride 2
8 Fully connected Fully connected with 32 outputs
9 ReLU Rectified linear unit

10 Fully connected Fully connected with 2 outputs
11 Softmax Softmax regression for binary classes
12 Classification Classification output

Fig. 3. Network architecture of LocNet.

C. DetNet: Precise Detection

DetNet is designed to precisely locate face regions by ver-
ifying retained face candidates at a higher image resolution.
In order to capture features in detail, the resolution of input,
and the number of filters are doubled compared to LocNet,
while the size of convolutional kernel and the level of feature
abstraction are kept as the same (See Table III and Fig. 4)
for computational efficiency. Local response normalisation
layers are added between the non-linear mapping layer and
the maximum spatial pooling layers. Such inhibition scheme
is only applied across channels to enforce regularisation to
the networks. Since DetNet is the last phase of cascade,
binary classification is carried out without shifting the de-
cision boundary, and detected square bounding boxes are
then refined using a 2-step NMS to remove redundancies.
For the detections at the same scale, we iteratively select
the detection with highest confidence score and remove
the detections that has the intersection over union (IoU)
ratio larger than 0.50 with selected window. Then, for the
detections at different scales, the redundancies can be found
by measuring the intersection over minimum (IoM) ratio,
where the threshold is set to 0.90. The first step removes the
redundant detections that are spatially offset to the correct
location, and the second step enables removing redundancies
in scale.

IV. EXPERIMENT AND DISCUSSION

A. Detector Training

The AFLW (Annotated Facial Landmarks in the Wild [20])
dataset was used to train the face detector. The dataset
contains 22,712 labelled faces out of 21,123 images. The

TABLE III
THE NETWORK ARCHITECTURE OF DetNet FOR FACE DETECTOR.

No Layer Type Parameter Setting
1 Image Input 48x48x3 images scaled to the range [0,1]
2 Convolution 32 5x5 filters with stride 1
3 ReLU Rectified linear unit
4 Normalisation Cross channel (9) normalisation
5 Max Pooling 3x3 filter with stride 2
6 Convolution 32 5x5 filters with stride 1
7 ReLU Rectified linear unit
8 Normalisation Cross channel (9) normalisation
9 Max Pooling 3x3 filter with stride 2

10 Fully connected Fully connected with 128 outputs
11 ReLU Rectified linear unit
12 Fully connected Fully connected with 2 outputs
13 Softmax Softmax regression for binary-classes
14 Classification Classification output

Fig. 4. Network architecture of DetNet.

positive face windows were further augmented by horizontal
flipping. In total, 45,424 faces were used in the training
procedure, and examples of face images are shown in Fig. 5
(a). The negative images contain no face. To bootstrap non-
face images, labelled face windows were replaced with non-
face patches which were randomly sampled from PASCAL
VOC dataset [9] (the person subset was excluded). In total,
19,458 negative images were generated using this bootstrap-
ping approach. However, there are considerable amount of
unannotated faces in AFLW dataset, we thus further applied
Koestinger’s VJ-LBP detector [19] on the negative images.
After those ones which have true positive response were
removed, the negative set contains 18,089 images.

To train ElmNet, 904,450 non-face samples were cropped
randomly from all negative images (50 patches per image),
and then resized to 12×12. With cascading set-up, the neg-
ative samples for training the next stages were the residuals
(false positives) generated by densely scanning the negative
image set using all previous stages. It is useful to set a
maximum negative-positive ratio (MNP) for LocNets and
DetNet. For example, ElmNet would generate over 50 million
false positives from 18,089 images, where MNP can thus
avoid training with extremely imbalanced data. In our case,
we used 48×48 scanning window with the stride of 16 pixels,
scale factor of 1.18, and MNP of 10. All networks were
trained using back-propagation with batch stochastic gradient
descent.

B. Evaluation on FDDB Dataset

The proposed face detector was quantitatively evaluated
on the Face Detection Dataset and Benchmark (FDDB) [18]
dataset that contains 5,171 annotated faces in 2,845 images.
The quantitative results were generated following the stan-



(a) (b)
Fig. 5. Examples training images. (a) Positive images are cropped face
from AFLW dataset; (b) negative images are generated by replacing the face
region with non-face patches sampled from PASCAL VOC datasets.

dard evaluation procedure with the software provided by the
authors. For discrete score evaluation, the detections that has
over 0.50 IoU with annotations are counted as true positive.
Since the groundtruth faces are labelled using ellipses, we
also fitted ellipses to our bounding boxes for fair comparison.

Table IV shows the discrete metrics of individual stages of
the proposed method using minimal face sizes of 36×36 and
48×48. Over 96% of hypotheses were eliminated, but rea-
sonable recall rate was achieved by ElmNet at the first stage,
which ensures deeper network can be computed effectively in
the following cascade without overwhelming computational
cost. The results of different stages shows that higher resolu-
tion and hierarchical feature abstraction are the key to build
discriminative models. We also compared proposed method
with state-of-the-art methods which are trained on the same
dataset. The discrete ROC curves are shown in Fig. 6. DPM
based methods, such as Yan et al. [36] and HeadHunter [27]
are leading the performance, mainly because the variations
of facial parts are relatively small, thus detecting facial parts
are more robust than detecting face as a whole. Especially,
HeadHunter [27] reports the optimal results that obtained
through comprehensive studies on training strategies and
parameter settings. However, DPM methods require training
part detectors, and searching optimal configuration, which
make building the detector a laborious, time-consuming task,
and are known to be much slower than cascade based
methods. ACF-Multiscale [38] method aggregates multiple
features, such as colour, gradient, local histogram, into a
rich representation, and then trains multiple soft cascade
with depth-2 decision tree for different views. It shows
that combining multiple models and features outperforms a
single model. The computational cost of aggregating feature
channels is considerably more. Significantly, Koestinger [19]
shows that without rich features, the performance of multi-
view based method drops by a significant margin. In addition,
sophisticated post-processing is required to combine the mul-
tiple detection outputs given by detectors of different views.
The proposed method requires no model aggregation. The
features are self-learnt through training, and it outperforms
the traditional methods which use the cascade framework
such as NPDFace [25]. Also image retrieval based methods
suffer from efficiency issue much more severely. For exam-
ple, to process an image of size 1480×986 with minimal face
size 80×80, Boosted Exemplar [23], and XZJY [33] take
900ms and 33000ms receptively, whereas our methods only
takes 153ms using a non-optimised Matlab implementation.

Qualitative results on the FDDB dataset are shown in
Figs. 7, 8, and 9. Red and blue ellipses represent groundtruth
and true positives, whereas yellow and green ellipses repre-
sent false positives and false negatives respectively. Fig. 7
illustrates some examples of typical detection results with
large pose and facial expression variations, blurring, and
severe occlusion and clutter. Fig. 8 shows some examples
of false positives and false negatives. The false positives
are usually observed at the region that contains partial face,
and false negatives are mainly caused by severe blurring and
faces in small scale. Fig. 9 shows some interesting detections
in yellow, which are counted as false positives since there are
no annotations to match. However, they are in fact correct
detections.

Fig. 6. ROC curves of the proposed detector and recent methods on FDDB
database with the discrete score metric.)

TABLE IV
RECALL RATE AND NUMBER OF FALSE POSITIVES OF INDIVIDUAL

DETECTION STAGE OF THE PROPOSED METHOD ON FDDB DATASET.

Stages 36×36 minimal face 48×48 minimal face
Dis. Recall #FP Dis. Recall #FP

Hypothesis 95.16% 17843K 91.94% 16033K
ElmNet 90.17% 471K 87.16% 314K

S1-LocNet 88.05% 114K 83.52% 64K
S2-LocNet 85.48% 42K 81.63% 28K
S3-LocNet 83.10% 23K 79.37% 16K

Soft-LocNets 88.74% 117K 85.84% 78K
DetNet 82.38% 723 80.89% 450

C. Evaluation on AFW Dataset

We quantitatively evaluated our face detector on an-
other face detection benchmark, namely Annotated Face
in the Wild (AFW) [41] that contains 205 images, and
468 annotated faces. 97.43% recall rate was achieved by
our face detector, which is slightly lower than CNN-
Cascade [24] (97.97%, +0.54%), but outperforms other state
of the art methods, such as DPM [12] (97.21%, -0.22%,),
HeadHunter [27] (97.14%, -0.29%), Structured Models [37]
(95.19%, -2.24%), Shen et al. [33] (89.03%, -8.4%), and



Fig. 7. Typical detection results on FDDB dataset (red: ground truth, blue: true positive).

TSM [41] (87.99%, -9.44%). Qualitative results are shown
in Fig. 10, where square detection bounding boxes were used
to match the original annotations.

D. Evaluation on CMU-MIT & GENKI Datasets

The proposed method was also evaluated on two early
face detection benchmarks, CMU-MIT face dataset [31], and
GENKI database [28]. Several examples of typical detection
results are presented in Figs. 11 and 12. CMU-MIT dataset
contains a total of 511 faces from 130 grey-scale images.
The top right image in Fig. 11 shows that our method
is able to tolerate rotation variance, and there are only
one false negative and two false positives in the top right
image. Current release of GENKI database contains two
subsets, where GENKI-4K subset contains 4,000 images, and
GENKI-SZSL subset contains 3,500 images. Some detection

examples with different poses and facial expressions are
shown in Fig. 12.

E. Detection Speed

The proposed detector was implemented and evaluated
on Matlab 2016 using two different GPUs, GeForce GTX
TITAN X (Maxwell) and Quadro K2000, which have 3,072
CUDA cores with 12GiB memory and 384 CUDA cores with
2GiB memory respectively. Table V shows the running speed
of individual stages. It can be observed that TITAN X out-
performs K2000 as more CUDA cores and GPU memory are
available. The computation time increases as the complexity
of the model increases. To processes one 640×480 VGA
image with the size of minimum face of 80×80, our method
takes 40.1ms using CPU only, whereas [24] takes 71ms on
average.



Fig. 8. Examples of false positives and false negatives on FDDB dataset (red: ground truth, blue: true positive, yellow: false positive, green: false
negatives).

Fig. 9. Examples of correct detections but counted as false positives (red: ground truth, blue: true positive, yellow: false positive).

Fig. 10. Examples of qualitative results on AFW dataset. (green: ground truth, blue: detection results of the proposed method).



Fig. 11. Examples of qualitative results on CMU-MIT dataset.

Fig. 12. Examples of qualitative results on GENKI database.

TABLE V
SPEED OF INDIVIDUAL STAGE (HYPOTHESES/SECOND)

ElmNet LocNet DetNet
TITAN Maxwell 102,380 ± 4,964 71,844 ± 574 17,599 ± 99

Quadro K2000 61,112 ± 2799 22,988 ± 415 2,383 ± 9

V. CONCLUSION

We proposed an efficient multi-stage cascade method that
is well suited for binary detection problems, where the
number of positive samples is significantly smaller than
negative samples. Instead of resorting to deep structures that
are time consuming and laborious to train, the proposed
nested shallow CNN-cascade overcomes these difficulties by
solving three sub-problems from easy to hard using models
from weak to strong. In addition, a nested soft cascade is
introduced to compensate the loss of recall when multiple
classifiers are used to reject a large amount of negatives. The
proposed method was evaluated on three datasets including
FDDB and AFW. Quantitative and qualitative results show
promising performances on detecting face in unconstrained
environment with much improved efficiency compared to
state of the art.
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