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Abstract. Segmentation in high dimensional space, e.g. 4D, often re-
quires decomposition of the space and sequential data process, for in-
stance space followed by time. In [1], the authors presented a deformable
model that can be generalized into arbitrary dimensions. However, its
direct implementation is computationally prohibitive. The more efficient
method proposed by the same authors has significant overhead on com-
puter memory, which is not desirable for high dimensional data process-
ing. In this work, we propose a novel approach to formulate the compu-
tation to achieve memory efficiency, as well as improving computational
efficiency. Numerical studies on synthetic data and preliminary results
on real world data suggest that the proposed method has a great po-
tential in biomedical applications where data is often inherently high
dimensional.

1 Introduction

Among many others, deformable modeling is a popular approach to image seg-
mentation, e.g. [2–4]. Conventional techniques suffer from weak edge, image noise
and convergence issues. For instance, in [2] a constant pressure force is neces-
sary in order to improve its capture range, resulting in monotonic expanding
or shrinking of the mode that is problematic. There have been numerous work
reported in the literature to improve the performance of both image gradient
based methods, such as [5–7], and region based approaches, e.g. [8]. In [1], Yeo
et al. proposed a 3D deformable model that is based on a hypothesised geo-
metrical interactions between image gradient vectors and embedding level set
surface normal vectors. It is shown that the geometrical potential force (GPF)
is robust towards noise interference, weak edges, and exhibits invariant conver-
gence capabilities such that the model can be initialized across object boundary
and converge to deep concavities and propagate through narrow passages to re-
cover complex geometries, that are conventionally difficult for image gradient
based deformable modeling techniques. The authors also showed its theoretical
relationship to the 2D Magnetostatic Active Contour (MAC) model [7] , which
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is inspired by a physical analogy. The MAC model can be considered a special
case of GPF in 2D, whereas GPF can be more conveniently extended to higher
dimensional applications.

The computation of the GPF comprises two stages. At the first stage, the so-
called geometrical potential (GP) G(x, y, z) is computed through the convolution
of the image gradient and the kernel K:

G(x) =
∑
x′∈Ω

∇I(x′) ·K(x− x′), K(x) =

{
x/ ∥x∥n+1

, x ̸= 0
0, x = 0

(1)

where x = [x, y, z]T is the vector of coordinates of the image grid-points (voxel
centres), I(x) is the greyscale image, ∇I is its gradient, Ω is the image domain,
dot denotes the scalar product of two vector functions (∇I and kernel K(x)),
and n is the image dimension (n = 3 for 3D images).

At the second stage, the derived geometrical potential is then integrated
into the deformable surface evolution under the level set framework. The active
surface, S(t), is embedded in the level set function, Φ(t,x): S(t) = {x, Φ(t,x) =
0}, and its deformation is achieved by solving the following PDE proposed and
developed in [9–11] and related to the energy minimization approach:

∂Φ/∂t = α gκ∥∇Φ∥ − (1−α)F∇Φ (2)

where α is a weighting parameter, g(x) = 1/(1+∥∇I∥2) is the stopping function,
κ(t,x) = ∇n̂ denotes the curvature of isosurfaces of Φ, n̂(t,x) is the unit vector
normal to isosurfaces of Φ, and F(t,x) = G n̂ is the GPF that acts as the external
force.

Direct calculation of the geometrical potential G is computationally expen-
sive, particularly in 3D. However, Eq. (1) can be computed as a convolution of
two functions. Hence a natural approach is to apply the fast Fourier transform
(FFT) to compute the convolution, which is described in [1].

However, a significant drawback of using the FFT based computation as
proposed in [1] is that it requires lots of computer memory for a large number
of intermediate arrays of the same size as the initial image I. That is, it needs
to compute and store 3 components of the image gradient ∇I = [Ix, Iy, Iz]

T

and twice more for the real and imaginary part of their Fourier image, also 3
components of the kernel K and twice more for the Fourier image. Thus, it
requires about 20 times more than the direct method, which can be problematic
when dealing with volumetric data or extending this method to 4D, i.e. dynamic
volumetric data. Dedicated memory management may become necessary and
even crucial. Memory economic and computationally efficient method to evaluate
the GP is thus desirable.

In this paper, we propose to compute spectrum of the kernel by an analytical
formula so that there is no need to store components of the vector kernel and
the real or imaginary part of its spectrum. We also change the vector form of the
integrand into a scalar form to achieve further efficiency. The proposed methods
are valuated on both numerical examples and real world 3D data.
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2 Analytical Formula for Kernel’s Spectrum

One of the possible approaches to reduce memory usage is to use an analytical
formula for the kernel spatial spectrum rather than kernel’s formula (1) in the x-
space. To derive an analytical formula for the kernel Fourier image, it is useful to
consider the computation of G in the continuous infinite 3D Euclidian space. In
this case the kernel should be described by a generalized function (distribution)
(see, e.g. [12]):

G(x) =

∫
x′∈R3

∇I(x′) ·K(x− x′) d3x, K(x) = P.V.
x

∥x∥n+1 (3)

where P.V. denotes principal value, i.e. integral in (3) diverging when x′ → x,
should be treated as the limit

G(x) = lim
ε→0+

∫
∥x′−x∥>ε

∇I(x′) · x− x′

∥x− x′∥n+1 d3x′ (4)

Performing the Fourier transform

K̃(k) = F [K](k) =

∫
K(x)eikx d3x, i =

√
−1 (5)

we can show that that the spectrum depends only on direction of wavevector k
and is independent of its magnitude

K̃(k) = −iπ2 k

∥k∥
. (6)

Comparing spectrum K̃(k) computed analytically via Eq. (6) and that com-
puted by performing FFT for the kernel calculated in the x-space by (1) (see
Figure 1(left)), we see that near the origin they have close values. However, the
spectrum computed via the FFT decays when any component of the wavevec-
tor grows. Moreover, it vanishes when any component of the wavevector reaches
its maximum value which is determined by the grid size in the correspondent
direction: ki,max = π/hi where h1, h2, h3 are voxel sizes in x,y,z direction, respec-
tively. Therefore, to obtain the G-function close to that computed by FFT based
method, spectrum (6) should be multiplied by a function f(k) which equals 1
in the origin and smoothly decays when ki → ki,max. As numerical computation
shown later, a good approximation of a 3D spectrum can be formulated as

K̃(k) = iπ2 k

∥k∥
f(k), f(k) = (1− ∥k′∥+ V (k)) (7)

where

V =
(ξ ∥k′∥ − 1)2

(ξ + ξ ∥k′∥ − 2) ξ
, k′ =

[
k1
k1,max

,
k2
k2,max

,
k3
k3,max

]T
, ξ = max

i=1,2,3
|k′i|.

This makes the computation much more memory economic; however, we still
have to compute the FFT for components of ∇I and then multiply every element
of the arrays of the kernel spectrum computed directly for every element.
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Fig. 1. Left: Absolute value of spectrum ∥Im K̃∥ in the 128× 128 2D domain (only
first 16 positive wave components are shown) computed via Eq. (6) (black), computed
by FFT from kernel evaluated in the x-space (blue) and approximated by Eq. (7)
(red). Right: Function I(x) (black), its exact derivative (green, on the top only), its
derivative computed by central-difference (red), the same—through FFT (blue). Top:
I(x) = exp{−(x− 7)2}, bottom: I(x) = δ(x− 7).

3 Use of a Scalar Kernel

Alternatively, we may rearrange the intergrand shown in Eqn. (3) as a product
of scalar function and a scalar kernel, instead of a dot product between vectors.
To derive the correspondent formula in x-space, we again temporally consider
continuous infinite space in which initial integral takes the form given in (3). We
then reforumate (3) as

G(x) =

∫
x′∈R3

I(x′) · ∇K(x− x′) d3x (8)

Thus, we only have to deal with the scalar kernel which is the divergence of the
vector kernel K. In the discretized finite domain Eqn. (8) can be approximated
as

G(x) =
∑
x′∈Ω

I(x′) ·K(x− x′), K(x) = ∇K(x) (9)

where the best way to calculate ∇K is to compute vector kernel K and compute
the spatial derivatives by central differences.

4 Combined Approach

However, we may combine the above two methods together to achieve even more
efficient computation. In the k-space, the calculation of the geometrical potential
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spectrum, G̃(k), is read as

G̃ =
(
ikĨ

)
· K̃ = Ĩ

(
ik · K̃

)
= ĨK̃ (10)

where K̃(k) is spectrum of the scalar kernel (K = ∇K), factor ik in the k-
space corresponds to the nabla (∇) operator in the infinite continuous x-space.
Because we are dealing with discretized images with noise, the computation of
the gradient through multiplication by ik in the k-space can result in unde-
sired sensitivity to noise. Derivative of a function on a finite uniform grid can
be approximated by forward, backward or central differences, but also can be
computed through the direct and inverse FFT. The latter method gives very
high accuracy for smooth functions (periodic or decaying fast toward the grid
borders).

For example, for a 1D function I(x)= exp{−(x−7)2} set on x = {0, 1, . . . , 15}
the error of derivative computed by the central differences is 0.24 whereas the
error of derivative computed trough FFT is only 0.08 as seen in Figure 1(right-
top). But if the function is not smooth (for example, contains delta-correlated
noise) the situation is quite opposite. Consider, as an example, a discrete im-
plementation of Dirac’s delta δ(x − 7). Then the derivative computed by the
central differences gives a reasonable approximation of δ′(x − 7) with a three
point support, whereas the FFT method gives an oscillating result, as depicted
in Figure 1(bottom right).

Thus, for image segmentation when noise is common in presence it is more
appropriate to use central differences approximation than the FFT method. For-
tunately though, the Fourier transform can be used to compute the central dif-
ferences as well. Recall that in a continuous infinite space the derivative can be
expressed as a convolution with δ′(x)

∂I/∂x = I ∗ (δ′(x)) =
∫ +∞

−∞
I(x′) δ′(x− x′) dx′, (11)

Computing this derivative by use of the Fourier transform, we should recall its
spectrum F [δ′(x)] = ik. The central differences can be computed analogously as
a convolution with the function 1

2h

(
δ(x+h)− δ(x−h)

)
having spectrum

F
[ 1

2h

(
δ(x+h)− δ(x−h)

)]
=

i

h
sin(kh). (12)

which tends to ik when h → 0.
In 3D case, spectrum of the gradient operator, ik, should be substituted by

vector

g(k,h) =

[
i sin k1h1

h1
,
i sin k2h2

h2
,
i sin k3h3

h3

]T
(13)

Then Eqn. (10) should be transformed to

G̃ = Ĩ ×
(
g(k,h) · K̃

)
. (14)
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Thus, for this combined approach we perform FFT on the image I(x); then
for every element of the obtained arrays we calculate the scalar kernel spectrum
by employing Eqn. (7) for the vector kernel and Eqn. (13) for the modified nabla
operator in the k-space; finally we carry out the inverse Fourier transform. It
requires memory space 4 times less than that for the initial image I(x): I, Re Ĩ,
Im Ĩ, G.

5 3D Numerical Examples

To compare different methods for computation of the geometrical potential, an
artificial 3D star-like gray-scale image is created shown in Figure 2(right). Its di-
mension is 64×64×32 pixel: this relatively small size image is chosen for the sake
of convenience in visualizing the results. To understand the noise interference,
the 3D data is then added with 5% Gaussian noise.

Fig. 2. Left:
Isosurface of the 3D image (without added Gaussian noise). Right: an example of 3D

scan of a human aorta.

Figure 3(left) shows the mid-slice along the z-axis. Note, the zero-crossings
in the geometrical potential are in effect indicating the locations where the
deformable model will converge, since on either side of the zero crossing the
deformable model will converge towards zero-crossings. Hence, in the numeri-
cal studies, we examine the accuracy of the zero-crossings of different methods
compared to the object boundary (groundtruth). The colored contours in Fig-
ure 3(left) indicate the results from different methods. Also the black curve
shows the isoline for I(x, y, zm) = Im, i.e. result of segmentation performed by
thresholding [13]: the middle value Im = 1

2 (Imax+Imin) is used as the threshold.
All the lines are very close to each other, which suggests that the proposed

methods are close approximation to the direct method. Plots of geometrical
potential G(x, ym, zm) along the x-coordinates is shown in Figure 3(right), where
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Fig. 3. Top:
A slice of the 3D image; the colored curved indicate isolines of G = 0. Bottom: The G
variation along the x direction through the center of the 3D image computed by the
different methods explained in the legend. Method 0 is direct computation of the

geometric potential; method 1 is the FFT based implementation of method 0; method
2 is using analytical formula for kernel’s spectrum; method 3 using the scalar kernel

alone; and method 4 is combining methods 2 and 3. Left: methods 2–4 without
corrections, right: methods 2–4 with corrections (7) and (14).

ym = 1
2 (ymin+ymax). The curve Im−I(x, ym) is plotted in black. It shows that the

difference zero crossing is small. The rectangular region indicated by the dotted
line is zoomed and depicted at the right border of the plot. The difference is in
sub-pixel level.

The direct computation is less susceptible to noise, but it is too slow to be
practical. The proposed methods produce very similar result to that using FFT
computation as proposed in [7, 1]. However, the proposed methods, particularly
the combined approach, are far more memory efficient.

The CPU time of all the methods can be found in Table 1. Note, the combined
approach (method 4) uses 4 times less memory than the FFT based computation
used in [1]. The experiment was carried out on Linux, Intel(R) Xeon 3.00GHz,
RAM 4G. A typical 3D scan of 5123 voxels can only be pratically processed by
method 4 and it requires 8 min of the CPU time and 3G of memory.

To demonstrate the effectiveness of the proposed combined approach, we
show an example of segmenting a human aorta from a 3D CT dataset. The
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Table 1. CPU time and memory comparison for a 2563 image. Method 0 is direct
computation of the geometric potential; method 1 is the FFT based implementation of
method 0; method 2 is using analytical formula for kernel’s spectrum; method 3 using
the scalar kernel alone; and method 4 is combining methods 2 and 3.

method 0 method 1 method 2 method 3 method 4

CPU time ∼ 7days 91s 55s 42s 30s
Memory required 0.6G 1.8G 1.0G 0.6G 0.4G

testing data and the results are shown in Figures 2(left) and 4. The initial surface
is a sphere placed inside the lower part of the aorta and the model is able to
propagate efficiently and converge accurately.

Fig. 4. An example of segmenting human aorta in 3D CT shown in Fig. 2(right) us-
ing the combined approach. From left: initial surface, intermediate stages, and final
converged result.

6 4D Numerical Examples

Note that all the equations derived for the proposed methods can be readily
generalised to 4D medical scans (dynamic volumetric data). We should treat the
coordinate vector as x = {x, y, z, t}, use the 4D wavenumber vector k with k4-
component treated as the frequency, and substitute n = 4 into the correspondent
formulae for the kernel in Eqns. (1) and (3).

Here, we present a numerical study that is similar to that in the 3D case,
but using a dynamic 3D shape. We vary the ray length shape parameters of
the 3D star-like harmonic object periodically in time with the maximum near
the middle of the cycle. The ray length parameter evolution is given as [12 (1 +
cos(2π(t− tm − 1

3 )/Nt))]
1.5 where Nt = 16, tm = Nt/2. The image dimension is
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Fig. 5. Object shape at instances of 7 to12.
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Fig. 6. Left: A slice of the 4D image; the colored curved indicate isolines of G = 0.
Right: The G variation along the x direction through the center of the 3D image
computed by the different methods explained in the legend. Method 1 is the FFT
based implementation of direct computation; method 2 is using analytical formula for
kernel’s spectrum; method 3 using the scalar kernel alone; and method 4 is combining
methods 2 and 3.

64 × 64 × 32 × 16. Thus the image contains 16 3D images, some of which are
shown in Figure 5. Similarly, Gaussian noise is also added to the dynamic shape.

Figure 6(left) shows a slice of the image at instant t = tm = 7 (the max-
imal length of the star-rays) and z = zm. Here one can find colored contours
G(x, y, zm, tm) = 0 with the geometrical potential computed by the different
methods implemented in 4D. Spatial zero-crossings of geometrical potential:
G(x, ym, zm, tm) where ym, zm, tm are plotted in Figure 6(right). Note, the di-
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rect method is not shown as it takes prohibitive amount of time to compute the
geometrical potential. There is no discernible difference among methods with
improved computational efficiency. However, the proposed combined approach
requires significantly less memory. This is particularly advantageous in dealing
with 4D dataset.

7 Conclusion

We proposed several computationally efficient and memory economic meth-
ods to evaluate the geometrical potential in the GPF model [1]. The approach
which combines analytical kernel spectrum and scalar kernel conversion provides
most satisfactory results. The methods were evaluated on 3D and 4D synthetic
datasets, as well as 3D real world data. This preliminary work provided promis-
ing results which suggest that the proposed method has a great potential in
efficient deformable modelling in high dimensional space without decomposing
the space into a sequential order.
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