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Abstract
Representing articulated objects as a graphical model

has gained much popularity in recent years, often the root
node of the graph describes the global position and ori-
entation of the object. In this work a method is presented
to robustly track 3D human pose by permitting greater un-
certainty to be modeled over the root node than existing
techniques allow. Significantly, this is achieved without in-
creasing the uncertainty of remaining parts of the model.
The benefit is that a greater volume of the posterior can be
supported making the approach less vulnerable to tracking
failure. Given a hypothesis of the root node state a novel
method is presented to estimate the posterior over the re-
maining parts of the body conditioned on this value. All
probability distributions are approximated using a single
Gaussian allowing inference to be carried out in closed
form. A set of deterministically selected sample points are
used that allow the posterior to be updated for each part
requiring just seven image likelihood evaluations making it
extremely efficient. Multiple root node states are supported
and propagated using standard sampling techniques. We
believe this to be the first work devoted to efficient track-
ing of human pose whilst modeling large uncertainty in the
root node and demonstrate the presented method to be more
robust to tracking failures than existing approaches.

1. Introduction
There have been many methods proposed to estimate and

track 3D human pose from a sequence of images. This is a
particularly difficult task as it represents a high-dimensional
problem, the consequence of which is that modeling the
posterior of the pose space and searching within it is ex-
tremely challenging. Currently, the most popular solution
to this problem is to find the most likely pose and propa-
gate this into the following time instance using a temporal
model [3], this then serves as a prediction or prior over the
subject’s configuration. The problem with this approach is
that if the most likely pose found is incorrect, tracking er-
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Figure 1. Representing the posterior using a set of samples. Whilst
in standard approaches a sample typically represents the posterior
at a single location (a), under the proposed method for each sample
a hyperplane of the posterior is estimated conditioned on the root
node state, xr (b).

rors will start to accumulate often leading to failure.
Whilst many methods have been proposed to improve

the chances of finding the global maximum of the posterior
[3, 6, 7, 2], a significant problem is that often the global
maximum does not correspond to the correct pose for a
given image. The observational likelihoods typically used,
such as binary silhouettes, are weak and often ambiguous.
As a result an active area of research is in learning much
stronger part models [1, 8]. Whilst this will lead to im-
proved pose estimation it is unlikely to exclusively solve
this problem. Noisy observations will always be present in
image data preventing the global maximum in the poste-
rior from corresponding to the correct pose. An alternative
solution to this problem is to develop methods that are ca-
pable of representing and propagating greater uncertainty in
the pose space. This will ensure that tracking an incorrect
mode will not result in catastrophic failure since a much
wider area of the posterior will be supported. This is the
focus of the paper.

There are two principal parts to this problem: The first is
how to efficiently represent a greater portion of the posterior
distribution. The second is how to update this at each time
frame without a greater computational burden than existing
methods.

Current methods to efficiently estimate pose often de-
compose the human body into parts and represent it as a
probabilistic graph. Hidden nodes in the graph represent
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the state of each part and connections between these nodes
represent prior distributions learnt over these. Pose esti-
mation can then be performed using a Bayesian method-
ology, hidden nodes are treated as nuisance parameters and
marginalized over. Techniques that employ this approach
include Non-Parametric Belief Propagation [7, 15], Varia-
tional MAP [6] and Partitioned Sampling [2]. Often the
root node of the graph describes the global position and ori-
entation of the torso. However, we observe that in the do-
main of 3D pose estimation a small change in the root node
(e.g. orientation) can make a large change in the posterior
of the remaining parts. We believe that when there is large
uncertainty in the root node marginalizing over it produces
severe blurring of the posterior resulting in poor pose esti-
mation. To prevent this rather than integrating over the root
node, we support many hypothesis of its state and for each
of them update the likelihood of the remaining nodes condi-
tioned on it. For each root node hypothesis a set of Gaussian
distributions are used to model the posterior distribution for
all remaining parts. Effectively this allows a hyperplane of
the posterior to be estimated for each root node hypothe-
sis rather than, for example a particle filter, where a sample
only measures the posterior at a single point. This is illus-
trated in Figure 1.

The advantage of this approach over others (e.g. [3, 2,
7, 6]) which are typically converged to a single maximum
is that it allows greater uncertainty to be represented in the
root node without increasing the uncertainty in the remain-
ing nodes of the model. Whilst the aforementioned ap-
proaches could simply be iterated fewer times it has been
observed that for articulated models the root node must first
converge before the remaining nodes are able to do so [2],
therefore allowing greater uncertainty in this using these
approaches will greatly increase the uncertainty in the re-
maining parts of the model. Covariance Scaled Sampling
[14] modeled the posterior with Gaussian distributions and
searched the pose space along axis with the greatest uncer-
tainty. However, only a few modes were supported and a
Gaussian was estimated across the entire pose space mean-
ing the observations were most likely very sparse. In con-
trast our approach efficiently supports of the order of a hun-
dred different modes and a Gaussian is used to represent the
posterior for each individual limb conditioned on a given
root node hypothesis.

Existing hierarchical methods (e.g. [11, 10]) assume that
some parts can be better localized than others and attempt
to exploit this structure. However, the limitation with these
approaches is that if there is uncertainty in these parts the
methods perform poorly. Whilst some of these approaches
could be employed in our framework by simply executing
them for multiple hypothesis the result would be computa-
tionally expensive. The emphasis in this work is to model
a much wider volume of the posterior with little additional

computation. To this end we test our method against the
Sequence Importance Resampling Particle Filter (SIR-PF)
and the Annealed Particle Filter (APF) using the equivalent
number of image likelihood evaluations as our method. Un-
der our scheme to update the posterior given a root node
hypothesis requires the equivalent image likelihood evalua-
tions as just 7 particles making it extremely efficient.

As the probability density function for each node is ap-
proximated by a Gaussian distribution, inference can be
performed deterministically. This approach shares many
similarities to the Rao-Blackwellised Particle Filter (RBPF)
[4] where nodes are partitioned into two sets; root nodes
and leaf nodes. Root nodes are propagated stochastically
and the leaf nodes updated conditioned on these. In this
work the distribution over the root node is also propagated
stochastically, however, not all the other nodes in the graph
are directly connected to it. The RBPF was recently used
by Xu and Li to track 3D pose [16], they partitioned oppos-
ing sides of the body into root (left) and leaf (right) nodes.
Given an estimate of the states of the left side of the body,
motion correlation models were used to integrate over the
states of the opposing side. Using our method the graph
structure commonly used by existing approaches is main-
tained [5, 13]. The body is modeled as a tree with the root
node located at the pelvis and the branches of the tree rep-
resent different limbs.

In this work we propose a method to track 3D human
pose captured from multiple cameras. No high-level mo-
tion models are used to improve tracking and the method
is tested against two standard approaches: Firstly, the an-
nealed particle filter is used to show that representing only
a single mode results in a technique that often falls into the
wrong maxima causing tracking failure. Secondly, the SIR
particle filter is employed to show that when used to model a
larger uncertainty, this uncertainty is extended to all parts of
the model. This is in comparison to the presented approach
that is shown to be able to represent large uncertainty in the
root node, making it more robust to tracking failure, without
inflating the uncertainty of the remaining parts of the model.
For each technique the same experimental parameters are
used as are the same temporal diffusion models, though in
the presented approach temporal uncertainty is propagated
deterministically compared to the SIR-PF and APF where
they are propagated stochastically. Experimental results are
provided using the HumanEva dataset [12]. We believe this
to be the first work devoted to efficient tracking of human
pose whilst modeling large uncertainty in the root node and
suggest it to be an important topic of research to improve
tracking techniques.

2. Approach Overview & Paper Organization
To perform efficient tracking the body is decomposed

into its constituent parts which allows it to be represented
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over a probabilistic graph. The nodes are partitioned into
the root node, representing the global position and orien-
tation of the body, and the remaining nodes representing
the orientation of each part. This is defined more formally
in Section 3.1. The state of each node, excluding the root
node, is represented as a quaternion rotation. Learning a
distribution over quaternions is difficult, however, in Sec-
tion 3.2 an approximation, similar to that presented in [13],
is described to achieve this. Often a distribution learnt over
quaternion space must be propagated through a rotation,
this will be necessary, for example, to propagate uncer-
tainty between neighboring parts. This is performed using
the Unscented Transform, which is briefly described in Sec-
tion 3.3.

The posterior distribution over the root node is repre-
sented by a set of samples. For each sample, a set of Gaus-
sians are used to represent the posterior for each part condi-
tioned on the given root node state. The parameters of each
distribution are updated in each frame using a set of deter-
ministically selected sample points, which we describe in
Section 5. Combining these with limb conditionals, that
represent the prior distribution over the configuration be-
tween connected parts (Section 4), efficient probabilistic in-
ference can be performed as described in Section 6.

Whilst the posterior distribution over the root node is
propagated through time stochastically, the distribution over
all other nodes are propagated by inflating the covariances
deterministically (Section 7).

Quantitative results, including a comparison between the
proposed method, the APF and SIR-PF are provided in Sec-
tion 8. Finally, conclusions are provided and avenues for
further work are discussed in Section 9.

3. Model Representation

3.1. Graphical Model

The body is represented as a graph G = {V, ℰ}, where
V = {v1, .., vn} are the nodes of the graph and {vi, vj} ∈ ℰ
represent the edges between them. The state of each of
the nodes is defined by X = {x1, .., xn}. We partition
the graph into the root node xr and all remaining nodes
X = {x1, ..xn−1}. X represents the individual parts of
the body comprising of the head (H), torso (Tor), left upper
arm (LUA), left lower arm (LLA), left upper leg (LUL), left
lower leg (LLL) and the opposing part for each limb. The
structure of the graph is shown in Figure 2 (a). The state of
these parts is represented by a quaternion rotation qi that de-
scribes the orientation of each part in the frame of reference
of the body, where the base of the torso is the origin, the
z-axis is the vertical and y-axis is directed across the shoul-
ders. The root node xr does not explicitly represent a part,
its state represents the position dr and orientation µr of the
body in the global frame of reference, i.e. that of the mo-

tion capture suite. This allows the transformation from the
body to the global frame of reference, i.e. X ′ = f(X,xr).
This is depicted in Figure 2 (b). Further to this the state can
be decomposed into a local frame of reference, where each
part is represented as a rotation defined in the frame of ref-
erence of the part to which it is connected Xij = g(X, ℰ).
This is depicted in Figure 2 (c).
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Figure 2. (a) shows the graphical structure used to represent the
body. (b) shows the frame of reference of the body X in that of
the motion capture suite X ′. (c) shows a part represented in the
frame of reference of the part to which it is conected Xij .

The posterior distribution over this graph is rep-
resented by a set of samples S = {X1, ..,Xm},
where each sample is composed of the root node xr

and the posterior distribution of each part conditioned
on this {p(x1∣O, xr), .., p(xn−1∣O, xr)}, where O =
{O1, .., On−1} represents the set of observations for
all parts. The posterior of each part is modeled us-
ing a normal distribution p(xi∣O, xr) = N (xi;¹i,Σi).
This allows each particle to be parametized by Xl =
{xr, ¹1,Σ1, .., ¹n−1,Σn−1}.

We assume that the body is constructed of rigid limbs
with fixed joint positions. This is different to approaches
such as [5, 13] where connections between parts are soft,
so called loose limbed models. The parameters of a particle
can then be used to construct a rigid body as follows: The
location of the proximal and distal joints of a part are given
by lpj = R(¹i, l

p
ij) + lpi and ldj = R(¹j , [0, 0, Lj ]) + lpj re-

spectively, where R(q, x) rotates the vector x by the quater-
nion q, Lj is the length of the part and lij is the location
of the proximal joint defined in its local frame of reference
(the origin of Xij in Figure 2 (c)). Both these parameters
are constant.

3.2. Representing a Quaternion

A unit quaternion is represented by two parts, a scalar
and vector part q = q0 + q̄, where q̄ = qxi + qyj + qzk
and ∣q∣ = 1. The vector part represents the direction of
the axis of rotation and the scalar part the cosine of half of
the rotation. By ensuring q0 is positive a quaternion can
be represented in ℝ3 using only the vector components.
A value in this space then represents the direction of the
axis of rotation scaled by the sine of half the rotation about
it. This is similar to the approximation used in [13] ex-
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cept here the direction was scaled by the tangent, we opted
not to use this since it results in a singularity. Given a
value for q̄, the scalar component can be recovered through
q0 =

√
1− ∣q̄∣2. However, this will have a discontinuity

when ∣q̄∣ = 1, given a set of quaternions provided for train-
ing Q = {q1, .., qm} a space is constructed so that they are
centered about the origin of ℝ3 by solving

argmax
qi∈Q

1

m

m∑

j=1

(q−1
i qj).[1, 0, 0, 0]

T . (1)

This is similar to the transformation used in [13] and is per-
formed for each part so that tracking and learning probabil-
ity distributions can take place in this ‘safe’ three dimen-
sional representation of a quaternion space.

3.3. The Unscented Transform

Often it will be desirable to propagate a distribution
N (x;¹,Σ) through some non-linear function x′ = f(x).
One method to achieve this is to use the Unscented Trans-
form [9]. This method decomposes the Covariance of a dis-
tribution into a set of 2D sigma points Σ̄ = {¾1, .., ¾2D},
where D is the dimension of the covariance. Each sigma
point is then translated by the mean to generate a set of
points that represent the mean and covariance of the orig-
inal distribution. Each sigma point is calculated as

¾d =¹+
√
DÀded,

¾D+d =¹−
√
DÀded,

(2)

where Àd and ed represents the dth eigenvalue and eigen-
vector of the covariance matrix. Once calculated each sigma
point is then propagated through the non-linear function
and the new sample mean and covariance calculated from
them. This method will frequently be used to propagate
a probability density function through a quaternion rota-
tion. This process will be simply defined as N (x′;¹′,Σ′) =
ℱ (q,N (x;¹,Σ)) if the rotation q is applied to the distribu-
tion or vice-versa if the sigma points are applied to q.

4. Limb Conditionals
Limb conditionals represent the edges of the graph and

model the distribution p(xj ∣xi, cij), where cij is a connec-
tion parameter. Rather than learning a full limb conditional
we follow the approximation in [13] and learn a distribu-
tion over xij , p(xij ∣cij). This is learnt over the quaternion
representation described in Section 3.2, where qij = q−1

i qj ,
and the connection parameters are defined as the mean ¹ij

and covariance Σij of a Gaussian distribution. Given the
state of xi a prediction can be made over xj through

p(xj ∣xi, cij) ≈ ℱ (qi,N (xij ;¹ij ,Σij)) . (3)

An example of the distributions predicted for the lower legs
are shown in Figure 3. This shows a visualization of the
distribution p(xj ∣xi, cij) learnt in quaternion space by pro-
jecting the sigma points into Euclidian space. As would be
expected the greatest uncertainty is along the direction that
the lower leg can rotate about the knee.

Figure 3. Visualizing the predictions of the lower legs’ state given
that of the upper legs.

5. Approximating the Observational Likeli-
hood Distribution

The observational likelihood represents the probabil-
ity distribution over a part given an observation and is
approximated using a Gaussian distribution p(xi∣Oi) =
N (xi;¹

obs
i ,Σobs

i ). Whilst in many signal processing tasks
(e.g. tracking via radar) a measurement can be directly
made and an error attached to this measurement, in the case
of 3D tracking a leg position can not directly be estimated,
only the image likelihood at a given location. A solution is
to generate many samples of a limb’s position, weight each
sample by the image likelihood and then use the weighted
samples to estimate the mean and covariance of the distri-
bution. However, this would be computationally expensive.

Instead, given a prediction of a limb’s state made
from the previous frame p(xt

i∣xt−1
i ,Ot−1, xt−1

r ) =
N (xt

i;¹
t
i,Σ

t
i) the distribution is decomposed into a set of

sigma points using (2). As well as 2D sigma points a
copy of the mean is also maintained, so instead 2D + 1

sigma points are selected and each scaled by
√
(D + 1

2 )Àd.

This set is defined as Σ̄t
i = {¾t

{i,1}, .., ¾
t
{i,7}}. Each sigma

point is then projected into the image and weighted by the
image likelihood at that location wt

{i,m} = p(Oi∣¾t
{i,m}).

The weights are then normalized and the parameters
{¹obs

i ,Σobs
i } are estimated from the weighted set of sigma

points. Note that if the likelihood is uniform the distribution
will remain unchanged. An example of the sample points
used to represent a distribution is shown in Figure 4.

Image likelihoods are calculated using binary silhou-
ettes. Given a binary silhouette ℬ and the set of image
pixels P , pixels classified as the foreground are set to one
ℬ(Pfg) := 1 and those classified as the background are set
to zero ℬ(Pbg) := 0. Given a limb projected into the im-
age consisting of the pixels ℒ(xi) ⊂ P , the cost is defined
as p(Oi∣xi) ∝ ∑

l∈ℒ(xi)
ℬ(l). To prevent different limbs

being assigned to the same mode (over counting), each con-
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Figure 4. An example of a set of sample points used to estimate ob-
servational likelihood distributions projected into two views. They
represent the distributions shown on the left.

structs a version of the binary silhouette for the opposing
part ℬopp(i), given by

ℬopp(i)(ℒ(Σ̄t
i) ∩ Pfg) := 0.5, (4)

where Σ̄t
i represents the set of sigma points. This makes it

preferable for a limb to be located where the opposing limb
is not predicted to be, whilst preferring this over locating a
limb to a region of the image classified as the background.

Given a sample Xl = {xr, ¹1,Σ1, .., ¹n−1,Σn−1},
the method described in this section is used to es-
timate the observational likelihood for each part
{p(x1∣O1), .., p(xn−1∣On−1)}. This requires the equiv-
alent number of image likelihood evaluations as just 7
particles using a SIR-PF or APF.

6. Probabilistic Inference
In this section we describe how the states of the nodes are

updated for each sample Xl = {xr, X}. Inference is per-
formed by passing messages between nodes. The posterior
distribution for the jth node conditioned on all observations
and a given root node state is calculated as

p(xj ∣O, xr) = p(xj ∣Oj)
∏

vi∈ℰ(j)
p(xj ∣Oi, .., OT , xr), (5)

where vi ∈ ℰ(j) defines the set of edges connected to j and
Oi, .., OT represents the set of observations for the subtree
containing vi, created by removing the edge {vi, vj}. Since
all distributions are modeled as Gaussians the above prod-
ucts can be calculated in a closed form through

N (xj ;¹j ,Σj) = N (xj ;¹
obs
j ,Σobs

j )
∏

vi∈ℰ(j)
N (xj ;¹

i⃗j
j ,Σ

i⃗j
j ),

(6)
where N (xj ;¹

i⃗j
j ,Σ

i⃗j
j ) represents the message from i to j

and the product of two Gaussian distributions results in a
Gaussian with parameters

Σk =(Σ−1
i +Σ−1

j )−1,

¹k =Σk(Σ
−1
i ¹i +Σ−1

j ¹j).
(7)

Messages are calculated in two steps. Firstly, incoming
messages from all nodes other than the node to which the
message is being passed are combined with the local obser-
vation likelihood

N (xi;¹
i⃗j
i ,Σ

i⃗j
i ) = N (xi;¹

obs
i ,Σobs

i )
∏

vk∈ℰ(i)/j
N (xi;¹

k⃗i
i ,Σk⃗i

i ).

(8)
Secondly, this distribution is propagated through the predic-
tive model p(xij ∣cij) so that it is defined over xj . Given the

distribution center ¹i⃗j
i , a prediction can be made using (3):

N (xj ;¹
i⃗j
j ,Σ

i⃗j
j ) = ℱ

(
¹i⃗j
i ,N (xij ;¹ij ,Σij)

)
. (9)

Whilst this propagates the uncertainty in the predictive
model, the uncertainty in the message Σi⃗j

i must also be
passed. This is achieved using the center of the predictive
model ¹ij

N (xj ;¹
err
j ,Σerr

j ) = ℱ
(
N (xi;¹

i⃗j
i ,Σ

i⃗j
i ), ¹ij)

)
. (10)

The final message is then given by the convolution of the
two of these distributions setting ¹err

j := 0, such that the
message from i to j is calculated as

p(xj ∣Oi, .., OT , xr) = N (xj ;¹
i⃗j
j ,Σ

i⃗j
j +Σerr

j ). (11)

The posterior for each node can then be updated using (6).
The root node does not send messages, however, the poste-
rior for a given root node state is approximated as

p(xr∣O) ≈
n∏

i=1

7∑

j=1

p(Oi∣¾{i,j}). (12)

A sample Xl then consists of a root node state, a set of
updated Gaussian distributions using (6) and a weight equal
to the posterior, Xl = {xr, ¹1,Σ1, .., ¹n−1,Σn−1, w}. The
Maximum A Posterior (MAP) pose is then selected, this is
defined by the set of Gaussian centers of the sample with
the highest weight.

7. Temporal Diffusion
Given a sample Xt

l = {xt
r, ¹

t
1,Σ

t
1, .., ¹

t
n−1,Σ

t
n−1, w},

in this section we describe how the posterior over a node
p(xt

j ∣Ot, xt
r) = N (xj ;¹

t
j ,Σ

t
j) is used to estimate a prior in

the following frame using

p(xt+1
j ∣Ot, xt

r) ≈ p(xt+1
j ∣xt

j)p(x
t
j ∣Ot, xt

r). (13)

To achieve this p(xt+1
j ∣xt

j) is approximated in a similar way
as the limb conditionals in Section 4. This is represented by
a zero mean diffusion model such that

p(xt+1
j ∣xt

j) ≈ ℱ
(
¹t
i,N (ẋij , 0, Σ̇ij)

)
, (14)
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where the model is learnt over q̇ij =
(
qtij

)−1
qt+1
ij .

Given that p(xt+1
j ∣xt

j) = N (xt
j , ¹

diff
j ,Σdiff

j ) calculated
through (14), the prior is given by p(xt+1

j ∣Ot, xt
r) =

N (xj , ¹
t
j ,Σ

t
j + Σdiff

j ), where the original covariance has
been inflated by Σdiff

j . In Figure 5 this method is shown
applied to three consecutive frames where the covariance
growth across the frames is cumulative.

Figure 5. Example showing temporal diffusion applied to the co-
variances of the model for a given root node location.

The posterior over the root node is represented by the set
of root node states and posterior weights taken from each
sample, p(xt

r∣Ot) ≈ {xt
r,l, wl}ml=1. This distribution is also

propagated using a zero mean diffusion model, though this
is performed stochastically.

At each frame resampling is performed so areas of the
posterior with a high likelihood are tracked over those with
a low likelihood. Methods from annealing are used to adjust
the posterior such that w′

l = (wl)
¯ . A value of ¯ can be se-

lected such that the particle survival rate ® can be estimated
over the entire set of particles as described in [3]. Given a
set of particles tracked over t frames the survival rate will
decrease according to ®t. To allow the same survival rate to
be maintained over a fixed time interval, ® is set according
to ® = exp ln®c

Nt
, where ®c is the desired cumulative sur-

vival rate per second and Nt is the frame rate. This is used
so that the uncertainty over the root node can be consistent
regardless of the frame rate. A larger value of ®c will allow
the distribution of the particles to represent a larger area of
the posterior than a smaller value.

8. Experiments and Results
The presented method was tested using the HumanEva-

I dataset which contains a scene captured from multiple
views synchronized with motion capture data [12]. The
‘Train’ partition consisting of only motion capture data was
used for training across all subjects performing walking and
jogging actions and the first 300 frames of the ‘Validation’
partition was used for testing. Three views were used corre-
sponding to the color cameras and foreground/background
segmentation was performed using the Matlab code pro-
vided with the data set using default settings.

The presented approach was tested against two existing

methods, the APF and the SIR-PF. The APF allows the pre-
sented method to be tested against an approach that con-
verges to a single mode. Whilst the SIR-PF can be used to
examine how existing approaches behave when permitted
to represent a larger area of the posterior. The APF used 5
layers of 160 particles and the SIR-PF used a single layer
of 800 particles. The presented method used 114 particles
since calculating the posterior for each requires the equiv-
alent image likelihood evaluations as 7 SIR-PF/APF parti-
cles.

For the APF ® was set to 0.5 for each layer of annealing,
therefore the survival rate per frame over all 5 layers was
0.03. This ensured the APF converged to a single mode. For
the SIR-PF and the proposed method ®c was set to 0.01, at a
frame rate of 60Hz this produces a survival rate per frame of
0.93. This allowed the SIR-PF and the proposed method to
represent a much larger area of the posterior than the APF.

Limb limits were learnt from the training data and used
to discard unlikely poses for all methods. For the APF pose
was estimated using the expectation value of the samples
and for the SIR-PF and the proposed method the MAP esti-
mate was used.

It was noted that often the errors were dominated by
left/right leg ambiguities, to overcome this during resam-
pling an extra copy of a particle was occasionally main-
tained with the legs swapped. This was performed stochas-
tically according to p(swap) ∝ µlegs, where µlegs is the
angle between opposing upper legs. The total number of
samples was still constant. Whilst this approach is rather
adhoc it did alleviate the problem to some degree, most no-
tably for the APF, though a far superior solution would be
to employ a dynamic motion model. This was applied to all
methods.

In Figure 6 the set of particles can be seen used to rep-
resent the posterior for the proposed method and the SIR-
PF. As can be seen if the particle filter is used to represent
a large uncertainty, this uncertainty is present in all parts
of the model. This is in contrast to the proposed method
where the posterior for each part is updated conditioned on
the root node value of the particle. A large uncertainty in the
root node is represented without increasing the uncertainty
in the remaining parts.

In Table 1 the average errors using the train partition are
shown for each subject walking. As can be seen over all
subjects the proposed method outperforms both the APF
and the SIR-PF. If the root node can be tracked with high
accuracy it would be expected that the APF would outper-
form the proposed method, since the APF uses 800 particles
compared to the presented approach that uses the equivalent
of 7 to update the posterior for a single root node hypoth-
esis. This can be seen in Table 1 where for S2 and S3 the
APF outperforms the presented method. However, the prin-
cipal claim in this work is that by representing a larger area
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Figure 6. Example frames showing the distribution of the samples using the SIR-PF (top) and the proposed method (bottom) with ®c =
0.01. The covariances for each sample have also been plotted for the proposed method.

of the posterior our method is less prone to tracking failure
than the APF. This is evidently clear from S1 where the root
node uncertainty is larger and the proposed method signifi-
cantly outperformed the others.

Table 1. Pose estimation errors measured in mm using 3 cameras.
Method S1 S2 S3 Average

APF 194.2 75.0 87.7 118.9 ± 65.5
SIR-PF 105.1 93.0 109.2 102.5 ± 8.4

Proposed 87.3 95.2 98.5 93.7 ± 5.8

This can further be seen in Figure 8 where an example
of the tracking error in each frame is shown for the pro-
posed method and the APF. During the first 60 frames when
the root node is accurately tracked the error is lower for
the APF, however, beyond this the APF fails whilst the pro-
posed method is able to continue tracking the subject. To
further illustrate this behavior we compare the discussed
methods using just 2 camera views. Fewer camera views
will result in more ambiguous observations and in these
circumstances it will be beneficial to be able to represent
greater uncertainty until these ambiguities can be resolved.
The results are presented in Table 2. As expected the APF is
more prone to tracking failure and our method outperforms
both the SIR-PF and the APF. We further experimented us-
ing three cameras but at different frame rates. The error for
each averaged across all subjects are presented in Figure 9.
At lower frame rates, when there is greater movement by the
subject across consecutive frames, the APF becomes more
prone to falling into the wrong maxima and the presented
method continues to outperform both techniques across all
frame rates, highlighting its superiority.

Table 2. Pose estimation errors measured in mm using 2 cameras.
Method S1 S2 S3 Average

APF 200.7 120.0 117.9 146.2 ± 47.2
SIR-PF 105.1 105.2 120.7 110.4 ± 8.9

Proposed 89.3 108.7 113.5 103.8 ± 12.8

Example frames showing the MAP estimate pose using
the presented method are shown in Figure 7 where the es-
timated pose closely resembles that of the subject in each
frame. We choose not to apply temporal smoothing hence
the MAP estimate has a slightly jittery appearance across
consecutive frames. Whilst the quantitative errors between
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Figure 8. Tracking error in each frame for the APF (blue) and the
proposed method (red).
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Figure 9. Tracking errors for walking using each method applied
to a different frame rate.

the proposed method and the SIR-PF are relatively close,
qualitatively the tracking is significantly poorer for the SIR-
PF. In Figure 10 example frames are shown comparing the
MAP solution using the SIR-PF compared to the proposed
method. As can be seen the poses estimated by the SIR-
PF are notably worse than those estimated by the proposed
method.

9. Conclusions

In this paper a method has been presented to represent
and track a much larger region of the posterior distribution
than existing methods are able to by increasing uncertainty
in the root node. This has been achieved by stochastically
tracking the root node and estimating the posterior over the
remaining parts of the model conditioned on each root node
hypothesis. A method was presented to do this requiring
the equivalent number of image likelihood evaluations as
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Figure 7. Example frames showing the MAP 3D pose using the proposed method projected into each camera view.
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Figure 10. Comparison of pose estimation between the SIR-PF (top row) and proposed method (bottom row).

just 7 particles if using a SIR-PF or APF. It was shown
that when existing methods are used to represent greater
uncertainty, this uncertainty is increased across all parts of
the body unlike the proposed method. Furthermore, com-
pared to the APF that represents just a single mode, the
presented approach was shown to be less prone to track-
ing failure. This was confirmed by quantitative results us-
ing the HumanEva data set and demonstrates that for 3D
human tracking, greater robustness is achieved by support-
ing a much larger uncertainty in the root node. In future
work we will investigate incorporating more complex dy-
namic models into our framework.
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